Name:	(37 1 37 1471', 137 1 0 ' 127
MAT 222	"Yeah, Mr. White! Yeah, Science!"
Spring 2019	– Jesse Pinkman, Breaking Bad

Problem 1: A research group is trying to predict the average amount of hours it takes to fully 'adapt' to a new work environment using the number of minutes spent in work training, the amount of minutes spent in computer training, and the amount of time spent reviewing orientation materials.

Analysis of Variance

Homework 9

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression		10037.1	3345.7		0.000
Train			4102.8	23.53	0.000
Computer		6259.8		35.91	0.000
Review		806.5	806.5	4.63	0.036
Error		8716.6			
Total	53	18753.7			

Model Summary

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	25.14	4.93		0.000	
Train		0.00530	-4.85	0.000	7.89
Computer	0.03137	0.00523	5.99		8.19
Review	-0.891	0.414	-2.15	0.036	1.15

The regression equation is

$$\mathtt{Adapt} \ = 25.14 - 0.02571 \ \mathtt{Train} + 0.03137 \ \mathtt{Computer} - 0.891 \ \mathtt{Review}$$

- (a) Fill in the missing entries above.
- (b) What is the average adjustment time for someone that spent 1.5 hours in training, 10 hours in computer training, and spent 30 minutes reviewing orientation materials?
- (c) What is the correlation coefficient for this model?

ſΑ) What was the tot	al number	of subjects	evamined	to create	this model?
ιu) what was the tol	ai number	of subjects	exammed	to create	uns moder?

- (e) Construct a 95% confidence interval for β_2 .
- (f) Find the value of $\sum (x_i \overline{x})^2$ for this data.

(g) Perform the F-test for this model. State your null and alternative hypotheses, F-statistic, degrees of freedom of the numerator/denominator, p-value, and conclusion.