Name:
MAT 397
Fall 2020
Quiz 1: Due 08/28
"I have no idea what I'm doing but I know I do it really, really well." -Andy Dwyer, Parks and Recreation

Let $\mathbf{u}=\langle\sqrt{3}, 1\rangle$ and $\mathbf{v}=\langle-\sqrt{3}, 2\rangle$
(a) Find $2 \mathbf{u}-\mathbf{v}$.
(b) Find $\|\mathbf{u}\|$.
(c) Is \mathbf{u} parallel to \mathbf{v} ?
(d) Find a unit vector parallel to \mathbf{u}.
(e) What is the angle \mathbf{u} makes with the $+y$-direction?

Name:
MAT 397
Fall 2020
Quiz 2: Due 08/28
"The answer was so simple, I was too smart to see it!"

- Princess Bubblegum, Adventure Time

Let $\mathbf{u}=\langle 1,-2,1\rangle$ and $\mathbf{v}=\langle 1,-1,3\rangle$.
(a) Find any nonzero vector perpendicular to \mathbf{u}.
(b) Is \mathbf{u} perpendicular to \mathbf{v} ?
(c) Find the angle between \mathbf{u} and \mathbf{v}.
(d) Find $\operatorname{proj}_{\mathrm{v}} \mathbf{u}$.

Name:
MAT 397
Fall 2020
Quiz 3: Due 08/28
"Look. There's something you should know about me. I've been trying to hide it but, it's time I told someone the truth. I know it's gonna sound crazy but. . . here it goes...I'm awkward."

- Ryan Newman, Wilfred

Let $\mathbf{u}=2 \mathbf{i}+\mathbf{k}$ and $\mathbf{v}=\mathbf{i}-3 \mathbf{j}+\mathbf{k}$.
(a) Find a unit vector perpendicular to both \mathbf{u} and \mathbf{v}.
(b) Find the area of the triangle that can be formed using \mathbf{u}, \mathbf{v}, and $\mathbf{u}-\mathbf{v}$.

Name:
MAT 397
Fall 2020
Quiz 4: Due 09/04
"I don't know. I'm trying very hard not to connect with people right now."
-David Rose, Schitt's Creek

Find the vector, parametric, and symmetric forms of the lines through the point $(6,-1,4)$ and parallel to the line $x(t)=t-1, y(t)=2 t+6, z(t)=4-3 t$.

Name:
MAT 397
Fall 2020
Quiz 5: Due 09/04
"Now tomorrow there'll be a pop quiz on the effects of thermodynamics. Now remember, it's a pop quiz, so if you study, I'll know. "

- Dick Solomon, Third Rock from the Sun

Find the equation of the plane through $(1,-1,1),(1,0,1)$, and $(3,4,2)$.

Name:
MAT 397
Fall 2020 "Who has the time, with work, family, and hobbies, and listing excuses?"
Quiz 6: Due 09/04
-Tracy Jordan, 30 Rock

Identify the following surfaces in \mathbb{R}^{3} :
(a) \qquad : $y=2 x-z$
(b) \qquad
(c) \qquad $: \frac{x^{2}}{2}-3 y^{2}-z^{2}=0$
(d) \qquad : $z=y^{2}+1$
(e) \qquad : $2 x^{2}+2 y^{2}=3-2 z^{2}$
(f) \qquad
(g) \qquad : $2 x^{2}+3 y^{2}+4 z^{2}=5$
(h) \qquad : $y=z^{2}-x^{2}$
(i) \qquad : $y^{2}-x^{2}=z^{2}+4$
(j) \qquad $: x^{2}+y^{2}=1$

Name:
MAT 397
Fall 2020
Quiz 7: Due 09/11
"Ugh, the kids get worse and worse every year. Why do people keep making them."
-Esther, Bob's Burgers

Find parametrizations for the following geometric objects:
(a) the directed line segment from $(1,0,1)$ to $(-1,2,4)$.
(b) the circle with center $(-2,1)$ and radius 3 , oriented counterclockwise.
(c) the portion of $y=x^{2}+1$ from $(0,1)$ to $(2,5)$.
(d) the curve resulting from intersecting $z=y^{2}$ and $x=e^{y}-\cos z$.

Name:
MAT 397

Fall 2020
Quiz 8: Due 09/11
"Two oil changes for the price of one! Now if I could afford the one, and the car."
-Dr. Zoidberg, Futurama
Find the length of the curve $\mathbf{x}(t)=\left\langle 2 t, \frac{4}{3} t^{3 / 2}, \frac{1}{2} t^{2}\right\rangle, 0 \leq t \leq 2$.

Name:
MAT 397
Fall 2020
Quiz 9: Due 09/11
"Those scientists better check their hypotenuses, dude."
-Adam DeMamp, Workaholics

Show that the following limit does not exist by considering paths along the x-axis, y-axis, $y=x$, and the curve $x=y^{2}$. Would the curve $x=1$ also work as one of the curve to show that the limit does not exist?

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{\left(x^{2}+y^{4}\right)^{3}}
$$

Name:
MAT 397
Fall 2020
Quiz 10: Due 09/11
"I talk a lot, so I've learned to tune myself out."

- Kelly Kapoor, The Office

Define $f(x, y)=\frac{y e^{x y}}{\ln x}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Name:
MAT 397
Fall 2020
Quiz 11: Due 09/18
"I don't get history. If I wanted to know what happened in Europe a long time ago, I'd watch Game of Thrones."

- Troy Barnes, Community

Find the tangent plane to the surface $z=f(x, y)$ at $(x, y)=(1,-2)$, where $f(x, y)=x^{2} \cos (y+2)+\frac{y}{x}$. Use this plane to approximate $f(1.1,-2.2)$.

Name:
MAT 397
Fall 2020
Quiz 12: Due 09/18
"The greatest illusion of this world is the illusion of separation. Things you think are separate and different are actually one and the same. We are all one people, but we live as if divided."

- Guru Pathik, Avatar

Let $w(x, y)=2^{x} \arctan y, x(s)=e^{s}$, and $y(s, t)=\tan (s t)$. Use the Chain Rule to find $\frac{\partial w}{\partial t}$ in terms of x, y, s, t.

Name:
MAT 397
Fall 2020
Quiz 13: Due 09/18
"Sometimes in life, when you get what you want, you end up missing what you left behind."

Let $f(x, y)=\frac{x}{x+3 y}$, and define $\mathbf{u}=\langle-3,4\rangle$.
(a) Find $D_{\mathbf{u}} f(-2,1)$.
(b) Find the direction of maximum increase for $f(x, y)$ at the point $(-2,1)$.
(c) Find the direction of maximum decrease for $f(x, y)$ at the point $(-2,1)$.
(d) Approximately what would be the change in the value for $f(x, y)$ if you traveled a 'distance' of 0.5 in the direction of \mathbf{u} ?

Name:
MAT 397
Fall 2020
Quiz 14: Due 09/25
"If you're not willing to look stupid, nothing great is ever going to happen to you."
-Gregory House, House
Find and classify the extrema of $3 x^{2}+2 y^{2}-6 x-4 y+16$.

Name:
MAT 397
Fall 2020
Quiz 15: Due 09/25
"Hard work is worthless for those that don't believe in themselves."

- Naruto Uzumaki, Naturo

Find and classify the critical points of $f(x, y, z)=x^{2}-x y+z^{2}-2 x z+6 z$.

Name:
MAT 397
Fall 2020
Quiz 16: Due 10/02
"The three true branches of the government are military, corporate, and Hollywood."
-Steven Hyde, That 70's Show
Find the maximum and minimum values of $f(x, y, z)=x+y-z$ if (x, y, z) must lie on the sphere $x^{2}+$ $y^{2}+z^{2}=81$.

Name:
MAT 397
Fall 2020
Quiz 17: Due 10/02
"I'm afraid that once your heart's involved, it all comes out in moron."

- Lorelai Gilmore, Gilmore Girls

Sketch the region of integration for the following integral. In addition, evaluate the integral.

$$
\int_{1}^{\ln 6} \int_{e^{x}}^{6} \frac{1}{y^{2}} d y d x
$$

Name:
MAT 397
Fall 2020
Quiz 18: Due 10/02
"It's not the battles we lose that bother me; it's the ones we don't suit up for."

- Toby Ziegler, West Wing

Let R be the region bounded by $x=y^{2}, y=z, x=y$, and $z=0$. Evaluate the following integral:

$$
\iiint_{R}(2 x-y) d V
$$

Name:
MAT 397
Fall 2020
Quiz 19: Due 10/09
"You've gotta be a little skeptical, Sharona. Otherwise, you end up believing in everything: UFOs, elves, income tax rebates."

Change the order of integration and evaluate the integral.

$$
\int_{0}^{1} \int_{y}^{1} x^{2} \sin x y d x d y
$$

Name:
MAT 397
Fall 2020
Quiz 20: Due 10/09
"Bobby, some things are like a tire fire, trying to put it out only makes it worse. You just gotta grab a beer and let it burn." -Hank Hill, King of the Hill

Consider the following integral:

$$
\int_{0}^{2} \int_{x / 2}^{x / 2+1} x^{5}(2 y-x) e^{(2 y-x)^{2}} d y d x
$$

Set-up (but do not evaluate) an integral in terms of u, v, where $u=x$ and $v=2 y-x$.

Name:
MAT 397
Fall 2020
Quiz 21: Due 10/09
"But even the strongest of imaginations can't protect us once we know the truth."

- Dexter Morgan, Dexter

Evaluate the following:

$$
\int_{0}^{\pi} \int_{0}^{3} \int_{0}^{x} \frac{d y d x d z}{\sqrt{x^{2}+y^{2}}}
$$

Name:
MAT 397
Fall 2020
Quiz 22: Due 10/16
"I'm cuddly. Deal with it."

Let R be the region bounded by the two sphere $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=5$. Evaluate the following

$$
\iiint_{R} \frac{d V}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

Name:
MAT 397
Fall 2020
Quiz 23: Due 10/16
"If they survive, they're fairies. If they don't, I have tenure!"

- Denzel Crocker, Fairly Odd Parents

Find the center of mass of a lamina given by the region $\{(x, y): 0 \leq y \leq \sqrt{x}, 0 \leq x \leq 9\}$ with density varying as $x y$. [You may use an integration calculator for the integrals.]

Name:
MAT 397
Fall 2020
Quiz 24: Due 10/16
"You need three ingredients for a cocktail. Vodka and Mountain Dew is an emergency."

Let R be the region under the plane $z=1+x+y$ and above the region lying in the $x y$-plane bounded by $y=\sqrt{x}, y=0$, and $x=1$. Evaluate the following:

$$
\iiint_{R} 3 x y d V
$$

Name:
MAT 397
Fall 2020
Quiz 25: Due 10/23
"When you look at me you probably see a guy who has it all, but really there's a large part of me that's immature and undeveloped."

- Nathan Fielder, Nathan for You

Sketch the vector field $\mathbf{F}(x, y)=-(x+y) \mathbf{i}+(x-y) \mathbf{j}$. On your vector plot, sketch a few streamlines.

Name:
MAT 397
Fall 2020
Quiz 26: Due 10/23
"Before I leaped, I should have seen the view from halfway down."
-BoJack Horseman, BoJack Horseman

Find the divergence and curl of the vector field $\mathbf{F}(x, y)=\left\langle x^{2} y, x \cos y\right\rangle$.

Name:
MAT 397
Fall 2020
Quiz 27: Due 10/30
"All problems are boring until they're your own."

- Galina Reznikov (Red), Orange is the New Black

Let C be the curve given by $\mathbf{r}(t)=t \mathbf{i}+(2-t) \mathbf{j}$ for $0 \leq t \leq 2$. Compute the following

$$
\int_{C} 3(x-y) d s
$$

Name:
MAT 397
Fall 2020
"I hate my life, but I keep on doing it!"
Quiz 28: Due 10/30

Let C be the curve given by $y^{2}=x^{3}$ from $(1,-1)$ to $(1,1)$. Evaluate the following

$$
\int_{C} x^{2} y d x-x y d y
$$

Name:
MAT 397
Fall 2020
Quiz 29: Due 10/30
"It's not for me, but people will like it. It's Starbucks. It" what America wants."
-Matthew MacDell, Big Mouth
Let C be the curve given by $\mathbf{r}(t)=\frac{t^{3} e^{t(3-t)}}{3} \mathbf{i}+\frac{10 \sin (\pi t / 6) \cos (2 \pi t)}{1+t^{2}} \mathbf{j}, 0 \leq t \leq 3$. Evaluate the following integral

$$
\int_{C}(2 x y-y) d x+\left(x^{2}-x+1\right) d y
$$

Name:
MAT 397
Fall 2020
Quiz 30: Due 11/06
"Don't worry, demons can't die. He'll slowly re-form himself over a few months, passing through all the stages of demon growth: larvae, slug monster, spooky little girl, teenaged boy, giant ball of tongues, social media CEO, and then finally demon"

-Michael, The Good Place

Use Green's Theorem to evaluate the line integral

$$
\oint_{C} x^{2} y^{2} d x+x^{3} y d y
$$

where C is the triangle with vertices $(0,0),(1,0),(1,3)$, oriented counterclockwise.

Name:
MAT 397
Fall 2020
Quiz 31: Due 11/06
"I'm pretty but tough like a diamond. Or beef jerky in a ball gown."

- Titus Andromedon, Unbreakable Kimmy Schmidt

Let $\mathbf{F}(x, y)=e^{x} \sin y \mathbf{i}+\left(e^{x} \cos y+2 y\right) \mathbf{j}$, and C be the line segment from $(1,0)$ to $(0, \pi / 2)$. Evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Name:
MAT 397
Fall 2020
Quiz 32: Due 11/06
"I am not a successful adult. I don't eat vegetables and/or take care of myself."
-Nick Miller, New Girl

Parametrize the part of the cylinder $x^{2}+z^{2}=4$ between $y=-1$ and $y=3$, and find an \mathbf{N} for this surface.

Name:
MAT 397
Fall 2020
Quiz 33: Due 11/13
"If you're not well educated or informed you start your own party and yell the loudest."
-Charlie Kelly, It's Always Sunny in Philadelphia

Let S be the surface with bottom $z=0$, top $z=4$, and sides $x^{2}+y^{2}=9$, oriented outward normals. Evaluate

$$
\iint_{S} z d S
$$

Name:
MAT 397
Fall 2020
"Maybe we have to get a little messed up before we can step up."
Quiz 34: Due 11/13

Let $\mathbf{F}(x, y, z)=\left\langle 2 x, 2 y, z^{2}\right\rangle$, and define S to be the portion of the cone $x^{2}+y^{2}=z^{2}$ between the planes $z=-2$ and $z=1$, oriented outwards. Find the value of the following:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

Name:
MAT 397
Fall 2020
"Minimum wage? Just a fancy term for industrialized slavery."
Quiz 35: Due 11/13
-Frank Gallagher, Shameless

Let S be the surface given by the four sides and the bottom of the cube with vertices $(\pm 1, \pm 1, \pm 1)$. Orient S with outward-pointing normals. Let $\mathbf{F}(x, y, z)=x^{2} y z^{3} \mathbf{i}+x^{2} y \mathbf{j}+x e^{x} \sin y z \mathbf{k}$. Compute

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}
$$

