## Chapter 6

## From the Textbook:

Section 6.1
6.12, 6.27, 6.28, 6.30, 6.36
Section 6.2
$6.52,6.53,6.54,6.58,6.59,6.70,6.71,6.73,6.75$
Section 6.4
6.118, 6.119

## Additional Problems:

1. A machine is used to fill soda bottles. The amount of soda dispensed into each bottle varies slightly and is known to have a normal distribution with population standard deviation $\sigma=2.62 \mathrm{ml}$. A random sample of 25 bottles filled by the machine is taken and the amount of soda filled in each bottle was measured. From this sample data, the sample mean was calculated to be 591.2 ml .
a. Find the $90 \%$ confidence interval for the population mean amount of soda filled by the machine.
b. Find the $98 \%$ confidence interval for the population mean amount of soda filled by the machine.
2. A firm that administers flexible spending plans would like to estimate the population mean of the unused yearly dollars within $\$ 0.30$ with $99 \%$ confidence. The standard deviation of the unused yearly dollars is known to be $\$ 2.4$. What should be the number of flexible spending plan members that the firm should sample?
3. The level of calcium in the blood of healthy young adults follows a normal distribution with mean $\mu=10$ milligrams per deciliter and standard deviation $\sigma=0.5$. A clinic measures the blood calcium of 27 healthy pregnant young women at their first visit for prenatal care. The mean of these 27 measurements is $\bar{x}=9.8$. Is this evidence that the mean calcium level in the population of healthy pregnant young women is less than 10 ?
a. Set up the null and alternative hypotheses that you will be testing regarding the above question.
b. Assuming that the distribution of calcium level measurements for pregnant young women is a normal distribution with $\sigma=0.5$, find the value of the test statistic and compute the P -value.
c. Is this statistically significant (circle your answers)
at the $5 \%$ level? (Yes, No); at the $1 \%$ level? (Yes, No)
d. At the $5 \%$ level of significance, state your conclusion in words.
4. A car brand XYZ states on their stickers and their advertisements that the highway MPG is 27. A consumer watchdog group believes that XYZ is overstating the highway MPG.
a. If $\mu$ denotes the average highway MPG for all XYZ cars, state the null and alternate hypotheses for this scenario in terms of $\mu$.
b. From a simple random sample of 140 cars of the brand XYZ, sample average highway MPG was computed to be 25.9. Assuming the population standard deviation is $\sigma=7$, compute the test statistic and the $p$-value.
c. State the decisions at significance levels $\alpha=10 \%, \alpha=5 \%$, and $\alpha=1 \%$.
5. A machine is used to fill soda bottles. The amount of soda dispensed into each bottle varies slightly and is known to have a normal distribution with population standard deviation $\sigma=2.62 \mathrm{ml}$. A random sample of 25 bottles filled by the machine is taken and the amount of soda filled in each bottle was measured. From this sample data, the sample mean was calculated to be 591.2 ml .
a. Consider the hypotheses $H_{0}: \mu=592.4$ and $H_{a}: \mu<592.4$. Compute the test statistic $z$ and the $p$-value.
b. State the decisions at significance levels $\alpha=10 \%, \alpha=5 \%$, and $\alpha=1 \%$.
6. Consider the test $H_{0}: \mu=450$ against the alternative hypothesis $H_{a}: \mu>450$ at the $\alpha=1 \%$ level of significance. Assume that the population standard deviation is $\sigma=100$ and a simple random sample of size 500 is to be taken.
a. Calculate the critical value. For what values of the sample mean will $\mathrm{H}_{0}$ be rejected?
b. Calculate P(Type II Error) and the power at the particular alternative value $\mu=460$.

From the Textbook (problems marked with * are recommended to be done with MINITAB):

$$
\begin{array}{ll}
\text { Section } 7.1 & 7.17,7.20,7.21,7.22,7.23,7.24,7.30^{*}, 7.31^{*}, 7.32,7.35 \\
\text { Section } 7.2 & 7.63,7.64,7.67,7.74,7.80,7.84,7.85^{*} \\
\text { Section } 7.3 & 7.102,7.103,7.107^{*}, 7.109
\end{array}
$$

## Additional Problems:

1. A machine is used to make a particular type of HDMI cord. The length of each cord made varies slightly and is known to have a normal distribution. A random sample of 25 cords made by the machine is taken and the exact length of each cord in the sample was measured. From this sample data, the sample mean was calculated to be 591.2 mm with a sample standard deviation 2.62 mm .
a. Find a $95 \%$ confidence interval for the population mean cord length made by the machine.
b. Consider the hypotheses $\mathrm{H}_{0}: \mu=592.4$ and $\mathrm{H}_{\mathrm{a}}: \mu<592.4$. Compute the $t$-statistic and the p -value.
c. State the decisions at significance levels $\alpha=10 \%, \alpha=5 \%$, and $\alpha=1 \%$.
2. A faster loan processing time produces higher productivity and greater customer satisfaction. A financial services institution wants to determine if their mean loan processing time is less than a competitor's claim of 6 hours. A financial analyst randomly selects 7 loan applications and manually calculates the time between loan initiation and when the customer receives the institution's decision. From the sample data, the sample mean of the loan processing time was 5.079 hours with a sample standard deviation of 1.319 hours. Assume that the loan processing times follow a normal distribution.
a. Compute the test statistic and the p -value that can be used to determine if their mean loan processing time is less than a competitor's claim of 6 hours.
b. State the decisions at significance levels $\alpha=10 \%, \alpha=5 \%$, and $\alpha=1 \%$.
c. Find a $95 \%$ confidence interval for the population mean loan processing time.
3. An inspector wants to compare the bolts produced by company $A$ and company $B$, based on the length of the bolts. A random sample of 16 bolts by company $A$ yields a sample mean of 4.488 and a sample standard deviation of 0.035 inches. Random sample of size 10 from company $B$ yields a sample mean of 4.512 inches and a sample standard deviation of 0.029 inches. Assume the population standard deviations are equal.
a. Consider testing the research hypothesis that the population mean length of the bolts from company $A$ is smaller than the population mean length of the bolts from company B. Calculate the appropriate test statistic, specify the degrees of freedom of the test statistic, and find the $p$-value.
b. State the conclusions at significance levels $1 \%, 5 \%$, and $10 \%$.
c. Consider instead testing the research hypothesis that the mean lengths of the bolts from company A and company B are different. Find the p-value. State the conclusions at significance levels $1 \%, 5 \%$, and 10\%.
d. Provide a $95 \%$ confidence interval for the difference in the population mean lengths.
4. Repeat the previous problem assuming that the population standard deviations are not equal.
5. Using the data from problem 3 , test whether or not the population standard deviations are equal.
6. Sample standard deviation from a random sample of size 7 was computed to be 4.876. From another independent random sample of size 13, sample standard deviation was computed to be 2.371.
a. Consider the hypotheses $H_{0}: \sigma_{1}=\sigma_{2}$ against $H_{a}: \sigma_{1} \neq \sigma_{2}$. Find the appropriate test statistic for this hypothesis testing scenario, specify the numerator and denominator degrees of freedom of the test statistic, and find the $p$-value. Work must be shown by providing the bracketing critical values from the table and the corresponding upper tail probabilities.
b. State the conclusions at significance levels $1 \%, 5 \%$, and $10 \%$.

## From the Textbook (problems marked with * are recommended to be done with MINITAB):

## Section $8.1 \quad 8.15,8.18,8.19,8.20,8.37,8.39$ <br> Section 8.2 8.60, 8.61, 8.62, 8.63, 8.64, 8.69, 8.71

## Additional Problems:

1. A software developer is interested in analyzing the population proportion of doctors that use a certain medical software.
a. How many observations (what sample size) should be taken to estimate, at $99 \%$ confidence level, the population proportion within $\pm 5 \%$ if no prior estimate is available? Note: Here desired margin of error is at most $\pm 0.05$ (i.e., $\pm 5 \%$ expressed in decimal form).
b. A random sample of 190 doctors was collected. 85 doctors out of the sample reported using the specific software.
c. Find a $90 \%$ confidence interval for the proportion of doctors that use that particular software.
2. Delivery department of a manufacturing company A\&B uses a company CDE for its shipping needs. CDE advertises that they deliver shipments on schedule (on or before the scheduled delivery date) $85 \%$ of the time. If the on time delivery rate of CDE is less than $85 \%$, A\&B will have to consider other shippers or alternative options. A\&B collects a random sample of size 625 from their shipments across a year and finds that 515 shipments were delivered on time. Let $p$ denote the population proportion on time delivery rate of CDE.
a. State the appropriate null and alternate hypotheses to test (in terms of $p$ )
b. Find the appropriate test statistic and the $p$-value.
c. Is there significant evidence at level $1 \%$ to believe that the on time delivery of CDE is less than $85 \%$ ?

YES NO (circle the correct option)
d. Is there significant evidence at level $5 \%$ to believe that the on time delivery of CDE is less than $85 \%$ ?

YES NO (circle the correct option)
e. In order to explore their options, another random sample of 625 shipments across a year were sent via a different shipping carrier FGH. 530 of those shipments were delivered on time. Is the performance of FGH significantly better than that of CDE? Calculate the appropriate test statistic to answer this question and find the $p$-value. State whether the performance of FGH significantly better than that of CDE at significance level $5 \%$.
3. Using the data from the previous question, answer the following:
a. Find the $95 \%$ confidence interval for the CDE's on time delivery rate (i.e., the population proportion of time packages delivered by CDE before the scheduled delivery date).
b. Find the $95 \%$ confidence interval for the FGH's on time delivery rate (i.e., the population proportion of time packages delivered by FGH before the scheduled delivery date).
c. Find the $95 \%$ confidence interval for the difference between CDE's on time delivery rate and FGH's on time delivery rate.

## Chapter 9

## From the Textbook:

$$
9.25,9.26,9.27,9.28,9.31,9.32,9.33,9.34,9.40,9.42,9.55
$$

## Additional Problems:

1. (From MAT222 Spring 2006 Final Exam) A company's workforce was cross-classified according to job type and gender. That classification appears in the following contingency (two-way) table.

|  | Men | Women | Total |
| :--- | :---: | :---: | :---: |
| Management/Sales | 39 | 47 | $\mathbf{8 6}$ |
| Research/Development | 28 | 22 | $\mathbf{5 0}$ |
| Labor | 188 | 116 | $\mathbf{3 0 4}$ |
| Total | $\mathbf{2 5 5}$ | $\mathbf{1 8 5}$ | $\mathbf{4 4 0}$ |

Using a Chi-Square test and the 0.05 level of significance, determine if there is a significant association between gender and the job type. Your test should include appropriate hypotheses, the computation of a test statistic, mention of the number of degrees of freedom involved, the p -value, a decision (reject $\mathrm{H}_{0}$ or not) with justification, and a conclusion.
2. A research study about student retention is interested in assessing whether there is an association between the students' initial major and the program they transferred to. The data collected by the study is as follows:

| Initial Major | Program transferred to |  |  |  | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Engineering | Management | Liberal Arts | Other |  |
|  | 13 | 25 | 158 | 202 | 64 |
| Chemistry | 16 | 15 | 19 | 38 | $\mathbf{7 2}$ |
| Mathematics | 3 | 11 | 20 | 33 | $\mathbf{6 1}$ |
| Physics | 9 | 5 | 14 | $\mathbf{3 3 7}$ | $\mathbf{6 4 5}$ |
| Total | $\mathbf{4 1}$ | $\mathbf{5 6}$ | $\mathbf{2 1 1}$ |  |  |

a. Complete the following table of expected counts:

| Initial Major | Program transferred to |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Engineering | Management | Liberal Arts | Other |
| Biology | 25.30 |  | 130.20 | 207.95 |
| Chemistry |  | 9.90 | 37.29 | 59.56 |
| Mathematics | 4.58 | 6.25 |  | 37.62 |
| Physics | 3.88 | 5.30 | 19.96 |  |

b. Use Chi-Square test with the significance level $1 \%$ to check whether there is a significant relationship between the students' initial major and the program they transferred to. Provide the hypotheses, the test statistic, its degrees of freedom, the $p$-value, and the conclusion in context.
3. If both parents have hybrid genotypes Aa , a simplified genetic theory predicts that the child will have exactly one of the genotypes $\mathrm{AA}, \mathrm{Aa}$, and aa with respective probabilities $0.25,0.50$, and 0.25 . In a random sample of 24 offsprings each having both parents with hybrid genotype Aa, it was found that 10 had genotype AA, 10 had genotype Aa, and 4 had genotype aa. By carrying out a Chi-Square goodness of fit test on this sample data, at level of significance $\alpha=0.10$, investigate whether the simplified genetic theory is incorrect. Clearly indicate the hypotheses, the test statistic, its degrees of freedom, the $p$-value, and the conclusion in context.
4. A forestry researcher is interested in assessing whether the longleaf pine trees are distributed randomly across a certain tract. The tract was divided into four equal quadrants. A random sample of 100 longleaf pine trees was taken and the number of trees in each quadrant was counted. Below are the data:

| Quadrant | Number of Trees |
| :---: | :---: |
| Q1 | 18 |
| Q2 | 22 |
| Q3 | 39 |
| Q4 | 21 |

a. If the longleaf pine trees are randomly distributed, we expect to find equal number of trees in each quadrant. Find the expected count for each quadrant.
b. Perform a goodness of fit test to determine if the longleaf pine trees are randomly distributed. Clearly indicate the null hypothesis, the test statistic, its degrees of freedom, and the $p$-value.
c. Based on the answer to the previous part, is the evidence significant at level $10 \%$ ? At level $5 \%$ ? At level $1 \%$ ?

From the Textbook (problems marked with * are recommended to be done with MINITAB):
10.8, 10.9, 10.16*, 10.17*, 10.18*, 10.19*, 10.21*, 10.22*, 10.23*, 10.30*, 10.39*, 10.40*, 10.44, 10.45, 10.46, 10.47, 10.51*, 10.52*

## Additional Problems:

1. A regression model was run to predict the SAT score based on the ACT score. Partial minitab output is below:
```
The regression equation is
sat =
```

$\qquad$

```
Predictor Coef SE Coef T P
Constant 253.19 62.67 4.04 0.000
act 31.206 2.895 < 0.000
S =
    R-Sq=
```

$\qquad$

``` R-Sq(adj) = 66.1\%
Analysis of Variance
\begin{tabular}{lrrrrrr} 
Source & DF & SS & MS & \(F\) & \begin{tabular}{c} 
P \\
Regression
\end{tabular} & - \\
Residual Error & \(\overline{1276586}\) & & & & & \\
& \(\overline{1913973}\) & & & & & \\
Total & & & & & &
\end{tabular}
```

a. Fill in the missing parts in the output above.
b. How many observations were included in this analysis?
c. Provide the details of a t-test to assess whether ACT score is a significant predictor of SAT score. State the hypotheses. Provide the $t$-statistic, its degrees of freedom, and the $p$-value. State the conclusion in context at $\alpha=5 \%$.
d. Find the predicted SAT score for an ACT score of 20.
e. Find the $95 \%$ confidence interval for the mean response of ACT score of 20 (i.e., for the average SAT score among all students having ACT score $x^{*}=20$ ).
Note 1: For degrees of freedom = 58 and $95 \%$ confidence level, $\mathrm{t}^{*}$ is 2.002 .
Note 2: The following descriptive statistics provide the sample mean and the sample standard deviation of the predictor variable:

## Descriptive Statistics: act

| Variable | Mean | StDev |
| :--- | ---: | ---: |
| act | 21.133 | 4.714 |

2. A regression model was run to predict the "Assessed Value" of a house based on its "Sales Price". Partial minitab output is below:
```
Regression Analysis: Assessed Value versus Sales Price
The regression equation is
Assessed Value =
```

$\qquad$

```
\begin{tabular}{lllcc} 
Predictor & Coef & SE Coef & T & P \\
Constant & 49.87 & 28.53 & 1.75 & 0.091 \\
Sales Price & 0.7312 & 0.1386 & & 0.000
\end{tabular}
S =
```

$\qquad$

```
\[
\mathrm{R}-\mathrm{Sq}=
\]
```

$\qquad$

``` \%
Analysis of Variance
\begin{tabular}{llrrrr} 
Source & DF & SS & MS & F & P \\
Regression & - & 29462 & 29462 & 27.85 & 0.000 \\
Residual Error & - & & 1058 & & \\
Total & 29 & 59084 & & &
\end{tabular}
```

a) Fill in the missing parts in the output above.
b) How many observations were used in this analysis?
c) What is the correlation coefficient " $r$ " between the variables "Assessed Value" and "Sales Price"
d) Is the variable "Sales Price"a significant predictor of "Assessed Value"? Answer this question by providing the details of a t-test. State the hypotheses to test, provide the t-statistic, and provide the p-value. State the conclusion of whether or not "Sales Price" is a significant predictor of "Assessed Value" at $\alpha=5 \%$.
e) Provide a $95 \%$ confidence interval for $\beta_{1}$. Clearly indicate the degrees of freedom and t*.

## Chapter 11

From the Textbook (problems marked with * are recommended to be done with MINITAB):
11.7, 11.8, 11.9, 11.10, 11.11, 11.12, 11.17, 11.23*, 11.24*,
11.25*, 11.27*, 11.28*, 11.33*, 11.34*, 11.35*

## Additional Problems:

1. A regression model was run to predict GPA based on HSM, HSE, and SATM. Partial minitab output is below:

| Regression Analysis: GPA versus HSM, HSE, SATM |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Predictor | Coef | SE Coef | T | P | Analysis of Variance |  |  |  |  |  |
| Constant | -1.0488 | 0.6024 | -1.74 | 0.084 |  |  |  |  |  |  |
| HSM | 0.13765 | 0.04801 | - | 0.005 | Source | DF | SS | MS | F | P |
| HSE | 0.13555 | 0.05290 | - | 0.011 | Regression | - | 25.0856 | 8.3619 |  | 0.000 |
| SATM | 0.0024241 | 0.0008276 | - | 0.004 | Residual Error | - | 74.5893 | 0.5109 |  |  |
|  |  |  |  |  | Total | 149 | 99.6749 |  |  |  |
| $\mathrm{S}=$ | - $\mathrm{R}-\mathrm{Sq}=$ | 25.2\% R | q(adj) | $=$ |  |  |  |  |  |  |

a) Fill in the missing parts in the output above.
b) Using the model given above, find the predicted GPA for a student with HSM=10, HSE=10, and SATM=640.
c) State the null and the alternate hypotheses for the F-test in the Analysis of Variance table.
d) Is the variable "HSE"a significant predictor of "GPA"? Answer this question by providing the details of a ttest. State the hypotheses to test (in terms of one of $\beta_{1}, \beta_{2}$, or $\beta_{3}$ ), provide the $t$-statistic, and provide the $p$-value. State the conclusion of whether or not "HSE" is a significant predictor of "GPA" at $\alpha=5 \%$ and at $\alpha=1 \%$.
e) Provide a $95 \%$ confidence interval for $\beta_{3}$, the slope of the predictor "SATM". Clearly indicate the degrees of freedom. Then circle the appropriate cell in the table below that can be used as $\mathrm{t}^{*}$. Then compute the confidence interval.
2. A study ${ }^{1}$ about the birth weight analyzed related variables. Study was based on a sample of all births occurring in Philadelphia in 1990. The following regression model was run on two predictor variables ("YrsEduc" - Mother's years of education and "GestWks" -Gestational age in weeks).

Regression Analysis: BirthWt versus YrsEduc, GestWks

a) Find the missing parts in the output above.
b) How many observations were used in this study?
c) One of the data points had YrsEduc $=8, G e s t W k s=40$, and BirthWt $=3.51$. Find the predicted value and the residual corresponding to this observation.

[^0]
## Chapter 12

From the Textbook (problems marked with * are recommended to be done with MINITAB):

> 12.9, 12.10, 12.13, 12.15, 12.25, 12.40, 12.41, 12.42, 12.46*, $12.47^{*}$ 12.54*, 12.55*, 12.56*, 12.57*

## Additional Problems:

1. A One-Way ANOVA was done to analyze the quantitative variable "Score" against a categorical variable "Food" (representing three food groups: "Comfort", "Control", "Organic").

## One-way ANOVA: Score versus Food

| Source | DF | SS | MS | F | P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Food | - | 5.330 |  |  | 0.001 |
| Error |  | 20.930 |  |  |  |
| Total | 61 | 26.260 |  |  |  |
| $\mathrm{S}=$ |  | $\mathrm{R}-\mathrm{Sq}$ | 20.30 |  | qq(adj) |



Pooled StDev = $\qquad$
a. Fill in the missing parts in the output above.
b. State the null and the alternate hypotheses for the F-test in the Analysis of Variance table.
c. Using an appropriate contrast, we would like to compare the mean score of the control group with the average of the other groups. Compute the sample contrast, the standard error of the sample contrast, the $t$-statistic, and its degrees of freedom. You don't need to compute the p -value or provide the conclusion.
2. (From MAT222 Spring 2010 Final Exam ${ }^{1}$ - see question 5. Ignore the points reference)
(20 pts) Battery life of MP3 players is of great concern to customers. A consumer group has tested three brands of such players to determine the battery life. Samples of players of each brand were fully charged and left to run at medium volume until the battery died. The number of hours that each player ran was recorded.
Consider the following summary statistics obtained:

| Brand | $n_{i}$ | $\bar{x}_{i}$ | $s_{i}$ |
| :---: | :---: | :---: | :---: |
| A | 14 | 24.63 | 3.06 |
| B | 15 | 27.71 | 2.74 |
| C | 14 | 24.87 | 2.95 |

(a) If one wanted to calculate the SSG, the between-group sum of squares, the value of the overall mean, $\bar{x}$, needs to be determined. Using the above information, show that $\bar{x}=25.78$ and calculate SSG.
(b) Choose the correct F value and its associate P -value to test $H_{0}: \mu_{A}=\mu_{B}=\mu_{C}$, where $F\left(d_{1}, d_{2}\right)$ denotes the value of the test statistic with the numerator and denominator degrees of freedom, $d_{1}$ and $d_{2}$, respectively. You do not need to calculate the F value.

$$
\begin{array}{ll}
\text { (i) } F(2,43)=5.06 ; P<0.025 & \text { (ii) } F(2,40)=5.06 ; P<0.025 \\
\text { (iii) } F(3,43)=5.06 ; P<0.01 & \text { (iv) } F(3,40)=5.06 ; P<0.01
\end{array}
$$

(c) What conclusion might you reach based on your answer in (b)?
(i) There is no evidence to suggest that the null hypothesis should be rejected.
(ii) There is sufficient evidence to conclude that the sample means are not equal.
(iii) There is sufficient evidence to conclude that not all the population means are equal.
(iv) There is evidence to support the conclusion that all the population means are different from each other.
(d) Because one of the brands of MP3 players (Brand B) is known to be the most popular among customers, it was decided before the data were gathered to compare this brand against the other two to see if it had a longer battery life. What would be appropriate null and alternative hypotheses to establish to do such a test?
(i) $H_{0}: \mu_{A}=\mu_{B}=\mu_{C}$ versus $H_{a}: \mu_{B}>\mu_{A}=\mu_{C}$
(ii) $H_{0}: \frac{\mu_{\Lambda}+\mu_{C}}{2}=\mu_{B}$ versus $H_{a}: \frac{\mu_{A}+\mu_{C}}{2}<\mu_{B}$
(iii) $H_{0}: \mu_{A}=\mu_{B}=\mu_{C}$ versus $H_{a}: \mu_{B}>\mu_{A}$ and $\mu_{B}>\mu_{C}$
(iv) $H_{0}$ : all of the means are equal,
$H_{a}$ : all the other means are different from $\mu_{B}$.
(e) Calculate the test statistic to test the contrast in (d) and specify its degrees of freedom. Draw your conclusion at 0.05 level of significance. Note that $s_{p}^{2}=8.50$.

[^1]3. (From MAT222 Spring 2011 Final Exam ${ }^{2}$ - see question 4. Ignore the question number \& points reference)
4. [20 points] In a study of effective weight loss programs, 24 subjects who were at least $20 \%$ overweight took part in a three month group support program. The subjects were divided evenly into one of three different programs. Private weightings determined each subjects weight at the beginning of the program and four months after the program's end. The table below summarized the mean weight loss of each group, and the group's standard deviation of weight loss.

|  | X | s |
| :--- | :---: | :---: |
| Program 1 | 13.2 | 4.23 |
| Program 2 | 7.9 | 8.02 |
| Program 3 | 17.3 | 4.55 |

a) [5 points] Is the assumption of equal population standard deviations reasonable? Explain.
b) [10 points] Calculate the pooled sample standard deviation, $\mathrm{s}_{\mathrm{p}}$.
c) [ 5 points] Using an ANOVA analysis, the $F$ statistic is 4.11 . Give the degrees of freedom and an approximate value of the p-value. What are your conclusions at the $5 \%$ significance level?
4. Iron-deficiency is a cause of concern in many developing countries. Some research has suggested that food cooked in iron pots contain more iron than food cooked in other types of pots. A study was conducted to analyze the effect of the type of pot used in cooking on the iron content in the food prepared. Result of the Oneway ANOVA on the dataset is given below:


a. Fill in the missing parts in the output above.
b. State the null and the alternate hypotheses for the F-test in the Analysis of Variance table.
c. Using the output above and an appropriate contrast, we would like to test whether the mean iron content of the iron pot group is higher than the average of the other groups. Compute the sample contrast, the standard error of the sample contrast, the $t$-statistic, its degrees of freedom, and the p value. Provide the conclusion in context using significance level $\alpha=5 \%$.

[^2]From the Textbook (problems marked with * are recommended to be done with MINITAB):

$$
13.4,13.4,13.5,13.6,13.7,13.14,13.15,13.18,13.22,13.23,13.24,13.39^{*}, 13.40^{*}
$$

## Additional Problems:

1. The research study in the additional problem \#4 from chapter 12 (see previous page) also considered the effect of the type of dish prepared, in conjunction with the potential effect of the type of pot used, via a Two-way ANOVA. Three pot types (aluminum, clay, iron) and three dish types (meat, legume, vegetables) were used as the factors with the iron content as the response.

| Source | DF | SS | MS | F | P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| pot | - | 24.8940 | 12.4470 | 92.26 | 0.000 |
| dish |  |  |  |  | 0.000 |
| Interaction | - | 2.6404 |  |  | 0.004 |
| Error | - | 3.6425 | 0.1349 |  |  |
| Total | 35 | 40.4738 |  |  |  |
| $\mathrm{S}=$ |  | q $=91.0$ | \% R-Sq | (adj) | 88.33\% |

a. Fill in the missing parts in the output above.
b. Consider assessing the effect of the dish type. Specify the F-statistic for this test. In addition specify the numerator and denominator degrees of freedom of that F -statistic. State the conclusion in context.
c. Consider assessing the interaction effect of pot and dish types. Specify the F-statistic for this test. In addition specify the numerator and denominator degrees of freedom of that F-statistic. State the conclusion in context.
2. (From MAT222 Spring 2011 Final Exam ${ }^{3}$ - see question 5 . Ignore the question number \& points reference)
5. [20 points] An agricultural researcher conducted a Two-Way ANOVA to assess the effect of seeds and fertilizers on growing corn. Equal number of samples from each treatment group was taken. Below is the ANOVA output.

| Source | $\boldsymbol{d f}$ | $\boldsymbol{S S}$ | $\boldsymbol{M S}$ | $\boldsymbol{F}$ | $\boldsymbol{P}$-value |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Seed | 2 | 512.8667 | 256.4333 | 28.283 | 0.000008 |
| Fertilizer | 4 | 449.4667 | 112.3667 | 12.393 | 0.000119 |
| Interaction | - | 143.1333 | 17.8917 | 1.973 | 0.122090 |
| Error | - | 136.0000 |  |  |  |
| Total | $\mathbf{2 9}$ | $\mathbf{1 2 4 1 . 4 6 6 7}$ |  |  |  |

Based on this output, answer the following questions.
a) [4 points] Specify how many types of seeds, how many types of fertilizers, how many treatment groups, and how many samples from each treatment group were used in this study.
b) [8 points] Consider the F-statistic $=12.393$. State the null and alternate hypotheses tested by this statistic. Also, specify the numerator and denominator degrees of freedom for this statistic.
c) [8 points] What is the pooled sample standard deviation?

[^3]3. (From MAT222 Spring 2010 Final Exam ${ }^{4}$ - see question 6. Ignore the points reference)
(15 pts) Twenty high school-aged students are randomly selected from three different school districts: a district in the city, a district in the suburbs, and a district in a rural area. Each group of twenty students consisted of 10 boys and 10 girls. Each of the students was asked what price they paid for their last haircut. The data were entered into statistical software and a partial ANOVA table is obtained below.
(a) Compete the ANOVA table.

| Source | DF | Sum of Squares | Mean Square | F |
| :---: | :---: | :---: | :---: | :---: |
| Sex |  | 2674.0 | 2674.0 | 67.37 |
| Region |  |  | 351.8 |  |
| Sex* Region |  | 231.8 |  |  |
| Error | 54 | 2143.0 | 39.69 | $* * *$ |
| Total | 59 | 5752.4 | $* * *$ | $* * *$ |

(b) What is the value of the pooled standard deviation, $s_{p}$ ?
(c) Is the interaction effect statistically significant at the $5 \%$ significance level? Include the P -value (or the range of the P -value) and the degrees of freedom.
(d) Is the main effect for region statistically significant at the 5\% significance level? Include the P -value (or the range of the P -value) and the degrees of freedom.

[^4]
[^0]:    ${ }^{1}$ I.T. Elo, G. Rodríguez and H. Lee (2001). Racial and Neighborhood Disparities in Birthweight in Philadelphia. Paper presented at the Annual Meeting of the Population Association of America, Washington, DC 2001. Downloaded from:
    http://data.princeton.edu/wws509/datasets/

[^1]:    ${ }^{1}$ See http://researchguides.library.syr.edu/mathexams for old final exams.

[^2]:    ${ }^{2}$ See http://researchguides.library.syr.edu/mathexams for old final exams.

[^3]:    ${ }^{3}$ See http://researchguides.library.syr.edu/mathexams for old final exams.

[^4]:    ${ }^{4}$ See http://researchguides.library.syr.edu/mathexams for old final exams.

