
MAT 397 Quiz Solutions Fall 2020

Quiz 1: Let u = 〈
√
3, 1〉 and v = 〈−

√
3, 2〉

(a) Find 2u− v.

2u− v = 2〈
√
3, 1〉 − 〈−

√
3, 2〉 = 〈2

√
3, 2〉+ 〈

√
3,−2〉 = 〈3

√
3, 0〉

(b) Find ‖u‖.

‖u‖ = ‖〈
√
3, 1〉‖ =

√√
3
2
+ 12 =

√
3 + 1 =

√
4 = 2

(c) Is u parallel to v?

No, if u were parallel to v, then there would be a c so that v = cu. But cu = 〈c
√
3, c〉. Comparing

the second component, we would have c = 2. But then cu = 2〈u = 〈2
√
3, 2〉 6= v.

(d) Find a unit vector parallel to u.

We know that for any nonzero vector a,
a

‖a‖
is always parallel to a. Then the following vector is

parallel to u:
u

‖u‖
=
〈
√
3, 1〉
2

=

〈√
3

2
,
1

2

〉

Of course, − u

‖u‖
=

〈
−
√
3

2
,−1

2

〉
is also a unit vector parallel to u.

(e) What is the angle u makes with the +y-direction?

θ

tan θ =
opp
adj

tan θ =

√
3

1

θ = arctan(
√
3)

θ =
π

3
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Quiz 2: Let u = 〈1,−2, 1〉 and v = 〈1,−1, 3〉.

(a) Find any nonzero vector perpendicular to u.

Any nonzero vector a = 〈x, y, z〉 with u·a = 0 is perpendicular to u. But then 0 = u·a = x−2y+z.
Any choice of x, y, z that make this valid works. For instance, 〈1, 0,−1〉, 〈−1, 0, 1〉, 〈2, 1, 0〉, 〈0, 1, 2〉, 〈4, 1, 2〉,
etc.

(b) Is u perpendicular to v?

u · v = 〈1,−2, 1〉 · 〈1,−1, 3〉 = 1(1) + (−2)(−1) + 1(3) = 1 + 2 + 3 = 6 6= 0. Therefore, u and v
are not perpendicular.

(c) Find the angle between u and v.

u · v = ‖u‖ ‖v‖ cos θ
6 =
√
6 ·
√
11 · cos θ

cos θ =
6√
6
√
11

cos θ =

√
6

11

θ = cos−1

(√
6

11

)
≈ 42.392◦

(d) Find projv u.

projv u =
u · v
v · v

v =
6

11
〈1,−1, 3〉 =

〈
6

11
,− 6

11
,
18

11

〉

Quiz 3: Let u = 2 i + k and v = i− 3 j + k.

(a) Find a unit vector perpendicular to both u and v.

(b) Find the area of the triangle that can be formed using u, v, and u− v.

Solution.

(a) The cross product of vectors results in a vector perpendicular to them both:

u× v =

∣∣∣∣∣∣
i j k
2 0 1
1 −3 1

∣∣∣∣∣∣
= i

∣∣∣∣ 0 1
−3 1

∣∣∣∣− j
∣∣∣∣2 1
1 1

∣∣∣∣+ k
∣∣∣∣2 0
1 −3

∣∣∣∣
= i
(
0(1)− (−3)1

)
− j
(
2(1)− 1(1)

)
+ k

(
2(−3)− 1(0)

)
= i(0 + 3)− j(2− 1) + k(−6− 0)

= 3 i− j− 6 k = 〈3,−1,−6〉



But then we need to make this into a unit vector. The length of u×v is ‖u×v‖ = ‖〈3,−1,−6〉‖ =√
32 + (−1)2 + (−6)2 =

√
9 + 1 + 36 =

√
46. Then

u× v

‖u× v‖
=
〈3,−1,−6〉√

46
=

〈
3√
46
,− 1√

46
,− 6√

46

〉
is a unit vector perpendicular to both u and v. Furthermore, v × u = −(u × v) so that v × u
points in the ‘opposite’ direction of u× v. Therefore,

v × u

‖v × u‖
=
〈−3, 1, 6〉√

46
=

〈
−3√
46
,

1√
46
,

6√
46

〉
is also a unit vector perpendicular to both u and v.

(b) The area of the triangle ‘spanned’ by u and v is half the area of the parallelogram spanned by
u and v—which is ‖u× v‖ = ‖v × u‖. Therefore, the area is

A =
‖u× v‖

2
=

√
46

2
=

√
23

2

Quiz 4: Find the vector, parametric, and symmetric forms of the lines through the point (6,−1, 4)
and parallel to the line x(t) = t− 1, y(t) = 2t+ 6, z(t) = 4− 3t.

Solution. The line must contain (6,−1, 4), and because the line must be parallel to the given line,
the slope vector must be 〈1, 2,−3〉. Then the vector form of the line is `(t) = 〈1, 2,−3〉t+〈6,−1, 4〉 =
〈t+ 6, 2t− 1, 4− 3t〉. Then immediately gives the parametric form as

x = t+ 6

y = 2t− 1

z = 4− 3t

Solving for t in each equation gives the symmetric form:

x− 6

1
=
y + 1

2
=
z − 4

−3



Quiz 5: Find the equation of the plane through (1,−1, 1), (1, 0, 1), and (3, 4, 2).

Solution. We form vectors u = (1,−1, 1)−(1, 0, 1) = 〈0,−1, 0〉 and v = (3, 4, 2)−(1, 0, 1) = 〈2, 4, 1〉.
These vectors lie in the plane. Therefore, a vector perpendicular to the plane is

u× v =

∣∣∣∣∣∣
i j k
0 −1 0
2 4 1

∣∣∣∣∣∣
= i
(
1(−1)− 4(0)

)
− j
(
0(1)− 2(0)

)
+ k

(
0(4)− 2(−1)

)
= − i− 0 j + 2 k

= 〈−1, 0, 2〉

The plane contains the point (1, 0, 1). Therefore, the equation for the plane is

〈−1, 0, 2〉 · 〈x− 1, y − 0, z − 1〉 = 0

−1(x− 1) + 0(y − 0) + 2(z − 1) = 0

−x+ 1 + 2z − 2 = 0

−x+ 2z = 1

Quiz 6: Identify the following surfaces in R3:

(a) Plane : y = 2x− z

(b) Hyperboloid of One Sheet : x2 + y2 =
z2

2
+ 1

(c) Cone :
x2

2
− 3y2 − z2 = 0

(d) Parabolic Cylinder : z = y2 + 1

(e) Sphere : 2x2 + 2y2 = 3− 2z2

(f) Paraboloid : y =
x2

7
+ z2

(g) Ellipsoid : 2x2 + 3y2 + 4z2 = 5

(h) Hyperbolic Paraboloid : y = z2 − x2

(i) Hyperboloid of Two Sheets : y2 − x2 = z2 + 4

(j) Cylinder : x2 + y2 = 1



Quiz 7: Find parametrizations for the following geometric objects:

(a) the directed line segment from (1, 0, 1) to (−1, 2, 4).

(b) the circle with center (−2, 1) and radius 3, oriented counterclockwise.

(c) the portion of y = x2 + 1 from (0, 1) to (2, 5).

(d) the curve resulting from intersecting z = y2 and x = ey − cos z.

Solution.

(a) m = (−1, 2, 4)− (1, 0, 1) = 〈−2, 2, 3〉. Then the line segment can be parametrized by

`(t) = 〈−2, 2, 3〉t+ 〈1, 0, 1〉 = 〈1− 2t, 2t, 3t+ 1〉; 0 ≤ t ≤ 1

(b)
x(t) = 〈3 cos t− 2, 3 sin t+ 1〉; 0 ≤ t ≤ 2π

(c) Every point on the curve is of the form (x, y), but y = x2 + 1, so every point is of the form
(x, y) = (x, x2 + 1). We go from x = 0 to x = 2. Therefore, the curve can be parametrized by

r(t) = 〈t, t2 + 1〉; 0 ≤ t ≤ 2

(d) Every point on the curve is of the form (x, y, z). We know that z = y2, so that we have
(x, y, z) = (x, y, y2). Now x = ey − cosx and z = y2, so that we have (x, y, z) = (x, y, y2) =
(ey − cos z, y, y2) = (ey − cos(y2), y, y2). Therefore, we can parametrize the curve as

x(t) = 〈et − cos(t2), t, t2〉; t ∈ r

Quiz 8: Find the length of the curve x(t) = 〈2t, 43 t
3/2, 12 t

2〉, 0 ≤ t ≤ 2.

Solution.

x(t) =

〈
2t,

4

3
t3/2,

1

2
t2
〉

x′(t) = 〈2, 2t1/2, t〉

‖x′(t)‖ =
√

22 + (2t1/2)2 + t2 =
√
4 + 4t+ t2 =

√
(t+ 2)2 = t+ 2

L =

ˆ b

a
‖x′(t)‖ dt =

ˆ 2

0
(t+ 2) dt =

t2

2
+ 2t

∣∣∣∣2
0

=

(
4

2
+ 2(2)

)
− 0 = 6



Quiz 9: Show that the following limit does not exist by considering paths along the x-axis, y-axis,
y = x, and the curve x = y2. Would the curve x = 1 also work as one of the curve to show that the
limit does not exist?

lim
(x,y)→(0,0)

x4y4

(x2 + y4)3

Solution.

Along x-axis, y = 0 : lim
(x,0)→(0,0)

x4 · 0
(x2 + 0)3

= lim
x→0

0 = 0

Along y-axis, x = 0 : lim
(0,y)→(0,0)

0 · y4

(0 + y4)3
= lim

y→0
0 = 0

Along y = mx : lim
(x,x)→(0,0)

x4 · x4

(x2 + x4)3
= lim

x→0

x8(
x2(1 + x2)

)3 = lim
x→0

x8

x6(1 + x2)3
= lim

x→0

x2

(1 + x2)3
= 0

Along x = y2 : lim
(y2,y)→(0,0)

(y2)4y4

((y2)2 + y4)3
= lim

y→0

y8 · y4

(y4 + y4)3
= lim

y→0

y12

8y12
= lim

y→0

1

8
=

1

8

Because the limit along the lines y = mx and x = y2 do not agree, the limit does not exist. Note
that x = 1 would not be a possible curve because (x, y) → (0, 0), which is not possible if we fix
x = 1!

Quiz 10: Define f(x, y) =
yexy

lnx
. Find

∂f

∂x
and

∂f

∂y
.

Solution.

∂f

∂x
=
y2exy lnx− y

x
exy

(lnx)2

∂f

∂y
=
exy + xyexy

lnx

Quiz 11: Find the tangent plane to the surface z = f(x, y) at (x, y) = (1,−2), where f(x, y) =

x2 cos(y + 2) +
y

x
. Use this plane to approximate f(1.1,−2.2).

Solution.
f(1,−2) = −1

∂f

∂x
= 2x cos(y + 2)− y

x2

∣∣∣∣
(x,y)=(1,−2)

= 4

∂f

∂y
= −x2 sin(y + 2) +

1

x

∣∣∣∣
(x,y)=(1,−2)

= 1

Then the tangent plane is

z − z0 = fx(1,−2)(x− 1) + fy(1,−2)(y − (−2))
z − (−1) = 4(x− 1) + 1(y + 2)

z + 1 = 4(x− 1) + 1(y + 2)

z = 4(x− 1) + 1(y + 2)− 1



Equivalently, the tangent plane is z = 4x + y − 3 or 4x + y − z = 3. Then for points ‘near’
(x, y, z) = (1,−2,−1), we know that z ≈ 4(x− 1) + 1(y + 2)− 1. Then

f(1,−2) = z ≈ 4(x− 1) + 1(y + 2)− 1

∣∣∣∣
x=1.1,y=−2.2

= 4(1.1− 1) + 1(−2.2 + 2)− 1

= 4(0.1)− 0.2− 1

= 0.4− 0.2− 1

= −0.8

Therefore, f(1.1,−2.2) ≈ −0.8. Note that f(1.1,−2.2) = −0.814119—meaning we have a 1.7%
error!

Quiz 12: Let w(x, y) = 2x arctan y, x(s) = es, and y(s, t) = tan(st). Use the Chain Rule to find
∂w

∂t
in terms of x, y, s, t.

Solution.
∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t

= 2x ln 2 arctan y · 0 + 2x

1 + y2
· s sec2(st)

=
s 2x sec2(st)

1 + y2

You may also use the ‘chart’ to help see what partials you will need (highlighted in red).

w

x y

s s t

From this, we see that

∂w

∂t
=
∂w

∂y

∂y

∂t
=

2x

1 + y2
· s sec2(st) = s 2x sec2(st)

1 + y2



Quiz 13: Let f(x, y) =
x

x+ 3y
, and define u = 〈−3, 4〉.

(a) Find Duf(−2, 1).

(b) Find the direction of maximum increase for f(x, y) at the point (−2, 1).

(c) Find the direction of maximum decrease for f(x, y) at the point (−2, 1).

(d) Approximately what would be the change in the value for f(x, y) if you traveled a ‘distance’ of
0.5 in the direction of u?

Solution.

(a)

∇f(x, y) =
〈

3y

(x+ 3y)2
,− 3x

(x+ 3y)2

〉 ∣∣∣∣
(x,y)=(−2,1)

= 〈3, 6〉

‖u‖ =
√
(−3)2 + 42 =

√
9 + 16 = 5

Duf(−2, 1) = 〈3, 6〉 ·
〈−3, 4〉

5
=

1

5
·
(
3(−3) + 6(4)

)
=

1

5
· 15 = 3

(b) The direction of maximum increase at (−2, 1) is the gradient at this point, i.e. 〈3, 6〉. Equiva-
lently, you could use the direction 〈1, 2〉.

(c) The direction of maximum increase at (−2, 1) is the “opposite” direction from the gradient at
this point, i.e. 〈−3,−6〉. Equivalently, you could use the direction 〈−1,−2〉.

(d) At (−2, 1), the rate of change in the direction of u is 3 because Duf(−2, 1) = 3. If we travel

a distance of 0.5 =
1

2
, we should see a change of approximately 3 · 1/2 = 3/2 = 1.50, i.e. an

increase of 1.50.

Quiz 14: Find and classify the extrema of 3x2 + 2y2 − 6x− 4y + 16.

Solution. Let f(x, y) = 3x2 + 2y2 − 6x− 4y + 16. We have

fx = 6x− 6 = 6(x− 1) fxx = 6 fxy = 0

fy = 4y − 4 = 4(y − 1) fyy = 4 fyx = 0

Setting fx = 0 and fy = 0, we find solution (x, y) = (1, 1). To classify the extrema, we use the
Hessian

Hf(1, 1) =

[
fxx fxy
fyx fyy

]
=

[
6 0
0 4

]
This gives sequence of principal minors d1 = 6 > 0 and d2 =

∣∣∣∣6 0
0 4

∣∣∣∣ = 6(4) − 0(0) = 24 > 0.

Therefore, (x, y) = (1, 1) is a local minimum for f(x, y).



Quiz 15: Find and classify the critical points of f(x, y, z) = x2 − xy + z2 − 2xz + 6z.

Solution. We have
fx = 2x− y − 2z fxy = −1
fy = −x fyx = −1
fz = 2z − 2x fxz = −2
fxx = 2 fzx = −2
fyy = 0 fyz = 0

fzz = 2 fzy = 0

We set fx = 0, fy = 0, and fz = 0. From fy = 0, we find that x = 0. Using this in fz = 0, we find
that z = −3. But then using both these in fx = 0, we find that y = 6. Therefore, the only critical
value is (x, y, z) = (0, 6,−3). To classify this, we consider the Hessian,

Hf(x, y, z) =

fxx fxy fxz
fyx fyy fyz
fzx fzy fzz

 =

 2 −1 −2
−1 0 0
−2 0 2


The sequence of principal minors is then

d1 = 2 > 0

d2 =

∣∣∣∣ 2 −1
−1 0

∣∣∣∣ = 2(0)− (−1)(−1) = 0− 1 = −1 < 0

d3 =

∣∣∣∣∣∣
2 −1 −2
−1 0 0
−2 0 2

∣∣∣∣∣∣ = (−1)(−1)
∣∣∣∣−1 −2
0 2

∣∣∣∣+ 0− 0 = −2− 0(−2) = −2 < 0

Therefore, (0, 6,−3) is a saddle point for f(x, y, z).

Quiz 16: Find the maximum and minimum values of f(x, y, z) = x + y − z if (x, y, z) must lie on
the sphere x2 + y2 + z2 = 81.

Solution. Letting g(x, y, z) = x2+y2+z2−81. We have constraint g(x, y, z) = 0. Then∇f(x, y, z) =
λ∇g(x, y, z), along with the constraint x2 + y2 + z2 = 81 gives equations

1 = 2λx

1 = 2λy

−1 = 2λz

x2 + y2 + z2 = 81

Comparing the first two equations, we have 2λx = 2λy so that x = y. But observe 2λz = −1 =
−(1) = −(2λx) = −2λx so that z = −x. Then we have

81 = x2 + y2 + z2 = x2 + x2 + (−x)2 = 3x2



From this we find that x = ±3
√
3. This gives extremum at (3

√
3, 3
√
3,−3

√
3) and (−3

√
3,−3

√
3, 3
√
3).

Now
f(3
√
3, 3
√
3,−3

√
3) = 3

√
3 + 3

√
3− (−3

√
3) = 9

√
3

f(−3
√
3,−3

√
3, 3
√
3) = −3

√
3− 3

√
3− 3

√
3 = −9

√
3

Therefore, the maximum value of f(x, y, z) on the sphere x2+y2+z2 = 81 is 9
√
3 and the minimum

value is −9
√
3.

Quiz 17: Sketch the region of integration for the following integral. In addition, evaluate the
integral. ˆ ln 6

1

ˆ 6

ex

1

y2
dy dx

Solution.

ˆ ln 6

1

ˆ 6

ex

1

y2
dy dx =

ˆ ln 6

1
−1

y

∣∣∣∣y=6

y=ex
dx

=

ˆ ln 6

1

(
−1

6
− −1
ex

)
dx

=

ˆ ln 6

1

(
−1

6
+ e−x

)
dx

= −x
6
− e−x

∣∣∣∣x=ln 6

x=1



=

(
− ln 6

6
− e− ln 6

)
−
(
−1

6
+ e−1

)
= − ln 6

6
− 1

6
+

1

6
− 1

e

=
1

e
− ln 6

6

Quiz 18: Let R be the region bounded by x = y2, y = z, x = y, and z = 0. Evaluate the following
integral: ˚

R
(2x− y) dV

Solution.

˚
R
(2x− y) dV =

ˆ 1

0

ˆ y

y2

ˆ y

0
(2x− y) dz dx dy

=

ˆ 1

0

ˆ y

y2
z(2x− y)

∣∣∣∣z=y
z=0

dx dy

=

ˆ 1

0

ˆ y

y2
[y(2x− y)− 0] dx dy

=

ˆ 1

0

ˆ y

y2
(2xy − y2) dx dy

=

ˆ 1

0
(x2y − xy2)

∣∣∣∣x=y
x=y2

dy

=

ˆ 1

0

[
(y3 − y3)− (y5 − y4)

]
dy

=

ˆ 1

0
(y4 − y5) dy



=

(
y5

5
− y6

6

) ∣∣∣∣y=1

y=0

=

(
1

5
− 1

6

)
− 0

=
6

30
− 5

30

=
1

30

Quiz 19: Change the order of integration and evaluate the integral.
ˆ 1

0

ˆ 1

y
x2 sinxy dx dy

Solution.
ˆ 1

0

ˆ 1

y
x2 sinxy dx dy =

ˆ 1

0

ˆ x

0
x2 sinxy dy dx

=

ˆ 1

0
−x cosxy

∣∣∣∣y=x
y=0

dx

=

ˆ 1

0

[
−x cosx2 − (−x cos 0)

]
dx

=

ˆ 1

0
(x− x cosx2) dx

=
x2

2
− sinx2

2

∣∣∣∣x=1

x=0

=

(
1− sin 1

2

)
− (0− 0)

=
1− sin 1

2

1

1

Quiz 20: Consider the following integral:

ˆ 2

0

ˆ x/2+1

x/2
x5(2y − x)e(2y−x)2 dy dx

Set-up (but do not evaluate) an integral in terms of u, v, where u = x and v = 2y − x.

Solution. We have x = u so that v = 2y − x = 2y − u. But then y =
u+ v

2
. Now we need to find

the Jacobian of the transformation:∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ = ∣∣∣∣det( 1 0
1/2 1/2

)∣∣∣∣ = |1/2− 0| = 1

2



Now we need find the bounds for the new integral:

x = 0⇐⇒ u = 0

x = 2⇐⇒ u = 2

y = x/2⇐⇒ 2y = x⇐⇒ 2y − x = 0⇐⇒ v = 0

y = x/2 + 1⇐⇒ 2y = x+ 2⇐⇒ 2y − x = 2⇐⇒ v = 2

Clearly, the region of integration is a rectangle with 0 ≤ u ≤ 2, 0 ≤ v ≤ 2. Therefore,
ˆ 2

0

ˆ x/2+1

x/2
x5(2y−x)e(2y−x)2 dy dx =

ˆ 2

0

ˆ 2

0
u5vev

2 · 1
2
du dv =

1

2

ˆ 2

0

ˆ 2

0
u5vev

2
du dv =

8

3
(e4−1)

Quiz 21: Evaluate the following: ˆ π

0

ˆ 3

0

ˆ x

0

dy dx dz√
x2 + y2

Solution. We make a change to cylindrical coordinates. We have x = r cos θ, y = r sin θ, z = z, and
Jacobian r. Drawing the projection of our region to the plane, we have

3

3

Given θ, r varies from 0 to the distance where r ‘hits’ the vertical portion of the triangle. This gives
another, smaller triangle with hypotenuse r and sides 3, y. Then we know that cos θ = 3

r . Then
r = 3 sec θ. The smallest angle choice is 0 and the largest is π/4. Then we have

ˆ π

0

ˆ 3

0

ˆ x

0

dy dx dz√
x2 + y2

=

ˆ π

0

ˆ π/4

0

ˆ 3 sec θ

0

1√
r2
· r dr dθ dz

=

ˆ π

0

ˆ π/4

0

ˆ 3 sec θ

0
dr dθ dz

=

ˆ π

0

ˆ π/4

0
3 sec θ dθ dz

=

ˆ π

0
3 ln | sec θ + tan θ|

∣∣∣∣θ=π/4
θ=0

dz

=

ˆ π

0
3 ln |
√
2 + 1| − 3 ln |1 + 0| dz

= 3 ln(1 +
√
2)

ˆ π

0
dz

= 3π ln(1 +
√
2)



Quiz 22: Let R be the region bounded by the two sphere x2 + y2 + z2 = 1 and x2 + y2 + z2 = 5.
Evaluate the following ˚

R

dV√
x2 + y2 + z2

Solution. We use spherical coordinates: x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ, and Jacobian
ρ2 sinφ. Then ˚

R

dV√
x2 + y2 + z2

=

ˆ 2π

0

ˆ π

0

ˆ √5
1

1√
ρ2
· ρ2 sinφ dρ dφ dθ

=

ˆ 2π

0

ˆ π

0

ˆ √5
1

ρ sinφ dρ dφ dθ

=

ˆ 2π

0

ˆ π

0

ˆ √5
1

ρ2

2
sinφ

∣∣∣∣ρ=5

ρ=1

dφ dθ

=

ˆ 2π

0

ˆ π

0

sinφ

2
(5− 1) dφ dθ

= 2

ˆ 2π

0

ˆ π

0
sinφ dφ dθ

= 2

ˆ 2π

0
− cosφ

∣∣∣∣φ=π
φ=0

dθ

= 2

ˆ 2π

0
− cos(π)− (− cos 0) dθ

= 2

ˆ 2π

0
−(−1) + 1 dθ

= 2

ˆ 2π

0
2 dθ

= 8

ˆ 2π

0
dθ

= 8π

Quiz 23: Find the center of mass of a lamina given by the region {(x, y) : 0 ≤ y ≤
√
x, 0 ≤ x ≤ 9}

with density varying as xy. [You may use an integration calculator for the integrals.]

Solution.

M =

¨
ρ(x, y) dA =

ˆ 9

0

ˆ √x
0

(xy) dy dx =
243

2

Mx =

¨
yρ(x, y) dA =

ˆ 9

0

ˆ √x
0

(xy2) dy dx =
1458

7

My =

¨
xρ(x, y) dA =

ˆ 9

0

ˆ √x
0

(x2y) dy dx =
6561

8



x =
My

M
=

6561/8

243/2
=

27

4

y =
Mx

M
=

1458/7

243/2
=

12

7

(x, y) = (27/4, 12/7) ≈ (6.75, 1.71)

Quiz 24: Let R be the region under the plane z = 1 + x + y and above the region lying in the
xy-plane bounded by y =

√
x, y = 0, and x = 1. Evaluate the following:

˚
R
3xy dV

Solution. Observe z varies from z = 0 up to the plane z = 1+ x+ y. In the plane, if we ‘slice’ in x,
y varies from y = 0 to y =

√
x. We can choose any x from x = 0 to x = 1. This gives the integral as

˚
R
3xy dV =

ˆ 1

0

ˆ √x
0

ˆ 1+x+y

0
3xy dz dy dx

=

ˆ 1

0

ˆ √x
0

3xyz

∣∣∣∣z=1+x+y

z=0

dy dx

=

ˆ 1

0

ˆ √x
0

3xy
(
(1 + x+ y)− 0

)
dy dx

=

ˆ 1

0

ˆ √x
0

(3xy + 3x2y + 3xy2) dy dx

=

ˆ 1

0

(
3xy2

2
+

3x2y2

2
+

3xy3

3

) ∣∣∣∣y=
√
x

y=0

dx

=

ˆ 1

0

(
3x2

2
+

3x3

2
+

3x5/2

3

)
− 0 dx

=
1

6

ˆ 1

0
(9x2 + 9x3 + 6x5/2) dx

=
1

6

(
3x3 +

9x4

4
+

12x7/2

7

)∣∣∣∣x=1

x=0

=
1

6

[(
3 +

9

4
+

12

7

)
− 0

]
=

1

6

(
84 + 63 + 48

28

)
=

1

6
· 195
28

=
65

56



Quiz 25: Sketch the vector field F(x, y) = −(x+ y) i + (x− y) j. On your vector plot, sketch a few
streamlines.

Solution.

Quiz 26: Find the divergence and curl of the vector field F(x, y) = 〈x2y, x cos y〉.

Solution.

div F = ∇ · F =
∂

∂x
(x2y) +

∂

∂y
(x cos y) = 2xy − x sin y

curl F = ∇× F

=

∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
x2y x cos y 0

∣∣∣∣∣∣∣∣
= i

(
∂

∂y
(0)− ∂

∂z
(x cos y)

)
− j

(
∂

∂x
(0)− ∂

∂z
(x2y)

)
+ k

(
∂

∂x
(x cos y)− ∂

∂y
(x2y)

)
= 0 i− 0 j + (cos y − x2) k

= 〈0, 0, cos y − x2〉

Quiz 27: Let C be the curve given by r(t) = t i + (2− t) j for 0 ≤ t ≤ 2. Compute the following
ˆ
C
3(x− y) ds

Solution.
r(t) = 〈t, 2− t〉
r′(t) = 〈1,−1〉

|r′(t)| =
√

12 + (−1)2 =
√
2

x(t) = t

y(t) = 2− t



Then we have ˆ
C
3(x− y) ds =

ˆ 2

0
3
(
t− (2− t)

)
·
√
2 dt

= 3
√
2

ˆ 2

0
(2t− 2) dt

= 3
√
2 ·
(
t2 − 2t

) ∣∣∣∣2
0

= 3
√
2 · ((4− 4)− 0)

= 0

Quiz 28: Let C be the curve given by y2 = x3 from (1,−1) to (1, 1). Evaluate the following
ˆ
C
x2y dx− xy dy

Solution. We can parametrize this curve by r(t) = 〈t2, t3〉, −1 ≤ t ≤ 1. Then r′(t) = 〈2t, 3t2〉.
Therefore, ˆ

C
x2y dx− xy dy =

ˆ 1

−1

(
(t2)2t3

)
· 2t dt−

(
t2 · t3

)
· 3t2 dt

=

ˆ 1

−1
2t8 − 3t7 dt

=

(
2t9

9
− 3t8

8

) ∣∣∣∣1
−1

=

(
2

9
− 3

8

)
−
(
−2

9
− 3

8

)
=

2

9
− 3

8
+

2

9
+

3

8

=
4

9

Quiz 29: Let C be the curve given by r(t) =
t3et(3−t)

3
i+

10 sin(πt/6) cos(2πt)

1 + t2
j, 0 ≤ t ≤ 3. Evaluate

the following integral ˆ
C
(2xy − y) dx+ (x2 − x+ 1) dy

Solution. Observe that
∂N

∂x

?
=
∂M

∂y

2x− 1 = 2x− 1



Therefore, the vector field F(x, y) = 〈2xy − y, x2 − x+ 1〉 is conservative.
ˆ
(x2 − x+ 1) dy = x2y − xy + y + g(x)

∂

∂x
(x2y − xy + y + g(x)) = 2xy − y + g′(x)

2xy − y + g′(x) = 2xy − y
g′(x) = 0ˆ

g′(x) dx =

ˆ
0 dx

g(x) = C

Therefore, f(x, y) = x2y − xy + y + C is a function such that ∇f(x, y) = F. Now r(3) = 〈9, 1〉 and
r(0) = 〈0, 0〉. Then

ˆ
C
(2xy − y) dx+ (x2 − x+ 1) dy = f(r(3))− f(r(0)) = f(9, 1)− f(0, 0) = 73− 0 = 73

Quiz 30: Use Green’s Theorem to evaluate the line integral
˛
C
x2y2 dx+ x3y dy

where C is the triangle with vertices (0, 0), (1, 0), (1, 3), oriented counterclockwise.

Solution. Using Green’s Theorem,
˛
C
x2y2 dx+ x3y dy =

¨
R

∂

∂x
(x3y)− ∂

∂y
(x2y2) dA

=

¨
R
(3x2y − 2x2y) dA

=

ˆ 1

0

ˆ 3x

0
x2y dy dx

=

ˆ 1

0

x2y2

2

∣∣∣∣y=3x

y=0

=
9

2

ˆ 1

0
x4 dx

=
9

2
· x

5

5

∣∣∣∣1
0

=
9

2
· 1
5

=
9

10



Quiz 31: Let F(x, y) = ex sin y i+(ex cos y+2y) j, and C be the line segment from (1, 0) to (0, π/2).
Evaluate ˆ

C
F · dr

Solution. Observe that
∂N

∂x

?
=
∂M

∂y

ex cos y = ex cos y

Therefore, F is a conservative vector field. Now
ˆ
(ex cos y + 2y) dy = ex sin y + y2 + g(x)

∂

∂x
(ex sin y + y2 + g(x)) = ex sin y + g′(x)

ex sin y + g′(x) = ex sin y

g′(x) = 0ˆ
g′(x) dx =

ˆ
0 dx

g(x) = C

Therefore, f(x, y) = ex sin y + y2 + C is a function such that ∇f(x, y) = F. Then
ˆ
C
F · dr =

ˆ
C
∇f(x, y) · dr

= f(0, π/2)− f(1, 0)

=

(
1 +

π2

4
+ C

)
− C

= 1 +
π2

4



Quiz 32: Parametrize the part of the cylinder x2 + z2 = 4 between y = −1 and y = 3, and find N
for this surface.

Solution.
X(s, t) = 〈2 cos t, s, 2 sin t〉; −1 ≤ s ≤ 3, 0 ≤ t ≤ 2π

Ts(s, t) = 〈0, 1, 0〉
Tt(s, t) = 〈−2 sin t, 0, 2 cos t〉
N(s, t) = Ts(s, t)×Tt(s, t)

=

∣∣∣∣∣∣
i j k
0 1 0

−2 sin t 0 2 cos t

∣∣∣∣∣∣
= 〈2 cos t, 0, 2 sin t〉

Quiz 33: Let S be the surface with bottom z = 0, top z = 4, and sides x2 + y2 = 9, oriented
outward normals. Evaluate ¨

S
z dS

Solution. We parametrize the top, bottom, and sides of the cylinder.

Xtop(s, t) = 〈s cos t, s sin t, 4〉; 0 ≤ s ≤ 3, 0 ≤ t ≤ 2π

Xbottom(s, t) = 〈s cos t, s sin t, 0〉; 0 ≤ s ≤ 3, 0 ≤ t ≤ 2π

Xsides(s, t) = 〈3 cos t, 3 sin t, s〉; 0 ≤ s ≤ 4, 0 ≤ t ≤ 2π

Ntop(s, t) = 〈0, 0, s〉
Nbottom(s, t) = 〈0, 0,−s〉

Nside(s, t) = 〈3 cos t, 3 sin t〉
‖Ntop(s, t)‖ = s

‖Nbottom(s, t)‖ = s

‖Nside(s, t)‖ = 3

Then we have ¨
S
z dS =

¨
top
z dS +

¨
bottom

z dS +

¨
side

z dS

=

ˆ 2π

0

ˆ 3

0
4s ds dt+

ˆ 2π

0

ˆ 3

0
0 ds dt+

ˆ 2π

0

ˆ 4

0
3s ds st

= 36π + 0 + 48π

= 84π



Quiz 34: Let F(x, y, z) = 〈2x, 2y, z2〉, and define S to be the portion of the cone x2 + y2 = z2

between the planes z = −2 and z = 1, oriented outwards. Find the value of the following:
¨
S
F · dS

Solution. We can parametrize the surface by X(s, t) = 〈s cos t, s sin t, s〉, where −2 ≤ s ≤ 1,
0 ≤ t ≤ 2π. Then we have

Ts = 〈cos t, sin t, 1〉
Tt = 〈−s sin t, s cos t, 0〉
N = Ts ×Tt

=

∣∣∣∣∣∣
i j k

cos t sin t 1
−s sin t s cos t 0

∣∣∣∣∣∣
= 〈−s cos t,−s sin t, s〉

Note that this N is not the desired one. We want an upward normal but this points downward
as it points upward when z = s > 0 and downward when z = s < 0. Therefore, we use −N =
〈s cos t, s sin t,−s〉. Then

¨
S
F · dS =

ˆ 2π

0

ˆ 1

−2
〈2s cos t, 2s sin t, s2〉 · 〈s cos t, s sin t,−s〉 ds dt

=

ˆ 2π

0

ˆ 1

−2
(2s2 sin2 t+ 2s2 cos2 t− s3) ds dt

=

ˆ 2π

0

ˆ 1

−2
(2s2 − s3) ds dt

=

(ˆ 2π

0
dt

)(ˆ 1

−2
(2s2 − s3) ds

)
= 2π ·

(
2s3

3
− s4

4

) ∣∣∣∣1
−2

= 2π

[(
2

3
− 1

4

)
−
(
−16

3
− 4

)]
= 2π · 8− 3 + 64 + 48

12

= 2π · 117
12

=
39π

2



Quiz 35: Let S be the surface given by the four sides and the bottom of the cube with vertices
(±1,±1,±1). Orient S with outward-pointing normals. Let F(x, y, z) = x2yz3 i+x2y j+xex sin yz k.
Compute ¨

S
∇× F · dS

Solution. Stoke’s Theorem implies
¨
S
∇× F · dS =

˛
∂S

F · ds =
¨
S′
∇× F · dS′

where S̃ is the top face (z = 1) of the cube, oriented with downward normal − k.

∇× F = 〈xzex cos yz, 3x2yz − (1 + x)ex sin yz, 2xy − x2z3〉
S̃(s, t) = (s, t, 1); 0 ≤ s, t,≤ 1

N(s, t) = − k¨
S̃
∇× F · dS̃ =

ˆ 1

−1

ˆ 1

−1
〈ses cos t, 3s2t− (1 + s)es sin t, 2st− s2〉 · 〈0, 0,−1〉 ds dt

= −
ˆ 1

−1

ˆ 1

−1
(2st− s2) ds dt

= −
ˆ 1

−1

(
s2t− s3

3

) ∣∣∣∣s=1

s=−1
dt

= −
ˆ 1

−1

[(
t− 1

3

)
−
(
t− −1

3

)]
dt

= −
ˆ 1

−1

−2
3
dt

=
2

3

ˆ 1

−1
dt

=
2

3
· 2

=
4

3


