
Name: Caleb McWhorter— Solutions
MAT 397— Fall 2020
Applied Problems:
Green’s Theorem

“[Sheldon] But there’s some poor woman who’s gonna pin her hopes on
my sperm. What if she winds up with a toddler who doesn’t know if he
should use an integral or a differential to solve for the area under a
curve? [Leonard] I’m sure she’ll still love him. [Sheldon] I wouldn’t.”

– Sheldon Cooper & Leonard Hofstadter Big Bang Theory

Planimeters
Before there were computers or satellite images, a difficult problem was the calculation of inte-

grals. Of course, if the define integral could be computed directly, and then numerical techniques
could be used to compute the final answer, e.g.∫ 2π

0
x3ex sin2 x dx =

8

625

(
237e2π

(
250π3 − 525π2 + 510π − 237

)) numerical−→
techniques ≈ 26976.3

However, all other integrals had to be computed numerically. While there were many numerical
techniques available, these methods were still computationally expensive to perform. Even pre-
computers, engineers, scientists, and mathematicians tried to find a way of ‘automatically’ comput-
ing these integrals. In 1814, J.M. Herman (and independently by Tito Gonnella in 1824) invented
the planimeter. However, these early devices were bulky and hard to use. The Swiss mathemati-
cian Jacok Amsler-Laffon managed to build the first modern planimeter in 1854. There are many
types of planimeters, but among the more common are polar planimeters—the kind developed by
Amsler-Laffon. You can see an example of such a device in the image below.1

The planimeter consists of a two-bar linkage. At one end there is a pointer which is used to
trace a closed curve, while the other arm allows the free movement of the device—though the base
of the device remains fixed. The planimeter keeps track of the distance that a wheel fixed in place
at the pointer rolls.2 The planimeter then applies this information, using Vector Calculus, to display
on an analog counter the total area enclosed by the curve.

1Planimeter image by Schorle - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=
7829947

2The distance this wheel rolls is not the length of the curve! This is because the wheel is not free to move in every
direction. So as you trace along the curve, sometimes the wheel moves, other times, it does not. An old computer mouse
could keep track the mouse tracker ball rolled because it was free to move in every direction and the amount of motion
was kept track by a laser. Obviously, this device is not so sophisticated. Otherwise, it would be much simpler to measure
the area from the length of the curve by using Green’s Theorem.
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Consider the following definite integral that occurs frequently in optics—the so-called Fresnel
integral

S(x) :=

∫ x

0
sin(t2) dt

This integral has no elementary antiderivative. Therefore, numerical techniques are required to
evaluate it. One way of doing this would be to sketch the function sin(t2) as accurately as possible
for t ∈ [0, x]—let’s say x = 3/2. This can be done very accurately by using rulers and carefully
computing many values of sin(t2). Then you construct a closed curve consisting of the line segment
along the t-axis from 0 to 3/2, followed by the vertical segment from (3/2, 0) to (3/2, sin(9/4)),
followed by the curve sin(t2), then the vertical segment from (0, sin(0)) to (0, 0) (here that is the
same point so no need for this final segment, but this ‘left side’ is generally required).3 This is
demonstrated in the figure below.

Because the value of the definite integral is the area under the curve, using Green’s Theorem
to compute this area, we have found the value of the integral using the planimeter! Of course, the
challenge is to design the planimeter to keep track of the area being enclosed using only knowledge
of the geometry of the curve being traced.

The planimeter was used not only integral computation but also in land surveying. It is not
terribly difficult to compute areas of geographic regions that are rectangular/triangular (or ones
which can be triangulated), but the area of general geographic regions is a difficult problem. How-
ever, surveying tools existed to create fairly reliable and accurate maps to scale. One could then
trace the area of a particular region using a planimeter, hence computing its area. Then one would
merely convert from the map area to the physical area.

O

A(x, y)
θ

L

P

r(t)

R

So suppose that you have a region enclosed by a simple closed curve. You will move the planime-
3There is some work to be done if the function crosses the x-axis many times, in which case one need repeat the pro-

cess above between each root of the function over the interval in question, and then add the results with the appropriate
signs.
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ter, carefully tracing the curve curve enclosing the region counterclockwise.4 Suppose you trace out
the curve in total time tf − ti, i.e. ti ≤ t ≤ tf . Let r(t) denote the straight line segment from the
fixed end of the planimeter, denoted O, to your current point P along the curve. Let L denote the
fixed length of the tracer arm. The linkage arm will move along some fixed circle with center O.
[To see this, think about how the device behaves as you move along the curve.] Let A(x(t), (y))
denote the location of A at time t, and θ(t) denote the angle the tracer arm makes with the hori-
zontal. Note that A(x, y) moves along a circle of fixed radius—the length of the linkage arm. [This
together with the fixed tracer arm length forces the region be ‘far’ from the planimeter but not ‘too
far.’] There is a small wheel located at P , perpendicular to AP , that rolls as you move P along the
curve.

Problem:

(a) Show ~OP given by

r(t) =
(
x(t) + L cos θ(t)

)
i +
(
y(t) + L sin θ(t)

)
j

(b) Define

I1 :=
1

2

∫ tf

ti

L2 dθ

dt
dt

I2 :=
1

2

∫ tf

ti

(
x
dy

dt
− y dx

dt

)
dt

Show that I1 = I2 = 0. [Hint: The first should be easy to show. For the second, recognize the
integrand as a derivative.]

(c) Define

I3 :=
1

2

∫ tf

ti

L

(
y
dθ

dt
sin θ + x

dθ

dt
cos θ

)
dt

I4 :=
1

2

∫ tf

ti

L

(
−dx
dt

sin θ +
dy

dt
cos θ

)
dt

Show that I3 = I4. [Hint: Consider the integral
∫ tf

ti

d

dt

(
x(t) sin θ(t)− y(t) cos θ(t)

)
dt.]

(d) Let N(θ) = 〈− sin θ, cos θ〉, and let T be the ordinary unit tangent vector to r(t). Denote by D
the distance the wheel rolls. Justify the following:

D =

∮
C
N ·T ds

[Hint: First, expand the integrand to find an integral in terms of N and dr—do not ever write
out r explicitly throughout this part. Draw a picture to help picture how the wheel moves.
Include in this picture r′ and a unit vector in the direction of the wheel. Then write down the
distance the wheel moves at time t—you may find projections to be helpful!]

4We assume the ‘mathematician direction.’ However, most planimeters are traced clockwise. But the derivation we
perform carries over, mutatis mutandis.
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(e) Show the following:
area R = I1 + I2 + I3 + I4 = DL

[Hint: To prove the right equality. Go back to the integral you wrote in the hint from (d).
Expand the dot product using the definition of N and r. Show that the resulting integral is
a multiple of I4. Then use (b), (c), and (d). To prove the left equality, combine the integral

I1, I2, I3, I4 into a single integral. Then recall from Green’s Theorem that area R =
1

2

∮
C
x dy−

y dx.]

(f) Suppose you are a land surveyor and use a planimeter to find the area of a plot of land to be
sold. You find an area of 15.2 in2, and the map indicates that 1 in is 5.6 acres. If the land in
this region is valued at $1,800 per square acre, what price should this plot of land be valued
at?

Solution.

(a) Consider moving from O alone the linkage arm, then along the tracer arm. Clearly, this will
take you to the point given by r(t). Treating A(x, y) and L as vectors (in the case of L, the
vector point from A(x, y) to r(t), i.e. r(t)−A(x, y)).

Lx

Ly

O

A(x(t), y(t))

θ(t)

L

P

r(t)

Now Lx = L cos θ and Ly = L sin θ. But then, using the fact that A(t) = (x, y), we have

r(t) = A+ L = 〈Ax + Lx, Ay + Ly〉 = 〈x(t) + L cos θ(t), y(t) + L sin θ(t)〉

(b) Call the initial point and angle you start at along the curve (xi, yi) and θi, respectively, and
call the final point and angle you start at along the curve (xf , yf ) and θf , respectively. Observe
that you will start and end tracing the curve at the same point. Hence, (xf , yf ) = (xi, yi) and
θf = θi. But then

I1 =
1

2

∫ tf

ti

L2 dθ

dt
dt

=
L2

2

∫ tf

ti

dθ

dt
dt

=
L2

2
· θ(t)

∣∣∣∣t=tf
t=ti
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=
L2

2

(
θ(tf )− θ(ti)

)
=
L2

2

(
θf − θi

)
= 0

and also

I2 =
1

2

∫ tf

ti

(
x
dy

dt
− y dx

dt

)
dt

=
1

2

∫ tf

ti

d

dt

(
x(t)y(t)

)
dt

=
1

2
· x(t)y(t)

∣∣∣∣t=tf
t=ti

=
1

2
·
(
x(tf )y(tf )− x(ti)y(ti)

)
=

1

2
·
(
xfyf − xiyi

)
= 0

(c) First, observe that∫ tf

ti

d

dt

(
x(t) sin θ(t)− y(t) cos θ(t)

)
dt =

(
x(t) sin θ(t)− y(t) cos θ(t)

)∣∣∣∣t=tf
t=ti

=
(
x(tf ) sin θ(tf )− y(tf ) cos θ(tf )

)
−
(
x(ti) sin θ(ti)− y(ti) cos θ(ti)

)
=
(
xf sin θf − yf cos θf

)
−
(
xi sin θi − yi cos θi

)
=
(
xf sin θf − xi sin θi

)
+
(
yi cos θi − yf cos θf

)
= 0 + 0

= 0

But we also know that∫ tf

ti

d

dt

(
x(t) sin θ(t)− y(t) cos θ(t)

)
dt =

∫ tf

ti

(
x′(t) sin θ(t) + x(t)θ′(t) cos θ(t)− y′(t) cos θ(t)

+ y(t)θ′(t) sin θ(t)
)
dt

=

∫ tf

ti

(
x′(t) sin θ(t)− y′(t) cos θ(t)

)
dt

+

∫ tf

ti

(
x(t)θ′(t) cos θ(t) + y(t)θ′(t) sin θ(t)

)
dt
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But then using the two different computations of the same integral, we have∫ tf

ti

(
x(t)θ′(t) cos θ(t) + y(t)θ′(t) sin θ(t)

)
dt = −

∫ tf

ti

(
x′(t) sin θ(t)− y′(t) cos θ(t)

)
dt∫ tf

ti

(
x(t)θ′(t) cos θ(t) + y(t)θ′(t) sin θ(t)

)
dt =

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t)

)
dt

1

2

∫ tf

ti

(
x(t)θ′(t) cos θ(t) + y(t)θ′(t) sin θ(t)

)
dt =

1

2

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t)

)
dt

1

2

∫ tf

ti

(
x
dθ

dt
cos θ + y

dθ

dt
sin θ

)
dt =

1

2

∫ tf

ti

(
−dx
dt

sin θ +
dy

dt
cos θ

)
dt

(d) First, observe that ∮
C
N ·T ds =

∮
N · r′(t)

‖r′(t)‖
‖r′(t)‖ dt

=

∮
N · r′(t) dt

=

∮
N · dr

Observe that the wheel does not rotate if r(t) moves in a direction parallel to ~AP . When
the direction of r(t) is perpendicular to ~AP , the wheel moves just as much as the point P
moved. For every other direction ‘in-between’ these two cases, the wheel moves some distance
‘in-between’ zero and the distance P moved.

Suppose we found a unit vector in a direction perpendicular to ~AP at time (t), say v(t). [For
notational ease, we immediately drop the dependence of v on time.] Given our observations
above, the amount the wheel moves is the ‘amount of velocity’, i.e. the ‘amount’ of r′ ’, that
is in the direction of v, times the amount of time the wheel moved in that direction, i.e. the
infinitesimal time dt. The ‘amount’ of r′ that lies in the direction of v is ‖projv r′‖. But

‖ projv r′‖ =
∥∥∥∥v · r′v · v

v

∥∥∥∥ =

∥∥∥∥v · r′‖v‖2
v

∥∥∥∥ =

∥∥∥∥v · r′1
v

∥∥∥∥ = ‖(v · r′)v‖ = |v · r′| ‖v‖ = |v · r′|

But recall v · r′ = |v| |r′| cos θ. By the construction of the planimeter, we know that 0 ≤ θ ≤ π
2 .

Therefore, v · r′ ≥ 0, so that |v · r′| = v · r′. But then the total distance the wheel moves is
v · r′ dt = v · dr. Then the total distance the wheel travels is

D =

∮
v · r′ dt =

∮
v · dr

We now only need to find v. The displacement vector fromA(x, y) to P must be 〈L cos θ, L sin θ〉,
because to get fromA(x, y) to P , you travel in the direction given by θ a distance of L. We know
‖〈L cos θ, L sin θ〉‖ = L, so that a unit vector pointing in the direction of ~AP is 〈cos θ, sin θ〉. But
this vector is just a point on a circle, and we know a unit vector perpendicular to such a point
is given by 〈− sin θ, cos θ〉. [You can also come up with this quickly by trial-and-error.] So we
find v = 〈− sin θ, cos θ〉. But notice that v = N! Therefore,

D =

∮
v · dr =

∮
N · dr =

∮
C
N ·T ds

6 of 8



(e) First, observe that by using (b) and (c), we have

I1 + I2 + I3 + I4 = 0 + 0 + I4 + I4 = 2I4

Now from (d), we know that

D =

∮
C
N ·T ds =

∮
N · dr

But we know N and r as vectors. Computing the rightmost integral, we find

D =

∮
N · dr

=

∫ tf

ti

〈− sin θ(t), cos θ(t)〉 · 〈x′(t)− Lθ′(t) sin θ(t), y′(t) + Lθ′(t) cos θ〉 dt

=

∫ tf

ti

(
− x′(t) sin θ(t) + Lθ′(t) sin2 θ(t) + y′(t) cos θ(t) + Lθ′(t) cos2 θ(t)

)
dt

=

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t) + Lθ′(t) sin2 θ(t) + Lθ′(t) cos2 θ(t)

)
dt

=

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t) + Lθ′(t)

)
dt

=

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t)

)
dt+

∫ tf

ti

Lθ′(t) dt

=

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t)

)
dt+ L

∫ tf

ti

θ′(t) dt

=

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t)

)
dt+ L

(
θ(tf )− θ(ti)

)
=

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t)

)
dt+ L

(
θf − θi

)
=

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t)

)
dt

=
2

L
· L
2

∫ tf

ti

(
− x′(t) sin θ(t) + y′(t) cos θ(t)

)
dt

=
2

L
· 1
2

∫ tf

ti

L

(
−dx
dt

sin θ +
dy

dt
cos θ

)
dt

=
2

L
I4

This shows that I4 =
DL

2
. But then using our first computation

I1 + I2 + I3 + I4 = 2I4 = 2 · DL
2

= DL

The only thing we have to show is that area R = I1 + I2 + I3 + I4. Green’s Theorem gives∮
C
M dx+N dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA
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Choosing M = −y/2 and N = x/2, we find

1

2

∮
C
x dy − y dx =

∫∫
R

(
1

2
− −1

2

)
dA =

∫∫
1 dA = area R

For our curve r and region R, we have

area R =
1

2

∮
C
x dy − y dx

=
1

2

∫ tf

ti

[
(x+ L cos θ)(y′ + Lθ′ cos θ)− (y + L sin θ)(x′ − Lθ′ sin θ)

]
dt

=
1

2

∫ tf

ti

(
xy′ + Lxθ′ cos θ + Ly′ cos θ + L2θ′ cos2 θ − (yx′ − Lyθ′ sin θ + Lx′ sin θ − L2θ′ sin2 θ)

)
dt

=
1

2

∫ tf

ti

(
xy′ + Lxθ′ cos θ + Ly′ cos θ + L2θ′ cos2 θ − yx′ + Lyθ′ sin θ − Lx′ sin θ + L2θ′ sin2 θ

)
dt

=
1

2

∫ tf

ti

(
xy′ + Lxθ′ cos θ + Ly′ cos θ − yx′ + Lyθ′ sin θ − Lx′ sin θ + L2θ′ cos2 θ + L2θ′ sin2 θ

)
dt

=
1

2

∫ tf

ti

(
xy′ + Lxθ′ cos θ + Ly′ cos θ − yx′ + Lyθ′ sin θ − Lx′ sin θ + L2θ′

)
dt

=
1

2

∫ tf

ti

(
L2θ′ + xy′ − yx′ + Lyθ′ sin θ + Lxθ′ cos θ − Lx′ sin θ + Ly′ cos θ

)
dt

Finally, observe that

I1 + I2 + I3 + I4 =
1

2

∫ tf

ti

L2 dθ

dt
dt+

1

2

∫ tf

ti

(
x
dy

dt
− y dx

dt

)
dt+

1

2

∫ tf

ti

L

(
y
dθ

dt
sin θ + x

dθ

dt
cos θ

)
dt

+
1

2

∫ tf

ti

L

(
−dx
dt

sin θ +
dy

dt
cos θ

)
dt

=
1

2

∫ tf

ti

(
L2θ′ + xy′ − yx′ + Lyθ′ sin θ + Lxθ′ cos θ − Lx′ sin θ + Ly′ cos θ

)
dt

Therefore,
area R = I1 + I2 + I3 + I4 = DL

(f) This is mostly just a simple unit conversion:

15.2 in2 = 15.2 in · in = 15.2 in · in · 5.6 acres · 5.6 acres
1 in · 1 in

= 476.672 acres2

Then the land should be priced for at least $1800/acre2 · 476.672 acres2 = $858, 009.60.
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