
Name: Caleb McWhorter— Solutions
MAT 397— Fall 2020
Applied Problems:
Gradients & Direc. Deriv.

“Premature optimization is the root of all evil.”
– Donald Knuth

Gradient Descent & Machine Learning
We have been promised intelligent AI for decades. So what is the holdup? For years, computer

programs tried to program intelligence line-by-line—how ironic! This means for a given computer
task, one would have to program every possibility that the computer could face. For example, if
you were programming an AI which could respond to human asking the computer how it was, you
would have to program all the possible ways to form that question: “How are you?”, “How are
you doing?”, “How are you feeling?”, “What’s up?”, etc. While much progress was possible with
this restrictive approach to AI, clearly, a better approach was needed. It wasn’t until the 1980s,
and really the 1990s–2000s with more technology available, that the probable ‘correct’ approach
was found—machine learning. Rather than tell the computer what to do in every situation, you
would ‘teach’ the computer how to learn. Then you train the computer by applying this learning
algorithm to datasets, and ‘intelligence’ emerges. Machine learning is a specific type of artificial
intelligence, and the most powerful of machine learning techniques is called deep learning, which
relies on neural nets.

Essentially, (supervised) machine learning works as follows: suppose you wanted to predict
which people might default on their home loans. A professional, such as a banker, could look at the
data for an individual and make an assessment of how likely a person is to default. How do we teach
a computer to do the same? We gather a lot of relevant data on home loans: age, income level,
credit rating, geographic location, number of dependents, etc, and whether the person defaulted
on their home loan or not. We then feed this data to a computer, asking it for each person in the
dataset whether given their associated data, whether it thinks they will default or not. Based on
whether it was right or wrong, the algorithm alters how it makes predictions. We repeat the process
many times, and in ‘most’ cases, the predictions improve. This is how computers are now better
than humans at tasks like identifying images, and the games Chess, Go, Jeopardy, etc.

Notice deep learning hinges on the ability for the computer to systematically ‘tweak’ its guessing
system at each stage. This is ultimately an optimization problem, where the computer seeks to find
a ‘best possible’ weighting system of the variables that minimizes its chances of being incorrect.
[This is a vast oversimplification, but carries the essence of what happens.] Of course, how does
the computer know how to change the weightings at each stage? A common method is gradient
descent.

Imagine the probability of being incorrect, L, for a computer prediction depends on two weights,
say x, y. Then L(x, y) is a surface in three dimensions. Given a set of weights, (x, y), we want to
know how to change our weights, x, y, to minimize L(x, y). Imagine standing on the surface
L(x, y) at the point (x, y). The gradient, ∇L, will give a direction we can travel in to increase
L(x, y) the quickest. Therefore, −∇L(x, y) will give a direction we can move in to decrease L(x, y)
the fastest—and this is our goal! So we could take a ‘step’ in the direction of −∇L(x, y). How far
should we step? That’s a difficult problem in these computer learning methods, but say we use
step size dt. Then −∇L(x, y) dt will tell us how much to change x and y; that is, the x and y
components of −∇L(x, y) dt tells us how much to change x and y, respectively. We then repeat the
process again and again. Hopefully, this ‘walks’ us to a minimum value for L(x, y). This process
is called gradient descent. If you wanted to maximize L(x, y), you would use this process with
∇L(x, y)—gradient ascent.

1 of 4



Problem:

(a) Suppose you want to minimize F (x, y). You decide to use a gradient descent method to find
an approximate minimum value for F (x, y). You start with a point x0 = (x0, y0), and will use
step size ∆t. Explain why xn+1 = xn −∆t∇F (xn) is your gradient descent method.

(b) Is it true that F (xn+1) ≤ F (xn)? Explain.

(c) There are many problems that can arise in gradient descent. Take the function f(x, y) = x2+y2.
Try to approximate a minimum value for f(x, y) by using two steps of the gradient descent
method using ∆t = 1 and initial point (x0, y0) = (2, 2). What goes wrong? What can you
change about ∆t to fix this?

(d) What can be problematic with your suggestion in (c)? [Hint: Take your suggestion in (c) to an
extreme.]

(e) Consider again the problem that arose in (c). A possible solution might be to adjust your
choice of x0 = (x0, y0). Consider applying the gradient descent method to some starting point
on the surface given in the figure below. By carefully considering what happens when choosing
different initial points (x0, y0), explain another issue that can arise when using the gradient
descent method.

(f) Let f(x, y) = y4 − 2xy2 + x3 − x+ 3. This function has minima at (1, 1) and (1,−1). Moreover,
f(1, 1) = f(1,−1) = 2. Using ∆t = 0.1 and start point (x0, y0) = (1.5, 2.2), perform five steps
of the gradient descent method. How close to the minima point and minimum value does this
procedure produce?

(g) For the function given in (f), suppose you use the gradient descent method starting at (1, 0).
Because the point (1, 0) is ‘midway’ between the minima (1, 1) and (1,−1), will the gradient
descent method simply ‘stay’ at the point (1, 0)—unable to ‘decide’ between (1, 1) and (1,−1)?
Explain.

(h) Is∇F (xn) = 0 possible in the gradient descent method, either at the initial or some subsequent
point? What would happen to the method, assuming it could happen?

2 of 4



Solution.

(a) The point x0 = (x0, y0) is the starting point. Then ∇F (x0) gives the direction of maximum
increase for F at x0. Therefore, -∇F (x0) gives the direction of maximum decrease for F at x0.
Then ∆t∇F (x0) scales ∇F (x0). Then x1 = x0 − ∆t∇F (x0) takes the point x0 and adjusts it
by −∆t∇F (x0) to create a new guess, x1. Then generally, xn+1 = xn −∆t∇F (xn) is the new
adjusted guess based on the previous guess xn.

(b) Just because the gradient descent method is trying to find a minimum does not necessarily
mean that we decrease at each step (or ever). For example, imagine standing at the edge of
a slowly steeped hole. The vector −λF (x, y) will point down towards the center of the hole.
But with a large enough ∆t, you will over step and be on the other side the hole, perhaps even
higher up than before. We see an example of this in (c).

(c) First, note that ∇F (x, y) = 〈2x, 2y〉. We have chosen ∆t = 1. and x0 = (x0, y0) = (2, 2). Then
we have Notice because the step size is so large, we overstep the minimum and go to the ‘other

n (xn, yn) ∇F (xn, yn) ∆t∇F (xn, yn) (xn, yn)−∆t∇F (xn, yn)

0 (2, 2) 〈4, 4〉 〈4, 4〉 (−2,−2)
1 (−2,−2) 〈−4,−4〉 〈−4,−4〉 (2, 2)
2 (2, 2) 〈4, 4〉 〈4, 4〉 (−2,−2)
3 (−2,−2) 〈−4,−4〉 〈−4,−4〉 (2, 2)

side’ of it, and so on and so forth. One could change the step size to be smaller to avoid this
type of issue.

(d) If you make ∆t ‘very’ small, then at each stage, you aren’t really moving anywhere, i.e. ∆xn is
very small. Therefore, it will take many steps for the gradient descent method to converge (if
it converges at all). This increases the computational expense of the gradient descent method.

(e) Choosing one point and ‘heading downhill’ via the gradient, you may end up at one minimum
that is not an optimum minimum. For example, choose a starting point (−2,−1) seems to take
you towards the point on the surface given by (−4, 1) or (−4,−1). However, choosing starting
point (1, 0) would seem to take you towards the ‘pit’ on the surface at (0, 1), which seems to be
a better minimum.

(f) We end at the point (1.0175,−1.01367). We know the actual minimum is at (1,−1). So we

n (xn, yn) ∇F (xn, yn) ∆t∇F (xn, yn) (xn, yn)−∆t∇F (xn, yn) F (xn+1, yn+1)

0 (1.5,2.2) 〈−3.93, 29.392〉 〈−0.393, 2.9392〉 (1.893,−0.7392) 3.98158
1 (1.893,−0.7392) 〈8.65751, 3.98158〉 〈0.865751, 0.398158〉 (1.02725,−1.13736) 2.07244
2 (1.02725,−1.13736) 〈−0.421446,−1.21167〉 〈−0.0421446,−0.121167〉 (1.06939,−1.01619) 2.01132
3 (1.06939,−1.01619) 〈0.365518, 0.149377〉 〈0.0365518, 0.0149377〉 (1.03284,−1.03113) 2.00312
4 (1.03284,−1.03113) 〈0.073832,−0.125322〉 〈0.0073832,−0.0125322〉 (1.02546,−1.0186) 2.00146
5 (1.02546,−1.0186) 〈0.0796168,−0.0492199〉 〈0.00796168,−0.00492199〉 (1.0175,−1.01367) 2.00072

are a distance of 0.0222063 away from the minimum (x, y) location. Our predicted minimum
value is 2.00072, whereas the actual minimum value is 2. Therefore, our predicted minimum
value has magnitude of error 0.00072.

3 of 4



(g) No. First, while (1, 0) is not even the midpoint of (1, 1) and (1,−1). Second, we are ‘moving’ on
the surface and the points in the plane have little to do with the topology of the surface. Third,
what would it mean to speak of the ‘midpoint’ on a surface? But fourth and most importantly,
∇F 6= 0 unless we are at either a maximum, minimum, or saddle (because we will deal with
continuously differentiable functions). So if we do not start at a maximum, minimum, or saddle
point, then ∇F 6= 0, and F ‘already has a direction in mind.’ And in our iterative process, if
we ‘land’ at a point where ∇F = 0, then we must be at a saddle or minimum by our algorithm
construction.

(h) We have already answered this in (g). We know ∇F 6= 0 unless we are at either a maximum,
minimum, or saddle (because we will deal with continuously differentiable functions). So if
∇F = 0 at the start, we are either done or need choose a new initial point. And if we find
∇F = 0 in our algorithm, we have reached either a minimum or saddle point. If we do
get ∇F = 0 in the algorithm, you want to make sure the algorithm terminates because all
subsequent points will be the same (because you are no longer moving).

4 of 4


