MAT 222 FORMULA CARD

Standard score: $z = \frac{x-\mu}{\sigma}$

Standard score for sample mean \bar{x} : $z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$

Chapter 6: Introduction to Inference

Confidence interval for mean μ (σ known):

$$\bar{x} \pm z^* \frac{\sigma}{\sqrt{n}},$$
 $z^* \begin{vmatrix} 1.645 & 1.960 & 2.576 \\ 0.90\% & 95\% & 99\% \end{vmatrix}$

Sample size for confidence interval for μ with margin of error m:

$$n = \left[\frac{z^*\sigma}{m}\right]^2$$

z Statistic for $H_0: \mu = \mu_0$ (σ known):

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Chapter 7: Inference for Distributions

Standard error of \bar{x} : $SE_{\bar{x}} = \frac{s}{\sqrt{n}}$

Confidence interval for mean μ (σ unknown):

$$\bar{x} \pm t^* \frac{s}{\sqrt{n}}, \quad \text{df} = n - 1$$

One-sample t Statistic for $H_0: \mu = \mu_0$ (σ unknown):

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}, \quad \text{df} = n - 1$$

Two-sample z statistic for $H_0: \mu_1 = \mu_2$ (σ_1, σ_2 known):

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Two-sample t statistic for $H_0: \mu_1 = \mu_2$ $(\sigma_1, \sigma_2 \text{ unknown})$:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}},$$

 $df = minimum of n_1 - 1 and n_2 - 1$

Two-Sample Confidence interval for $\mu_1 - \mu_2$:

$$(\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}},$$

 $df = minimum of n_1 - 1 and n_2 - 1$

Pooled two-sample estimator of σ^2 :

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Pooled two-sample t statistic for $H_0: \mu_1 = \mu_2$ when $\sigma_1 = \sigma_2$:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \quad \text{df} = n_1 + n_2 - 2$$

Pooled two-sample confidence interval for $\mu_1 - \mu_2$ when $\sigma_1 = \sigma_2$:

$$(\bar{x}_1 - \bar{x}_2) \pm t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \quad df = n_1 + n_2 - 2$$

Two-sample F statistic for $H_0: \sigma_1 = \sigma_2$:

$$F = \frac{\text{larger } s^2}{\text{smaller } s^2}$$

Chapter 8: Inference for Proportions

Sample proportion: $\hat{p} = X/n$, X = number of "successes"

Standard error of
$$\hat{p}$$
: $SE_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Confidence interval for p:

$$\hat{p} \pm z^* SE_{\hat{p}}$$

z statistic for $H_0: p = p_0$

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Sample size for desired margin of error m:

$$n = \left(\frac{z^*}{m}\right)^2 p^* (1 - p^*)$$
 $(p^* = \text{guessed value})$

or

$$n = \frac{1}{4} \left(\frac{z^*}{m}\right)^2$$
 (conservative approach with $p^* = 1/2$)

Difference of sample proportions: $D = \hat{p}_1 - \hat{p}_2$

Standard error of sample difference D:

$$SE_D = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Confidence interval for $p_1 - p_2$:

$$(\hat{p}_1 - \hat{p}_2) \pm z^* SE_D$$

Pooled estimator of p when $p_1 = p_2$:

$$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$$

Standard error of D under $H_0: p_1 = p_2$:

$$SE_{D_p} = \sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

z statistic for $H_0: p_1 = p_2$:

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\mathrm{SE}_{D_p}}$$

Chapter 9: Inference for Two-Way Tables

Expected cell counts:

$$\text{expected cell count} = \frac{\text{row total} \times \text{column total}}{n}$$

Chi-square test statistic:

$$X^{2} = \sum \frac{(\text{observed} - \text{expected})^{2}}{\text{expected}}$$

df = (# of rows - 1)(# of columns - 1)

Chapter 10: Inference for Regression

Simple Linear Regression Model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where the ϵ_i are independent and normally distributed with mean 0 and variance σ^2 .

Sample variance of x's: $s_x^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2$

Sample variance of y's: $s_y^2 = \frac{1}{n-1} \sum (y_i - \bar{y})^2$

Sample correlation:

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

Least-Squares Regression line: $\hat{y} = b_0 + b_1 x$,

Slope (Estimate of β_1): $b_1 = r \frac{s_y}{s_x}$

Intercept(Estimate of β_0): $b_0 = \bar{y} - b_1 \bar{x}$

Estimate of σ^2 :

$$s^{2} = \frac{1}{n-2} \sum_{i} e_{i}^{2}$$
, where $e_{i} = y_{i} - \hat{y}_{i}$

Standard error of b_0 :

$$SE_{b_0} = s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2}}$$

Level C confidence interval for β_0 :

$$b_0 \pm t^* SE_{b_0}$$
, $df = n - 2$

Standard error of b_1 :

$$SE_{b_1} = \frac{s}{\sqrt{\sum (x_i - \bar{x})^2}}$$

Level C confidence interval for β_1 :

$$b_1 \pm t^* SE_{b_1}$$
, $df = n - 2$

Test statistic for $H_0: \beta_1 = 0$:

$$t = \frac{b_1}{SE_{b_1}}, \text{ df} = n - 2$$

Estimate for mean response μ when $x = x^*$:

$$\hat{\mu} = b_0 + b_1 x^*$$

Standard error of $\hat{\mu}$ when $x = x^*$:

$$SE_{\hat{\mu}} = s\sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Level C confidence interval for μ when $x = x^*$:

$$\hat{\mu} \pm t^* SE_{\hat{\mu}}, \quad df = n - 2$$

Estimate for future observation of y when $x = x^*$:

$$\hat{y} = b_0 + b_1 x^*$$

Standard error of \hat{y} when $x = x^*$:

$$SE_{\hat{y}} = s\sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

Level C prediction interval for y when $x = x^*$:

$$\hat{y} \pm t^* SE_{\hat{y}}, \quad df = n - 2$$

Sum of Squares

$$SST = \sum (y_i - \bar{y})^2, \quad (Total Sum of Squares)$$

$$SSM = \sum (\hat{y}_i - \bar{y})^2, \quad (Model Sum of Squares)$$

$$SSE = \sum (y_i - \hat{y}_i)^2, \quad (Error Sum of Squares)$$

- SST=SSM+SSE
- $MS = \frac{\text{sum of squares}}{\text{degrees of freedom}}$
- $s^2 = MSE$
- $r^2 = \frac{\sum (\hat{y}_i \bar{y})^2}{\sum (y_i \bar{y})^2} = \frac{\text{SSM}}{\text{SST}}$

The ANOVA F test for $H_0: \beta_1 = 0$

$$F = \frac{\text{MSM}}{\text{MSE}} = \frac{\text{SSM/DFM}}{\text{SSE/DFE}}, \text{ df} = (1, n-2)$$

Test statistic for $H_0: \rho = 0$: $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ df = n-2.

Chapter 11: Multiple Regression

Multiple Regression Model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i$$

Least squares estimates of $\beta_0, \beta_1, \dots, \beta_p$:

$$b_0, b_1, \ldots, b_p$$

Estimate of σ : $s = \sqrt{\text{MSE}}$.

Level C confidence interval for β_i :

$$b_j \pm t^* S E_{b_j}, \text{ df} = n - p - 1$$

Test statistic for $H_0: \beta_j = 0$:

$$t = \frac{b_j}{\mathrm{SE}_{b_j}}, \ \mathrm{df} = n - p - 1.$$

Sum of squares SS: SST = SSM + SSE

Degrees of freedom DF:

$$DFT = DFM + DFE$$
,

$$DFT = n - 1$$
, $DFM = p$, $DFE = n - p - 1$,

Mean square model: $MSM = \frac{SSM}{DFM}$

Mean square error: $MSE = \frac{SSE}{DFE}$

Test statistic for $H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$:

$$F = \frac{\text{MSM}}{\text{MSE}}, \text{ df} = (p, n - p - 1).$$

Squared multiple correlation: $R^2 = \frac{SSM}{SST}$

Chapter 12: One-way ANOVA

One-way ANOVA model:

$$x_{ij} = \mu_i + \varepsilon_{ij},$$

for i = 1, ..., I and $j = 1, ..., n_i$, and $N = n_1 + \cdots + n_I$.

Pooled-sample variance:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + \dots + (n_I - 1)s_I^2}{(n_1 - 1) + \dots + (n_I - 1)} = MSE$$

Sum of squares (SS): SST = SSG + SSE

SSG =
$$\sum_{groups} n_i (\bar{x}_i - \bar{x})^2$$
SSE =
$$\sum_{groups} (n_i - 1) s_i^2$$

Degrees of freedom (DF):

$$DFT = DFG + DFE,$$

where DFT =
$$N - 1$$
, DFG = $I - 1$, DFE = $N - I$.

Mean square (MS):
$$MSG = \frac{SSG}{DFG}$$
, $MSE = \frac{SSE}{DFE}$

Test statistic for $H_0: \mu_1 = \mu_2 = \cdots = \mu_I$:

$$F = \frac{\text{MSG}}{\text{MSE}}, \text{ df} = (I - 1, N - I).$$

Coefficient of determination: $R^2 = \frac{SSG}{SST}$

Population contrast: $\psi = \sum a_i \mu_i$, where $\sum a_i = 0$

Sample contrast: $c = \sum a_i \bar{x_i}$

Standard error of c:

$$SE_c = s_p \sqrt{\sum \frac{a_i^2}{n_i}}$$

Test statistic for $H_0: \psi = 0$:

$$t = \frac{c}{SE_c}$$
, $df = N - I$

Level C confidence interval for ψ :

$$c \pm t^* SE_c$$
, $df = N - I$.

Multiple Comparisons t statistic:

$$t_{ij} = \frac{\bar{x}_i - \bar{x}_j}{s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}}, \quad df = N - I$$

Simultaneous Confidence Intervals for Mean Differences:

$$(\bar{x}_i - \bar{x}_j) \pm t^{**} s_p \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}, \quad df = N - I$$

Chapter 13: Two-way ANOVA

Factors: Two factors A and B, factor A has I levels, and factor B has J levels

Two-way ANOVA model:

$$x_{ijk} = \mu_{ij} + \varepsilon_{ijk},$$

for
$$i = 1, ..., I$$
, $j = 1, ..., J$ and $k = 1, ..., n_{ij}$.

Pooled-sample variance:

$$s_p^2 = \frac{\sum (n_{ij} - 1)s_{ij}^2}{\sum (n_{ij} - 1)} = \text{MSE}$$

Sum of squares (SS): SST = SSA + SSB + SSAB + SSE

Degrees of freedom (DF):

$$DFT = DFA + DFB + DFAB + DFE,$$

 $DFM = DFA + DFB + DFAB,$

where

$$DFT = N - 1,$$

$$DFA = I - 1,$$

$$DFB = J - 1$$
,

$$DFAB = (I - 1)(J - 1),$$

$$DFE = N-IJ.$$

Mean square (MS): For the factors A and B, for the interaction AB, and for the error E:

$$MS = \frac{SS}{DE}$$

Test statistic for H_0 : Main effect of A is zero:

$$F = \frac{\text{MSA}}{\text{MSE}}, \quad \text{df} = (I - 1, N - IJ).$$

Test statistic for H_0 : Main effect of B is zero:

$$F = \frac{\text{MSB}}{\text{MSE}}, \quad \text{df} = (J - 1, N - IJ).$$

Test statistic for H_0 : Interaction effect of A and B is zero:

$$F = \frac{\text{MSAB}}{\text{MSE}}, \quad \text{df} = ((I-1)(J-1), N-IJ).$$