"It's not easy being drunk all the time. If it were, everyone would do it."

-Tyrion Lannister, Game of Thrones

Problem 1: Concrete is a commonly used material in Civil Engineering. Comprehensive strength measures the ability of concrete materials to endure various strains. Researchers examined 1,030 concrete samples and attempted to try to predict the comprehensive strength of various mixtures of concrete using the cement amount, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate used in the construction as well as the age of the concrete. Fill in the missing entries from the analysis of their model in the table below.

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression		176745		204.27	0.000
Cement		21533	21533.3	199.09	0.000
BF		11353	11352.5		0.000
FlyAsh		5281	5281.3	48.83	0.000
Water			1513.4	13.99	0.000
SP		1046	1046.3	9.67	0.000
${\tt CoarseAg}$		398		3.68	0.000
FineAg		384	383.5	3.55	0.000
Age		47905	47905.2	442.92	0.000
Error					
Total					

Model Summary

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant		26.6	-0.87	0.384	
Cement	0.11979	0.00849	14.11	0.000	7.49
BF	0.1038		10.28	0.000	7.28
FlyAsh	0.0879	0.0126	6.99	0.000	6.17
Water	-0.1503	0.0402	-3.74		7.00
SP	0.2907	0.0935	3.11	0.002	2.97
${\tt CoarseAg}$	0.01803	0.00939		0.055	5.08
FineAg	0.0201	0.0107	1.88	0.060	7.01
Age		0.00543	21.05	0.000	1.12

The regression equation is

 $\textbf{Compression Strength} \ = \ -23.2 + 0.11979C + 0.1038B + 0.0879F - 0.1503W + 0.2907S + 0.01803CA + 0.0201FAg + 0.11423A + 0.0201FAg + 0.01803CA + 0.0201FAg + 0.01423A + 0.0201FAg + 0.01803CA + 0.0201FAg + 0.01804CA + 0.0201FAG + 0.00180CA + 0$

¹I-Cheng, Yeh, "Modeling of strength of high performance concrete using artificial neural networks.", *Cement and Concrete Research*, Vol. 28, No. 12, pp.1797–1808 (1998).

Fur	thermore, based on the data from the table, answer the following questions:
(a)	What is the correlation coefficient?
(b)	What is the coefficient of determination? What does it mean?
(c)	Give a 95% confidence interval for β_5 . Interpret the result in the context of the problem.
(d)	For which variables do there seem to be a (linear) association between comprehensive strength and the given variable? For which does there not seem to be? Explain. [Use a significance of $\alpha=0.05$.]
(e)	Use the data in the table to perform an F -test for this model. State the null and alternative hypothesis, test statistic, p -value, and state your conclusion. [Use $\alpha=0.10$.]
(f)	If one were to perform a t -test on one of the coefficients, what is the associated degrees of freedom? What about if one were to perform the F -test 'by hand', what are the degrees of freedom of the numerator and denominator?