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Surfaces

“[Roy] Are you sure we need this nozzle thing? [Quentin] Are you
kidding? The nozzle is the most important part—it directs the flow of
the hot gases! [Roy] Hey, cool it, Quentin! Man, talkin’ ’bout your hot
gases. . . ”

– Roy Lee & Quentin Wilson, Rocket Boys

Ideal Gas Law
Many states of matter are difficult to develop accessible and manageable mathematical frame-

works with which to predict their properties. In particular, plasmas, fluids, and gases can be ex-
tremely difficult to create working theories with which to predict their behavior. For gases, there
are three ‘classical’ types of gases: Maxwell-Boltzmann ideal gases, Bose gases (ideal quantum
gases composed of bosons), and Fermi gases (ideal quantum gases composed of fermions). We will
consider Maxwell-Boltzmann ideal gases.

Because gases are ultimately probabilistic and stochastic in nature, we imagine a so called ideal
gas. An ideal gas is a theoretical gas composed of many moving particles (considered as point
particles) that do not interact and have perfectly elastic collisions (a collision in which there is no
net loss in kinetic energy, so that momentum and kinetic energy are conserved). You can imagine
such gases as consisting of many very tiny spheres which can collide without deformation, but
otherwise do not interact with each other. Though no actual ideal gases exist, they serve as a
good approximation to how many gases actually behave under ‘normal’ conditions. Ideal gases are
governed by the ideal gas law, which is a combination of Boyle’s law, Charles’ law, Avogadro’s law,
and Gay-Lussac’s law.

The ideal gas law is PV = nRT , where P is the pressure of the gas (in pascals), V is the volume
of the gas (in cubic meters), n is the amount of substance (in moles), R is the ideal gas constant
(R ≈ 8.314462 J·K−1mol−1), and T is the temperature (in Kelvins). This law has been generalized
to non-ideal gases, e.g. gases which has molecular interaction and whose particles have volume.
This generalization is the van der Waals equation:(

P + a
n2

V 2

)
(V − nb) = nRT

where Vm is the molar volume of the gas, a is a constant depending on the gas, and b is the volume
occupied by one mole of the gas molecules. [Notice when V is ‘large’ compared to n and nb, this
reduces to the ideal gas law.]

Consider the scenario where we are considering some fixed number of moles of an ideal gas.
We can then rewrite the ideal gas law as PV = kT , where k is some constant. Considering this as
a surface, the level curves to this surface become particularly informative.

Problem:

(a) Consider the pressure of an ideal gas, P , as a function of its temperature and volume. Sketch
some level curves for this function. Describe what this tells you about the nature of ideal gases
with fixed pressure.

(b) Consider the temperature of an ideal gas, T , as a function of its pressure and volume. Sketch
some level curves for this function. Describe what this tells you about the nature of ideal gases
with fixed temperature.
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(c) Consider the volume of an ideal gas, V , as a function of its pressure and temperature. Sketch
some level curves for this function. Describe what this tells you about the nature of ideal gases
with fixed volume.

(d) Either from the equation PV = kT or from what you learned from (a), (b), and (c), what
type of surface does the ideal gas law describe. Use a computer software system to plot an
example of such a surface. [Hint: If you do this algebraically, start with z = Cxy and make a
substitution x = a− b, y = a+ b, and z′ = z/C, see what surface you get in x, y, z′.]

Solution.

(a) We have P := P (V, T ) = k
T

V
. So for a fixed pressure, we have either V = k

P0
T or T = k

P0
V ,

which are lines. Therefore for a fixed pressure, if temperature increases then the volume must
increase, i.e. the gas expands, and if temperature decreases the volume must decrease, i.e. the
gas contracts.

(b) We have T := T (P, V ) = 1
kPV . So for a fixed temperature, we have either V = kT0

1

P
or

P = kT0
1

V
, which are hyperbolas. Therefore for a fixed temperature, if the volumes increases

the pressure decreases, and if the volume decreases the pressure increases.
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(c) We have V := V (P, T ) = k
T

P
. Observe that this is the same situation as in (a), mutatis mutan-

dis. For a fixed volume, we have either T = V0
k P or P = k

V0
T . Therefore, if the temperature

increases then the pressure increases, and if the temperature decreases the pressure decreases.

(d) Because the only valid values for V, T, P are nonnegative, we get the surface on the left in
the figures below. This is a section of a hyperbolic paraboloid, seen on the right in the figures
below.
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Suppose we have a surface given by z = Cxy. Setting x = a − b and y = a + b, for some a, b,
then we have

z = Cxy

z = C(a− b)(a+ b)

z = C(a2 − b2)
z

C
= a2 − b2

z′ = a2 − b2

where z′ = z/C. Observe that this is is reversible: given a, b, z′, there are unique x, y, z making
the equation z = Cxy hold, and given x, y, z′, there are unique x, y, z making z′ = a2 − b2 hold

(namely a =
x+ y

2
, b =

y − x

2
, z′ = z/C). Therefore, the equation z = Cxy is another way

of expressing a hyperbolic paraboloid. Writing T = 1
kPV , we see that taking z = T , C = 1

k ,
x = P , and y = V shows that PV = kT represents a hyperbolic paraboloid.
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