Name: ____ Caleb McWhorter — Solutions MAT 222

Spring 2019 Quiz 8 "Looking in the mirror, staring back at me, isn't so much a face as the expression of a predicament." — George Falconer, A Single Man

Problem 1: As cheese ages, various chemical reactions take place that affect the taste of the final product. A researcher is trying to predict the final quality of cheese (given some qualitative metric) based on the log amount of acetic acid, the log concentration of hydrogen sulfide (H_2S) , and the concentration of lactic acid. The results of the regression are given (partially) below.

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	<u>3</u>	4994.5	1664.8	<u>16.22</u>	0.000
Error	26	2668.4	102.6		
Total	29	7662.9			

Model Summary

Coefficients

Term	Coef	SE Coef	T-Value	P-Value
Constant	<u>-28.88</u>	19.74	-1.46	0.155
acetic	0.328	4.460	0.07	0.942
H2S	3.912	1.248	<u>3.13</u>	0.0025
lactic	19.671	8.629	2.28	0.031

The regression equation is

 $taste = -28.88 + 0.328 \ acetic + 3.912 \ H2S + 19.671 \ lactic$

- (a) Complete the missing entries in the table above.
- (b) Perform an *F*-test for this regression. Be sure to state the null and alternative hypotheses, the test statistic, the degrees of freedom (of the numerator and denominator), and the conclusions using a 5% significance level.

We have hypotheses

$$\begin{cases} H_0: \beta_1 = \beta_2 = \beta_3 = 0 \\ H_a: not \ all \ \beta_i = 0 \end{cases}$$

From completing the table above, we have F-statistic 16.22, with degrees of freedom in the numerator 3 and degrees of freedom in the denominator 26, i.e. overall degrees of freedom (3,26). This gives, as shown above, p-value p=0.000. Therefore, we reject the null hypothesis—at least one of the coefficients is nonzero.