Name:

Problem 1: The mean replacement time for a random sample of 19 washing machines is 9.5 years and the standard deviation is 2.4 years.
(a) Construct a 90% confidence interval for the mean replacement time.

$$
\begin{aligned}
& \bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \\
& 9.5 \pm 1.645 \cdot \frac{2.4}{\sqrt{19}} \\
& 9.5 \pm 0.906 \\
& (8.59,10.41)
\end{aligned}
$$

(b) Construct a 99% confidence interval for the standard deviation of the replacement time of all washing machines of this type.

$$
\begin{aligned}
\frac{(n-1) s^{2}}{\chi_{R}^{2}} & <\sigma^{2}<\frac{(n-1) s^{2}}{\chi_{L}^{2}} \\
\frac{18 \cdot 9.5^{2}}{37.156} & <\sigma^{2}<\frac{18 \cdot 9.5^{2}}{6.256} \\
43.72 . & <\sigma^{2}<259.671 \\
\sqrt{43.72} & <\sqrt{\sigma^{2}}<\sqrt{259.671} \\
6.61 & <\sigma<16.11
\end{aligned}
$$

Problem 2: The U.S. Marine Corps requires that male applicants have heights between 64 in and 78 in . Assume the heights of men are normally distributed with a mean of 68 in and standard deviation of 2.7 in .
(a) Find the percentage of men meeting those height requirements.

$$
\begin{aligned}
& z_{78}=\frac{78-68}{2.7}=3.70 \rightsquigarrow 1.0 \\
& z_{64}=\frac{64-68}{2.7}=-1.48 \rightsquigarrow 0.0694
\end{aligned}
$$

$$
1.0-0.0694=0.9306=93.06 \%
$$

(b) If the Secretary of Defense is to change the requirements so that only the shortest and tallest 3% of applicants are going to be denied, what are these heights?

$$
\begin{aligned}
z_{3 \%} & =-1.88 \\
x & =68+(-1.88) \cdot 2.7=62.92 \\
z_{97 \%} & =1.88 \\
x & =68+(1.88) \cdot 2.7=73.08
\end{aligned}
$$

(c) If 32 men are randomly selected, find the probability that their mean height is greater than 67 in.

$$
z_{67}=\frac{67-68}{\frac{2.7}{\sqrt{32}}}=\frac{-1}{0.4773}=-2.10 \rightsquigarrow 0.0179
$$

$$
1-0.0179=0.9821
$$

Problem 3: The board of directors of a company has 8 members.
(a) How many different possibilities are there for choosing a president, vice president, secretary, and treasurer assuming no person can hold more than one office?

$$
{ }_{8} P_{4}=\frac{8!}{(8-4)!}=1,680
$$

(b) How many different possibilities are there are for a subcommittee consisting of 3 members?

$$
{ }_{8} C_{3}=\frac{8!}{3!(8-3)!}=56
$$

Problem 4: In a simple random sample pre-election poll of 1,400 voters, 800 say they intend to vote for candidate A. Construct a 99% confidence interval for the percentage of voters who intend to vote for candidate A .

$$
\begin{aligned}
& \hat{p}=\frac{800}{1400}=0.5714 \\
& \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{0.5714 \cdot 0.4286}{1400}} \\
& 0.5714 \pm \sqrt{0.00017} \\
& 0.5714 \pm 0.0132
\end{aligned}
$$

$$
(0.5582,0.5846)
$$

Problem 5: A committee of two people is to be formed from a group of 30 people consisting of 10 men and 20 women.
(a) How many different possible committees are there?

$$
{ }_{30} C_{2}=\frac{30!}{2!(30-2)!}=435
$$

(b) How many different committees are made up of one man and one woman?

$$
{ }_{10} C_{1} \cdot{ }_{20} C_{1}=10 \cdot 20=200
$$

(c) How of these committees are made up of two women?

$$
{ }_{20} C_{2}=\frac{20!}{2!(20-2)!}=190
$$

(d) If the committee is selected completely at random, what is the probability that the committee is made up of two women?

$$
\frac{190}{435}=0.4368
$$

