
Name: Caleb McWhorter— Solutions
MAT 397— Fall 2020
Applied Problems:
Differentials

“A computer lets you make more mistakes faster than any other
invention with the possible exceptions of handguns and Tequila.”

– Mitch Ratcliffe

Error Analysis
All scientific measurements are subject to error and uncertainty, and the resulting errors are

important. Any ‘real life’ computation that comes without a measurement of error is useless. For
example, if you were installing an elevator in a building and told that it could hold up to 2500 lb,
you might feel confident that the elevator will be safe because this is roughly fifteen 167 lb persons.
But if an error analysis of this prediction was performed, and the actual predicted value was 2500 lb
± 1750 lb, then you have great reason to be concerned, as the elevator may fail after just five
people enter it. The computation of errors is also critical for the Experimental Sciences. If you
have a scientific theory in place which predicts a value of φ = 0.00132 for some constant φ, does a
scientist’s measurement of 0.005 disprove the theory? You might question the theory based on the
proposed value for φ if the scientist’s computed value was 0.005± 0.00033, but not if the computed
value were 0.005± 0.004 because φ lies in this interval.

There are many examples of both human/programming error and computational error costing
money and lives: a small computational error in the design of the Mars Climate Orbiter resulted
in the destruction of the over $100 million dollar satellite. In 1991, a patriot missile air system
failed to defend American troops against incoming missiles because of compiled rounding errors.
A mistake in bond calculation by Bank of America caused a $9 billion drop in stock.

Of course, there are examples of well done science and engineering preventing human or pro-
gramming error from wreaking havoc. For example, good design of nuclear denotation instruments
(though given the error, probably not the missile or facility itself) may have been the key factor
in preventing a Damascus Titan nuclear missile from exploding on US soil when a maintenance
worker dropped a wrench that pierced the missile’s fuel cells. The explosion in Arkansas would
have killed millions, and the fallout would have killed people as far as NYC. These design securities
also saved lives on many occasions when planes carrying nuclear weapons ‘accidentally’ dropped
nuclear weapons onto US soil, e.g. near Seymour Johnson Air Force Base, Mather Air Force Base,
Columbus Air Force Base, Whidbey Island, etc.

Error analysis is the subfield of Applied Mathematics that deals with these computational issues,
and it is an absolute necessity for persons in the sciences. A broad understanding of not only the
mathematical aspects of error analysis, but deeper understanding of computer analysis and errors
(such as floating numbers) and human error (especially human behavior) should be understood to
accurately and safely use computations and design systems. For accurate error analysis, Statistics
and Probability are required. This is because while you may have a maximum/minimum errors
from measurements, not all these numbers are equally likely. So to each range of values there is
an attached probability of occurrence that needs to be taken into account. But useful error analysis
can still be performed without the need to appeal to Probability or Statistics.

Problem:

(a) We denote error by δ, e.g. δw is the error in the measurement of w. One of the simplest notion
of errors is simply a max/min analysis. Suppose you measure x = 205 cm ± 7 cm and y =
147 cm ± 13 cm. Let S = x+ y and D = x− y. Find the the best estimate of S and D, along
with a maximum and minimum value for S and D. Use these to find the errors δS and δD.
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(b) How does your computation in the previous part support an early measurement of error in
error analysis, that given w = x± y, we have δw ≈ δx+ δy?

(c) Try to create a formula for the error, δw, if w = xy, where x and y are measured with error δx,
δy, respectively. Do you notice any problems? Explain.

(d) Error alone is not usually the full story.1 The magnitude of the error relative to the measure-
ment is far more informative. So instead of absolute error, we often examine the fractional

uncertainty,
δw

|wbest|
. If you measure x = 15.0 g ± 2.4 g, find the fractional uncertainty in x.

(e) Suppose w = xy with x − δx, y − δy ≥ 0. Use the previous part, along with the notions of
Calculus and fractional uncertainty, to show that

δw

|wbest|
≈ δx

|xbest|
+

δx

|xbest|

(f) Use the previous part to find the best estimate of the distance traveled, along with its fractional
and absolute error, if an object is measured to travel at constant velocity (in a fixed direction)
v = 981 km/hr ± 120 km/hr for a length of time t = 3.2 hrs ± 0.13 hrs.

(g) Explain how you would use (e) to find the fractional uncertainty for w = xn.

(h) Combine parts (b), (e), and (g) to find the best estimate and error in w = xy + x2, where x =
3 m ± 0.2 m and y = 1.5 m ± 1 m.

(i) The previous parts are straightforward, in that they do not assume any quadrature (so they
assume ‘maximal’ error, or an interdependence in errors) and only involve basic operations.
However, error with functions behave differently. For example, suppose w = sin θ. How do you
find the error δw given θ and its error, δθ? This is not as simple as using the maximum and
minimum θ values. Explain why the ‘max/min’ approach for error breaks down for w = sin θ.
[Hint: Consider θ values near π/2.]

(j) Luckily, the notion of differentials allows us to compute the uncertainty from (i): if q = q(x),
then

δw ≈
∣∣∣∣dwdx

∣∣∣∣︸ ︷︷ ︸
Chance in w per change in x

· δx︸︷︷︸
Amount x changes

=

∣∣∣∣dwdx
∣∣∣∣ · δx︸ ︷︷ ︸

total change in w

Use this to find the best estimate and error in w = 1500e2(1−x), where x = 0.95 ± 0.02.2

(k) Suppose you are designing an assembly line which fills oil drums to be sold and shipped. Each
drum is constructed on an assembly line in a cylindrical shape with radius r = 11.125 in ±
0.10 in. and height h = 34.5 in ± 0.12 in. Find the best estimate for the volume of the drums.
Use the method of differentials estimate the error in the volume.

1If New York State incorrectly predicts its budget by $10 million, you might be furious. But this number is out of
a typical yearly budget of $85 billion. That would be predicting the budget a year in advance with more than 2%
accuracy—can you predict all your income/expenditures within 2% a year in advance? This is exactly what the budget
creation process tries to do, and it is indeed a difficult problem.

2This is a disguised interest computation. Can you see it?
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(l) If oil is loaded into the drums at a measured rate of G in3/min, write a formula to represent
the time taken to fill the drum. Use this formula to find the estimate of the time taken to fill an
oil drum if G = 8700 in3/min ± 1300 in3/min, and use differentials to compute its error. How
does this answer compare to simply using the given value of G, the answer for V from (k), and
the error method from (e)?

Solution.

(a) The best estimates are
Sbest = 205 + 147 = 352 cm

Dbest = 205− 147 = 58 cm

The sum will be maximized/minimized when x, y are maximized/minimized, respectively.
Therefore,

Smax = (205 + 7) + (147 + 13) = 212 + 160 = 372 cm

Smin = (205− 7) + (147− 13) = 198 + 134 = 332 cm

The difference will be maximized when x is maximized and y is minimized and vice versa for
when the difference is minimized. Therefore,

Dmax = (205 + 7)− (147− 13) = 212 + 134 = 78 cm

Dmin = (205− 7)− (147 + 12) = 198 + 160 = 38 cm

This gives error δS = (Smax − Smin)/2 = 20 cm and δD = (Dmax −Dmin)/2 = 20 cm.

(b) We have error δS = 20 cm and δD = 20 cm. Using the estimate from error analysis, we should
have error δx + δy = 7 + 13 = 20 cm. The terms are exactly the same! This is because if
w = x± y, then

w = (x± δx)± (y ± δy)
= x± δx± y ± δy
= (x± y)± (δx+ δy)

Because x± y is our best estimate of w, the error in the measurement of w is δw = δa+ δy. Of
course, this is only an initial crude measurement of error, because it will often be the case that
the error will be less than this error term.

(c) The best estimate is clearly w = x · y. You might think wmax = xmax · ymax, but this does not
work! What if x = −2 ± 1 and y = −4 ± 5. This would give maximum wmax = (−1)(1) = −1.
But this is less than even the best predicted value of w = (−2)(−4) = 8! So we clearly will
have issues with this naïve method if have number(s) whose interval of possible values contains
negative numbers or zero.

(d) The fractional uncertainty in x would be

δx

|xbest|
=

2.4

15.0
= 0.16

Notice this measurement is also dimensionless (an added bonus). This comes from the fact
that xmax = x+ δx and xmin = x− δx. Then the fractional errors are

xmax − x
x

=
(x+ δx)− x

x
=
δx

x
xmin − x

x
=

(x− δx)− x
x

= −δx
x
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Because δx ≥ 0, the fractional magnitude you are off by is then δx/|x|, which is precisely the
fractional uncertainty.

(e) We know wbest = xbestybest. Now for wmax, using fractional uncertainty, we know this is

wmax = (xbest + δx)(ybest + δy)

= xbest

(
1 +

δx

xbest

)
· ybest

(
1 +

δy

ybest

)
= xbest ybest

(
1 +

δx

xbest

)(
1 +

δy

ybest

)
= xbest ybest

(
1 +

δx

xbest
+

δy

ybest
+

δx

xbest

δy

ybest

)
≈ xbest ybest

(
1 +

δx

xbest
+

δy

ybest

)
= wbest

(
1 +

δx

xbest
+

δy

ybest

)
where we have used the fact that if δx, δy are ‘small’ relative to x, y, respectively, then

δx

xbest

δy

ybest
is negligible. One can find a similar value if one computes wmin. Then examining the last line
from the computation above, we can see that the fractional error is

δw

|wbest|
≈ δx

|xbest|
+

δx

|xbest|

(f) We know that d = vt. Then dbest = (981)(3.2) = 3139.2 km. The fractional error is

δd

|dbest|
≈ δv

|vbest|
+

δt

|tbest|
=

120

981
+

0.13

3.2
= 0.122324 + 0.040625 = 0.1629

This gives absolute error

δd = δd · d
d
= d · δd

d
= 3139.2 · 0.1629 = 511.4 km

Therefore, we measure d = 3139.2 km± 511.4 km.

(g) Consider the case where w = x2. We know x2 = x · x, then

δw

|wbest|
≈ δx

|xbest|
+

δx

|xbest|
= 2

δx

|xbest|

Then for w = x3, we know that x3 = x · x2. Let a = x2. Then w = xa, and using the formula
above, we have

δw

|wbest|
≈ δx

|xbest|
+

δa

|abest|
=

δx

|xbest|
+ 2

δx

|xbest|
= 3

δx

|xbest|
We can then quickly see that if w = xn, we have

δw

|wbest|
≈ n δx

|xbest|
A repeated analysis replacing x with 1/x allows us to extend this to any nonzero integer power
of x via

δw

|wbest|
≈ |n| δx

|xbest|
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(h) Let a = xy, and b = x2. Then we can write w = a+ b. But then

wbest = 3(1.5) + 32 = 13.5 m2

abest = 3(1.5) = 4.5 m2

bbest = 32 = 9 m2

δa

a
=

0.2

3
+

1

1.5
= 0.7333

δa = a · δa
a

= 4.5 · 0.7333 = 3.29985 m2

δb

b
=

0.2

3
+

0.2

3
= 0.1333

δb = b · δb
b

= 9 · 0.1333 = 1.1997 m2

δw = δa+ δb = 3.29985 + 1.1997 = 4.50 m2

δw

w
=

4.50

13.5
= 0.33

(i) Suppose θ = 89◦ ± 2◦. One would think that we have wmax = sin(89◦ + 2◦) = sin(91◦). But
clearly, the maximum value is sin(90◦) = 1. The issue is that for a general function w = f(x),
given x, δx, the behavior of f(x) on the interval [x− δx, x+ δx] may vary, i.e. the function may
vary between increasing and decreasing. We need to understand the function in question, f(x),
much better to know what its maximum and minimum values on the interval [x − δx, x + δx]
will be.

(j)
wbest = 1500e2(1−0.95) = 1657.76

w′ = 1500e2(1−x) · −2 = −3000e2(1−x)

δw =
∣∣∣−3000e2(1−0.95)∣∣∣ · 0.02 = 66.3103

δw

w
=

66.3103

1657.76
= 0.04

(k) We know that V = πr2h. Then we know Vbest = π(11.125)2 · 34.5 = 13414.3 in3. We can find
the error using the methods given above:

δV

V
= 2

δr

r
+
δh

h
= 2

0.10

11.125
+

0.12

34.5
= 0.0214558

Therefore, δV = V · δV
V

= 13414.3 · 0.0214558 = 287.815 in3. Then V = 13414.3 in3 ±
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287.815 in3. We can see if this matches up with the method from differentials.

dV = 2πrh dr + πr2 dh

= 2π(11.125)(34.5) · 0.10 + π(11.125)2 · 0.12
= 241.16 + 46.66

= 287.82 in3

Observe up to rounding, the answers are equivalent.

(l) We would have time T = V/G =
πr2h

G
. Using the given values and differentials, we have

Tbest =
π(11.125)2(34.5)

8700
= 1.54188 min

dT =
2πrh

G
dr +

πr2

G
dh− πr2h

G2
dG

=
2π(11.125)(34.5)

8700
· 0.10 + π(11.125)2

8700
· 0.12− π(11.125)2(34.5)

87002
· 1300

= 0.263478 min

Therefore, T = 1.54188 min ± 0.263478 min. Using the methods above, we have T = V/G.
Then

Tbest =
13414.3

8700
= 1.54187 min

δT

T
=
δV

V
+
δG

G

=
287.815

13414.3
+

1300

8700
= 0.0214558 + 0.149425

= 0.170881

Then we have δT = T · δT
T

= 1.54187 · 0.170881 = 0.263476 min. Once again, the answers

are the same up to rounding. Then observe to fill 1,000 drums, you would require at least
1000(T ± δT ) = 1541.88 min± 263.476 min to fill all the drums.
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