Name:

Problem 1: In a certain Biology class, each of two exams are worth 15%, the final exam is 20% of the final course grade, the labs are worth 30% of the course grade, and the quizzes are worth 20% of the grade. If a student received a 86% and 76% on the exams, a 84% on the final exam, a 92% average on the labs, and a 95% quiz average, what is the students course grade?

$$
92 \cdot 0.30+95 \cdot 0.20+86 \cdot 0.15+76 \cdot 0.15+84 \cdot 0.20=87.7
$$

Problem 2: Suppose A and B are independent events with probabilities $P(A)=0.3$ and $P(B)=0.7$. Find $P(A$ and $B)$ and $P(A$ or $B)$.

$$
\begin{aligned}
& P(A \text { and } B)=P(A) P(B)=0.3 \cdot 0.7=0.21 \\
& \qquad P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)=0.3+0.7-0.21=0.79
\end{aligned}
$$

Problem 3: Waiting times for a certain type of building permit is normally distributed with mean 18 months and standard deviation 4 months.
(a) Find the probability that has person has to wait more than 17 months for this permit.

$$
\begin{aligned}
& z_{17}=\frac{17-18}{4}=-0.25 \rightsquigarrow 0.4013 \\
& 1-0.4013=0.5987
\end{aligned}
$$

(b) Find the number of months that marks the top 40% of wait times.

$$
\begin{aligned}
z_{60 \%} & =0.25 \\
z & =\frac{x-\mu}{\sigma} \\
0.25 & =\frac{x-18}{4} \\
x & =18+4 \cdot 0.25 \\
x & =18+1 \\
x & =19
\end{aligned}
$$

Problem 4: The scores of the Math GRE exam follow a normal distribution. A sample of 20 scores is randomly selected and the sample mean and standard deviation are $\bar{x}=784, s=105$. Use these sample results to construct the 98% confidence interval for the mean σ of all Math GRE test scores.

$$
\begin{aligned}
\bar{x} & \pm t_{\alpha / 2} \frac{s}{\sqrt{n}} \\
784 & \pm 2.528 \cdot \frac{105}{\sqrt{20}} \\
784 & \pm 59.35
\end{aligned}
$$

Problem 5: Suppose you wish to construct a 98% confidence interval for μ with a sample size of 41. If it is known that $\sigma=10$ and the population appears to be very skewed, choose which one of the following critical values should be used:
(i) $t_{\alpha / 2}=2.423$
(ii) $z_{\alpha / 2}=2.33$
(iii) $z_{\alpha / 2}=1.96$
(iv) neither

A critical value of $z_{\alpha / 2}=2.33$ must be used.

