Name: Caleb McWhorter — Solutions	
MAT 222	"There is Dana, only Zuul"
Spring 2019 Minitab Lab 3	–Dana Barrett/Zuul, Ghostbusters

The following exercises make use of the abalone.mpj file. This data is from a study by Dr. Sam Waugh's Ph.D. thesis at the University of Tasmania. The goal of the study was to study whether one could predict the age of abalone using physical measurements. The variables in the study were sex (male, female, and infant), length (mm), diameter (mm), height (mm), whole weight (g), shucked weight (g), viscera weight (g), shell weight (g), and rings (each ring is 1.5 years). Use Minitab to complete the following exercises.

Problem 1: Find a 5-number summary for the variable 'Whole Weight'. Fill in the data below.

Min	Q_1	Median	Q_3	Max
0.00200	0.44150	0.79950	1.15350	2.82550

We will now sort the abalone into categories called 'small', 'medium', and 'large'. Assume that the 5-number summary above is a good representative of the weight distribution of all abalone. We will call an abalone small if its weight is less than Q_1 , medium if its weight is between Q_1 and Q_3 , and large if its weight is larger than Q_3 . One can count individuals meeting certain conditions in Minitab. Under Calc \rightarrow Calculator, choose Logical under Functions. Entering IF('Sex' = "M" And 'Whole Weight' >= 5 And 'Whole Weight' <= 6,1,0), Minitab enters a '1' if the abalone is male and has whole weight ≥ 5 and ≤ 6 . One can then enter these results into a blank column, and then using Calc \rightarrow Column Statistics, find the sum of this new column. The sum will be the number of male abalone with weight between 5 and 6.

Problem 2: Use Minitab to complete the following chart of abalone broken down by categories male, female, or infant and small, medium, or large.

Size \setminus Sex	Male	Female	Infant	Totals
Small	187	97	759	1043
Medium	815	719	556	2090
Large	526	491	27	1044
Totals	1528	1307	1342	4077

C L Blake, C J Merz. UCI repository of machine learning databases University of California, Irvine, Department of Information and Computer Sciences. 1998, Sam Waugh (1995) "Extending and benchmarking Cascade-Correlation", PhD thesis, Computer Science Department, University of Tasmania.

Problem 3: Enter the table from Problem 2 into Minitab and use Minitab to perform a χ^2 -test. [Use $\alpha = 0.05$.] For this test, fill in the expected values and the χ^2 -squared contribution in the tables below. Then state the null and alternative hypothesis for the test along with its degrees of freedom and *p*-value. Be sure to state the conclusion for this test.

Expected Values						
Size \setminus Sex	Size \ Sex Male Female					
Small	381.5	326.4	335.1			
Medium	764.5	645.0	671.5			
Large	381.9	326.7	335.4			

χ^2 -squared Contributions

, .	1		
Size \setminus Sex	Male	Female	Infant
Small	99.19	161.19	536.24
Medium	3.33	6.47	19.86
Large	54.36	82.66	283.59

 H_0 : there is no association between sex and size

 H_a : there is an association between sex and size

 $X^2 = 1246.899$

degrees of freedom= 4

p-value= 0.000

Therefore, we reject the null hypothesis that there is no association between sex and size.

Problem 4: Use Stat \rightarrow Regression \rightarrow Fit Regression Model to create a multilinear regression to predict the variable 'Whole Weight' using the variables 'Length', 'Diameter', 'Height', and 'Rings'. Provide a print of the regression analysis. Be sure to also give the regression equation.

For the solution, see the table provided at the end.

Problem 5: Is the model statistically significant? Explain.

Yes, the *F*-value has associated *p*-value 0.000. Therefore, the model is statistically significant.

Problem 6: For this regression, which variables are statistically significant? Which variables are not statistically significant? For the variables which are *not* statistically significant, how might you tell from their coefficient that it is not statistically significant?

Examining *p*-values, the variables 'Length', 'Diameter', and 'Height' are statistically significant while the variable 'Rings' is not. One must suspect that the variable 'Rings' is not statistically significant because its coefficient, 0.00031, is very close to 0. However, a coefficient being close to 0 does not always imply that it is not statistically significant. One must examine the *p*-value for the *t*-test of the coefficient.

Analysis of Variance

~					
Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	4	872.46	218.115	6904.77	0.000
Length	1	4.85	4.850	153.53	0.000
Diameter	1	3.47	3.468	109.79	0.000
Height	1	6.56	6.559	207.64	0.000
Rings	1	0.00	0.003	0.09	0.770
Error	4172	131.79	0.032		
Lack-of-Fit	3968	130.37	0.033	4.71	0.000
Pure Error	204	1.42	0.007		
Total	4176	1004.25			

Model Summary

S	R-sq	R-sq (adj)	R-sq (pred)
0.177733	86.88%	86.86%	86.04%

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	-1.0957	0.0131	-83.48	0.000	
Length	1.763	0.142	12.39	0.000	38.58
Diameter	1.849	0.176	10.48	0.000	40.53
Height	1.746	0.121	14.41	0.000	3.40
Rings	0.00031	0.00106	0.29	0.770	1.55

The regression equation is Whole Weight = -1.0957 + 1.763 Length + 1.849 Diamter + 1.746 Height + 0.00031 Rings