Quiz 1: Let $\mathbf{u}=\langle\sqrt{3}, 1\rangle$ and $\mathbf{v}=\langle-\sqrt{3}, 2\rangle$
(a) Find $2 \mathbf{u}-\mathbf{v}$.

$$
2 \mathbf{u}-\mathbf{v}=2\langle\sqrt{3}, 1\rangle-\langle-\sqrt{3}, 2\rangle=\langle 2 \sqrt{3}, 2\rangle+\langle\sqrt{3},-2\rangle=\langle 3 \sqrt{3}, 0\rangle
$$

(b) Find $\|\mathbf{u}\|$.

$$
\|\mathbf{u}\|=\|\langle\sqrt{3}, 1\rangle\|=\sqrt{\sqrt{3}^{2}+1^{2}}=\sqrt{3+1}=\sqrt{4}=2
$$

(c) Is \mathbf{u} parallel to \mathbf{v} ?

No, if \mathbf{u} were parallel to \mathbf{v}, then there would be a c so that $\mathbf{v}=c \mathbf{u}$. But $c \mathbf{u}=\langle c \sqrt{3}, c\rangle$. Comparing the second component, we would have $c=2$. But then $c \mathbf{u}=2\langle\mathbf{u}=\langle 2 \sqrt{3}, 2\rangle \neq \mathbf{v}$.
(d) Find a unit vector parallel to \mathbf{u}.

We know that for any nonzero vector $\mathbf{a}, \frac{\mathbf{a}}{\|\mathbf{a}\|}$ is always parallel to \mathbf{a}. Then the following vector is parallel to \mathbf{u} :

$$
\frac{\mathbf{u}}{\|\mathbf{u}\|}=\frac{\langle\sqrt{3}, 1\rangle}{2}=\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle
$$

Of course, $-\frac{\mathbf{u}}{\|\mathbf{u}\|}=\left\langle-\frac{\sqrt{3}}{2},-\frac{1}{2}\right\rangle$ is also a unit vector parallel to \mathbf{u}.
(e) What is the angle \mathbf{u} makes with the $+y$-direction?

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{opp}}{\mathrm{adj}} \\
\tan \theta & =\frac{\sqrt{3}}{1} \\
\theta & =\arctan (\sqrt{3}) \\
\theta & =\frac{\pi}{3}
\end{aligned}
$$

Quiz 2: Let $\mathbf{u}=\langle 1,-2,1\rangle$ and $\mathbf{v}=\langle 1,-1,3\rangle$.
(a) Find any nonzero vector perpendicular to \mathbf{u}.

Any nonzero vector $\mathbf{a}=\langle x, y, z\rangle$ with $\mathbf{u} \cdot \mathbf{a}=0$ is perpendicular to \mathbf{u}. But then $0=\mathbf{u} \cdot \mathbf{a}=x-2 y+z$.
Any choice of x, y, z that make this valid works. For instance, $\langle 1,0,-1\rangle,\langle-1,0,1\rangle,\langle 2,1,0\rangle,\langle 0,1,2\rangle,\langle 4,1,2\rangle$, etc.
(b) Is \mathbf{u} perpendicular to \mathbf{v} ?
$\mathbf{u} \cdot \mathbf{v}=\langle 1,-2,1\rangle \cdot\langle 1,-1,3\rangle=1(1)+(-2)(-1)+1(3)=1+2+3=6 \neq 0$. Therefore, \mathbf{u} and \mathbf{v} are not perpendicular.
(c) Find the angle between \mathbf{u} and \mathbf{v}.

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \\
6 & =\sqrt{6} \cdot \sqrt{11} \cdot \cos \theta \\
\cos \theta & =\frac{6}{\sqrt{6} \sqrt{11}} \\
\cos \theta & =\sqrt{\frac{6}{11}} \\
\theta & =\cos ^{-1}\left(\sqrt{\frac{6}{11}}\right) \approx 42.392^{\circ}
\end{aligned}
$$

(d) Find $\operatorname{proj}_{\mathrm{v}} \mathrm{u}$.

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{6}{11}\langle 1,-1,3\rangle=\left\langle\frac{6}{11},-\frac{6}{11}, \frac{18}{11}\right\rangle
$$

Quiz 3: Let $\mathbf{u}=2 \mathbf{i}+\mathbf{k}$ and $\mathbf{v}=\mathbf{i}-3 \mathbf{j}+\mathbf{k}$.
(a) Find a unit vector perpendicular to both \mathbf{u} and \mathbf{v}.
(b) Find the area of the triangle that can be formed using \mathbf{u}, \mathbf{v}, and $\mathbf{u}-\mathbf{v}$.

Solution.
(a) The cross product of vectors results in a vector perpendicular to them both:

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 0 & 1 \\
1 & -3 & 1
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
0 & 1 \\
-3 & 1
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
2 & 0 \\
1 & -3
\end{array}\right| \\
& =\mathbf{i}(0(1)-(-3) 1)-\mathbf{j}(2(1)-1(1))+\mathbf{k}(2(-3)-1(0)) \\
& =\mathbf{i}(0+3)-\mathbf{j}(2-1)+\mathbf{k}(-6-0) \\
& =3 \mathbf{i}-\mathbf{j}-6 \mathbf{k}=\langle 3,-1,-6\rangle
\end{aligned}
$$

But then we need to make this into a unit vector. The length of $\mathbf{u} \times \mathbf{v}$ is $\|\mathbf{u} \times \mathbf{v}\|=\|\langle 3,-1,-6\rangle\|=$ $\sqrt{3^{2}+(-1)^{2}+(-6)^{2}}=\sqrt{9+1+36}=\sqrt{46}$. Then

$$
\frac{\mathbf{u} \times \mathbf{v}}{\|\mathbf{u} \times \mathbf{v}\|}=\frac{\langle 3,-1,-6\rangle}{\sqrt{46}}=\left\langle\frac{3}{\sqrt{46}},-\frac{1}{\sqrt{46}},-\frac{6}{\sqrt{46}}\right\rangle
$$

is a unit vector perpendicular to both \mathbf{u} and \mathbf{v}. Furthermore, $\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})$ so that $\mathbf{v} \times \mathbf{u}$ points in the 'opposite' direction of $\mathbf{u} \times \mathbf{v}$. Therefore,

$$
\frac{\mathbf{v} \times \mathbf{u}}{\|\mathbf{v} \times \mathbf{u}\|}=\frac{\langle-3,1,6\rangle}{\sqrt{46}}=\left\langle\frac{-3}{\sqrt{46}}, \frac{1}{\sqrt{46}}, \frac{6}{\sqrt{46}}\right\rangle
$$

is also a unit vector perpendicular to both \mathbf{u} and \mathbf{v}.
(b) The area of the triangle 'spanned' by \mathbf{u} and \mathbf{v} is half the area of the parallelogram spanned by \mathbf{u} and \mathbf{v}-which is $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{v} \times \mathbf{u}\|$. Therefore, the area is

$$
A=\frac{\|\mathbf{u} \times \mathbf{v}\|}{2}=\frac{\sqrt{46}}{2}=\sqrt{\frac{23}{2}}
$$

Quiz 4: Find the vector, parametric, and symmetric forms of the lines through the point $(6,-1,4)$ and parallel to the line $x(t)=t-1, y(t)=2 t+6, z(t)=4-3 t$.

Solution. The line must contain $(6,-1,4)$, and because the line must be parallel to the given line, the slope vector must be $\langle 1,2,-3\rangle$. Then the vector form of the line is $\ell(t)=\langle 1,2,-3\rangle t+\langle 6,-1,4\rangle=$ $\langle t+6,2 t-1,4-3 t\rangle$. Then immediately gives the parametric form as

$$
\left\{\begin{array}{l}
x=t+6 \\
y=2 t-1 \\
z=4-3 t
\end{array}\right.
$$

Solving for t in each equation gives the symmetric form:

$$
\frac{x-6}{1}=\frac{y+1}{2}=\frac{z-4}{-3}
$$

Quiz 5: Find the equation of the plane through $(1,-1,1),(1,0,1)$, and $(3,4,2)$.
Solution. We form vectors $\mathbf{u}=(1,-1,1)-(1,0,1)=\langle 0,-1,0\rangle$ and $\mathbf{v}=(3,4,2)-(1,0,1)=\langle 2,4,1\rangle$. These vectors lie in the plane. Therefore, a vector perpendicular to the plane is

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & -1 & 0 \\
2 & 4 & 1
\end{array}\right| \\
& =\mathbf{i}(1(-1)-4(0))-\mathbf{j}(0(1)-2(0))+\mathbf{k}(0(4)-2(-1)) \\
& =-\mathbf{i}-0 \mathbf{j}+2 \mathbf{k} \\
& =\langle-1,0,2\rangle
\end{aligned}
$$

The plane contains the point $(1,0,1)$. Therefore, the equation for the plane is

$$
\begin{aligned}
\langle-1,0,2\rangle \cdot\langle x-1, y-0, z-1\rangle & =0 \\
-1(x-1)+0(y-0)+2(z-1) & =0 \\
-x+1+2 z-2 & =0 \\
-x+2 z & =1
\end{aligned}
$$

Quiz 6: Identify the following surfaces in \mathbb{R}^{3} :
(a) \qquad : $y=2 x-z$
(b) \qquad $: x^{2}+y^{2}=\frac{z^{2}}{2}+1$
(c) \qquad $: \frac{x^{2}}{2}-3 y^{2}-z^{2}=0$
(d) \qquad : $z=y^{2}+1$
(e) \qquad : $2 x^{2}+2 y^{2}=3-2 z^{2}$
(f) \qquad $: y=\frac{x^{2}}{7}+z^{2}$
(g) \qquad : $2 x^{2}+3 y^{2}+4 z^{2}=5$
(h) \qquad : $y=z^{2}-x^{2}$
(i) \qquad : $y^{2}-x^{2}=z^{2}+4$
(j) \qquad $: x^{2}+y^{2}=1$

Quiz 7: Find parametrizations for the following geometric objects:
(a) the directed line segment from $(1,0,1)$ to $(-1,2,4)$.
(b) the circle with center $(-2,1)$ and radius 3 , oriented counterclockwise.
(c) the portion of $y=x^{2}+1$ from $(0,1)$ to $(2,5)$.
(d) the curve resulting from intersecting $z=y^{2}$ and $x=e^{y}-\cos z$.

Solution.

(a) $\mathbf{m}=(-1,2,4)-(1,0,1)=\langle-2,2,3\rangle$. Then the line segment can be parametrized by

$$
\ell(t)=\langle-2,2,3\rangle t+\langle 1,0,1\rangle=\langle 1-2 t, 2 t, 3 t+1\rangle ; 0 \leq t \leq 1
$$

(b)

$$
\mathbf{x}(t)=\langle 3 \cos t-2,3 \sin t+1\rangle ; \quad 0 \leq t \leq 2 \pi
$$

(c) Every point on the curve is of the form (x, y), but $y=x^{2}+1$, so every point is of the form $(x, y)=\left(x, x^{2}+1\right)$. We go from $x=0$ to $x=2$. Therefore, the curve can be parametrized by

$$
\mathbf{r}(t)=\left\langle t, t^{2}+1\right\rangle ; \quad 0 \leq t \leq 2
$$

(d) Every point on the curve is of the form (x, y, z). We know that $z=y^{2}$, so that we have $(x, y, z)=\left(x, y, y^{2}\right)$. Now $x=e^{y}-\cos x$ and $z=y^{2}$, so that we have $(x, y, z)=\left(x, y, y^{2}\right)=$ $\left(e^{y}-\cos z, y, y^{2}\right)=\left(e^{y}-\cos \left(y^{2}\right), y, y^{2}\right)$. Therefore, we can parametrize the curve as

$$
\mathbf{x}(t)=\left\langle e^{t}-\cos \left(t^{2}\right), t, t^{2}\right\rangle ; \quad t \in \mathbf{r}
$$

Quiz 8: Find the length of the curve $\mathbf{x}(t)=\left\langle 2 t, \frac{4}{3} t^{3 / 2}, \frac{1}{2} t^{2}\right\rangle, 0 \leq t \leq 2$.
Solution.

$$
\begin{aligned}
\mathbf{x}(t) & =\left\langle 2 t, \frac{4}{3} t^{3 / 2}, \frac{1}{2} t^{2}\right\rangle \\
\mathbf{x}^{\prime}(t) & =\left\langle 2,2 t^{1 / 2}, t\right\rangle \\
\left\|\mathbf{x}^{\prime}(t)\right\| & =\sqrt{2^{2}+\left(2 t^{1 / 2}\right)^{2}+t^{2}}=\sqrt{4+4 t+t^{2}}=\sqrt{(t+2)^{2}}=t+2 \\
L & =\int_{a}^{b}\left\|\mathbf{x}^{\prime}(t)\right\| d t=\int_{0}^{2}(t+2) d t=\frac{t^{2}}{2}+\left.2 t\right|_{0} ^{2}=\left(\frac{4}{2}+2(2)\right)-0=6
\end{aligned}
$$

Quiz 9: Show that the following limit does not exist by considering paths along the x-axis, y-axis, $y=x$, and the curve $x=y^{2}$. Would the curve $x=1$ also work as one of the curve to show that the limit does not exist?

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{\left(x^{2}+y^{4}\right)^{3}}
$$

Solution.

Along x-axis, $y=0: \lim _{(x, 0) \rightarrow(0,0)} \frac{x^{4} \cdot 0}{\left(x^{2}+0\right)^{3}}=\lim _{x \rightarrow 0} 0=0$
Along y-axis, $x=0: \lim _{(0, y) \rightarrow(0,0)} \frac{0 \cdot y^{4}}{\left(0+y^{4}\right)^{3}}=\lim _{y \rightarrow 0} 0=0$
Along $y=m x: \lim _{(x, x) \rightarrow(0,0)} \frac{x^{4} \cdot x^{4}}{\left(x^{2}+x^{4}\right)^{3}}=\lim _{x \rightarrow 0} \frac{x^{8}}{\left(x^{2}\left(1+x^{2}\right)\right)^{3}}=\lim _{x \rightarrow 0} \frac{x^{8}}{x^{6}\left(1+x^{2}\right)^{3}}=\lim _{x \rightarrow 0} \frac{x^{2}}{\left(1+x^{2}\right)^{3}}=0$
Along $x=y^{2}: \lim _{\left(y^{2}, y\right) \rightarrow(0,0)} \frac{\left(y^{2}\right)^{4} y^{4}}{\left(\left(y^{2}\right)^{2}+y^{4}\right)^{3}}=\lim _{y \rightarrow 0} \frac{y^{8} \cdot y^{4}}{\left(y^{4}+y^{4}\right)^{3}}=\lim _{y \rightarrow 0} \frac{y^{12}}{8 y^{12}}=\lim _{y \rightarrow 0} \frac{1}{8}=\frac{1}{8}$
Because the limit along the lines $y=m x$ and $x=y^{2}$ do not agree, the limit does not exist. Note that $x=1$ would not be a possible curve because $(x, y) \rightarrow(0,0)$, which is not possible if we fix $x=1$!

Quiz 10: Define $f(x, y)=\frac{y e^{x y}}{\ln x}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Solution.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{y^{2} e^{x y} \ln x-\frac{y}{x} e^{x y}}{(\ln x)^{2}} \\
& \frac{\partial f}{\partial y}=\frac{e^{x y}+x y e^{x y}}{\ln x}
\end{aligned}
$$

Quiz 11: Find the tangent plane to the surface $z=f(x, y)$ at $(x, y)=(1,-2)$, where $f(x, y)=$ $x^{2} \cos (y+2)+\frac{y}{x}$. Use this plane to approximate $f(1.1,-2.2)$.

Solution.

$$
\begin{aligned}
f(1,-2) & =-1 \\
\frac{\partial f}{\partial x} & =2 x \cos (y+2)-\left.\frac{y}{x^{2}}\right|_{(x, y)=(1,-2)}=4 \\
\frac{\partial f}{\partial y} & =-x^{2} \sin (y+2)+\left.\frac{1}{x}\right|_{(x, y)=(1,-2)}=1
\end{aligned}
$$

Then the tangent plane is

$$
\begin{aligned}
z-z_{0} & =f_{x}(1,-2)(x-1)+f_{y}(1,-2)(y-(-2)) \\
z-(-1) & =4(x-1)+1(y+2) \\
z+1 & =4(x-1)+1(y+2) \\
z & =4(x-1)+1(y+2)-1
\end{aligned}
$$

Equivalently, the tangent plane is $z=4 x+y-3$ or $4 x+y-z=3$. Then for points 'near' $(x, y, z)=(1,-2,-1)$, we know that $z \approx 4(x-1)+1(y+2)-1$. Then

$$
\begin{aligned}
f(1,-2) & =z \approx 4(x-1)+1(y+2)-\left.1\right|_{x=1.1, y=-2.2} \\
& =4(1.1-1)+1(-2.2+2)-1 \\
& =4(0.1)-0.2-1 \\
& =0.4-0.2-1 \\
& =-0.8
\end{aligned}
$$

Therefore, $f(1.1,-2.2) \approx-0.8$. Note that $f(1.1,-2.2)=-0.814119$-meaning we have a 1.7% error!

Quiz 12: Let $w(x, y)=2^{x} \arctan y, x(s)=e^{s}$, and $y(s, t)=\tan (s t)$. Use the Chain Rule to find $\frac{\partial w}{\partial t}$ in terms of x, y, s, t.

Solution.

$$
\begin{aligned}
\frac{\partial w}{\partial t} & =\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t} \\
& =2^{x} \ln 2 \arctan y \cdot 0+\frac{2^{x}}{1+y^{2}} \cdot s \sec ^{2}(s t) \\
& =\frac{s 2^{x} \sec ^{2}(s t)}{1+y^{2}}
\end{aligned}
$$

You may also use the 'chart' to help see what partials you will need (highlighted in red).

From this, we see that

$$
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}=\frac{2^{x}}{1+y^{2}} \cdot s \sec ^{2}(s t)=\frac{s 2^{x} \sec ^{2}(s t)}{1+y^{2}}
$$

Quiz 13: Let $f(x, y)=\frac{x}{x+3 y}$, and define $\mathbf{u}=\langle-3,4\rangle$.
(a) Find $D_{\mathbf{u}} f(-2,1)$.
(b) Find the direction of maximum increase for $f(x, y)$ at the point $(-2,1)$.
(c) Find the direction of maximum decrease for $f(x, y)$ at the point $(-2,1)$.
(d) Approximately what would be the change in the value for $f(x, y)$ if you traveled a 'distance' of 0.5 in the direction of \mathbf{u} ?

Solution.

(a)

$$
\begin{aligned}
\nabla f(x, y) & =\left.\left\langle\frac{3 y}{(x+3 y)^{2}},-\frac{3 x}{(x+3 y)^{2}}\right\rangle\right|_{(x, y)=(-2,1)}=\langle 3,6\rangle \\
\|\mathbf{u}\| & =\sqrt{(-3)^{2}+4^{2}}=\sqrt{9+16}=5 \\
D_{\mathbf{u}} f(-2,1) & =\langle 3,6\rangle \cdot \frac{\langle-3,4\rangle}{5}=\frac{1}{5} \cdot(3(-3)+6(4))=\frac{1}{5} \cdot 15=3
\end{aligned}
$$

(b) The direction of maximum increase at $(-2,1)$ is the gradient at this point, i.e. $\langle 3,6\rangle$. Equivalently, you could use the direction $\langle 1,2\rangle$.
(c) The direction of maximum increase at $(-2,1)$ is the "opposite" direction from the gradient at this point, i.e. $\langle-3,-6\rangle$. Equivalently, you could use the direction $\langle-1,-2\rangle$.
(d) At $(-2,1)$, the rate of change in the direction of \mathbf{u} is 3 because $D_{\mathbf{u}} f(-2,1)=3$. If we travel a distance of $0.5=\frac{1}{2}$, we should see a change of approximately $3 \cdot 1 / 2=3 / 2=1.50$, i.e. an increase of 1.50 .

Quiz 14: Find and classify the extrema of $3 x^{2}+2 y^{2}-6 x-4 y+16$.
Solution. Let $f(x, y)=3 x^{2}+2 y^{2}-6 x-4 y+16$. We have

$$
\begin{array}{lll}
f_{x}=6 x-6=6(x-1) & f_{x x}=6 & f_{x y}=0 \\
f_{y}=4 y-4=4(y-1) & f_{y y}=4 & f_{y x}=0
\end{array}
$$

Setting $f_{x}=0$ and $f_{y}=0$, we find solution $(x, y)=(1,1)$. To classify the extrema, we use the Hessian

$$
H f(1,1)=\left[\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]=\left[\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right]
$$

This gives sequence of principal minors $d_{1}=6>0$ and $d_{2}=\left|\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right|=6(4)-0(0)=24>0$. Therefore, $(x, y)=(1,1)$ is a local minimum for $f(x, y)$.

Quiz 15: Find and classify the critical points of $f(x, y, z)=x^{2}-x y+z^{2}-2 x z+6 z$.
Solution. We have

$$
\begin{array}{rlrl}
f_{x} & =2 x-y-2 z & f_{x y}=-1 \\
f_{y} & =-x & f_{y x}=-1 \\
f_{z} & =2 z-2 x & f_{x z}=-2 \\
f_{x x} & =2 & & f_{z x}=-2 \\
f_{y y}=0 & f_{y z}=0 \\
f_{z z}=2 & & f_{z y}=0
\end{array}
$$

We set $f_{x}=0, f_{y}=0$, and $f_{z}=0$. From $f_{y}=0$, we find that $x=0$. Using this in $f_{z}=0$, we find that $z=-3$. But then using both these in $f_{x}=0$, we find that $y=6$. Therefore, the only critical value is $(x, y, z)=(0,6,-3)$. To classify this, we consider the Hessian,

$$
H f(x, y, z)=\left[\begin{array}{lll}
f_{x x} & f_{x y} & f_{x z} \\
f_{y x} & f_{y y} & f_{y z} \\
f_{z x} & f_{z y} & f_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
2 & -1 & -2 \\
-1 & 0 & 0 \\
-2 & 0 & 2
\end{array}\right]
$$

The sequence of principal minors is then

$$
\begin{aligned}
& d_{1}=2>0 \\
& d_{2}=\left|\begin{array}{cc}
2 & -1 \\
-1 & 0
\end{array}\right|=2(0)-(-1)(-1)=0-1=-1<0 \\
& d_{3}=\left|\begin{array}{ccc}
2 & -1 & -2 \\
-1 & 0 & 0 \\
-2 & 0 & 2
\end{array}\right|=(-1)(-1)\left|\begin{array}{cc}
-1 & -2 \\
0 & 2
\end{array}\right|+0-0=-2-0(-2)=-2<0
\end{aligned}
$$

Therefore, $(0,6,-3)$ is a saddle point for $f(x, y, z)$.

Quiz 16: Find the maximum and minimum values of $f(x, y, z)=x+y-z$ if (x, y, z) must lie on the sphere $x^{2}+y^{2}+z^{2}=81$.

Solution. Letting $g(x, y, z)=x^{2}+y^{2}+z^{2}-81$. We have constraint $g(x, y, z)=0$. Then $\nabla f(x, y, z)=$ $\lambda \nabla g(x, y, z)$, along with the constraint $x^{2}+y^{2}+z^{2}=81$ gives equations

$$
\begin{aligned}
1 & =2 \lambda x \\
1 & =2 \lambda y \\
-1 & =2 \lambda z \\
x^{2}+y^{2}+z^{2} & =81
\end{aligned}
$$

Comparing the first two equations, we have $2 \lambda x=2 \lambda y$ so that $x=y$. But observe $2 \lambda z=-1=$ $-(1)=-(2 \lambda x)=-2 \lambda x$ so that $z=-x$. Then we have

$$
81=x^{2}+y^{2}+z^{2}=x^{2}+x^{2}+(-x)^{2}=3 x^{2}
$$

From this we find that $x= \pm 3 \sqrt{3}$. This gives extremum at $(3 \sqrt{3}, 3 \sqrt{3},-3 \sqrt{3})$ and $(-3 \sqrt{3},-3 \sqrt{3}, 3 \sqrt{3})$. Now

$$
\begin{aligned}
f(3 \sqrt{3}, 3 \sqrt{3},-3 \sqrt{3}) & =3 \sqrt{3}+3 \sqrt{3}-(-3 \sqrt{3})=9 \sqrt{3} \\
f(-3 \sqrt{3},-3 \sqrt{3}, 3 \sqrt{3}) & =-3 \sqrt{3}-3 \sqrt{3}-3 \sqrt{3}=-9 \sqrt{3}
\end{aligned}
$$

Therefore, the maximum value of $f(x, y, z)$ on the sphere $x^{2}+y^{2}+z^{2}=81$ is $9 \sqrt{3}$ and the minimum value is $-9 \sqrt{3}$.

Quiz 17: Sketch the region of integration for the following integral. In addition, evaluate the integral.

$$
\int_{1}^{\ln 6} \int_{e^{x}}^{6} \frac{1}{y^{2}} d y d x
$$

Solution.

$$
\begin{aligned}
\int_{1}^{\ln 6} \int_{e^{x}}^{6} \frac{1}{y^{2}} d y d x & =\int_{1}^{\ln 6}-\left.\frac{1}{y}\right|_{y=e^{x}} ^{y=6} d x \\
& =\int_{1}^{\ln 6}\left(-\frac{1}{6}-\frac{-1}{e^{x}}\right) d x \\
& =\int_{1}^{\ln 6}\left(-\frac{1}{6}+e^{-x}\right) d x \\
& =-\frac{x}{6}-\left.e^{-x}\right|_{x=1} ^{x=\ln 6}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(-\frac{\ln 6}{6}-e^{-\ln 6}\right)-\left(-\frac{1}{6}+e^{-1}\right) \\
& =-\frac{\ln 6}{6}-\frac{1}{6}+\frac{1}{6}-\frac{1}{e} \\
& =\frac{1}{e}-\frac{\ln 6}{6}
\end{aligned}
$$

Quiz 18: Let R be the region bounded by $x=y^{2}, y=z, x=y$, and $z=0$. Evaluate the following integral:

$$
\iiint_{R}(2 x-y) d V
$$

Solution.

$$
\begin{aligned}
\iiint_{R}(2 x-y) d V & =\int_{0}^{1} \int_{y^{2}}^{y} \int_{0}^{y}(2 x-y) d z d x d y \\
& =\left.\int_{0}^{1} \int_{y^{2}}^{y} z(2 x-y)\right|_{z=0} ^{z=y} d x d y \\
& =\int_{0}^{1} \int_{y^{2}}^{y}[y(2 x-y)-0] d x d y \\
& =\int_{0}^{1} \int_{y^{2}}^{y}\left(2 x y-y^{2}\right) d x d y \\
& =\left.\int_{0}^{1}\left(x^{2} y-x y^{2}\right)\right|_{x=y^{2}} ^{x=y} d y \\
& =\int_{0}^{1}\left[\left(y^{3}-y^{3}\right)-\left(y^{5}-y^{4}\right)\right] d y \\
& =\int_{0}^{1}\left(y^{4}-y^{5}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\left(\frac{y^{5}}{5}-\frac{y^{6}}{6}\right)\right|_{y=0} ^{y=1} \\
& =\left(\frac{1}{5}-\frac{1}{6}\right)-0 \\
& =\frac{6}{30}-\frac{5}{30} \\
& =\frac{1}{30}
\end{aligned}
$$

Quiz 19: Change the order of integration and evaluate the integral.

$$
\int_{0}^{1} \int_{y}^{1} x^{2} \sin x y d x d y
$$

Solution.

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{1} x^{2} \sin x y d x d y & =\int_{0}^{1} \int_{0}^{x} x^{2} \sin x y d y d x \\
& =\int_{0}^{1}-\left.x \cos x y\right|_{y=0} ^{y=x} d x \\
& =\int_{0}^{1}\left[-x \cos x^{2}-(-x \cos 0)\right] d x \\
& =\int_{0}^{1}\left(x-x \cos x^{2}\right) d x \\
& =\frac{x^{2}}{2}-\left.\frac{\sin x^{2}}{2}\right|_{x=0} ^{x=1} \\
& =\left(\frac{1-\sin 1}{2}\right)-(0-0) \\
& =\frac{1-\sin 1}{2}
\end{aligned}
$$

Quiz 20: Consider the following integral:

$$
\int_{0}^{2} \int_{x / 2}^{x / 2+1} x^{5}(2 y-x) e^{(2 y-x)^{2}} d y d x
$$

Set-up (but do not evaluate) an integral in terms of u, v, where $u=x$ and $v=2 y-x$.
Solution. We have $x=u$ so that $v=2 y-x=2 y-u$. But then $y=\frac{u+v}{2}$. Now we need to find the Jacobian of the transformation:

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
1 / 2 & 1 / 2
\end{array}\right)\right|=|1 / 2-0|=\frac{1}{2}
$$

Now we need find the bounds for the new integral:

$$
\begin{aligned}
x=0 & \Longleftrightarrow u=0 \\
x=2 & \Longleftrightarrow u=2 \\
y=x / 2 & \Longleftrightarrow 2 y=x \Longleftrightarrow 2 y-x=0 \Longleftrightarrow v=0 \\
y=x / 2+1 & \Longleftrightarrow 2 y=x+2 \Longleftrightarrow 2 y-x=2 \Longleftrightarrow v=2
\end{aligned}
$$

Clearly, the region of integration is a rectangle with $0 \leq u \leq 2,0 \leq v \leq 2$. Therefore,

$$
\int_{0}^{2} \int_{x / 2}^{x / 2+1} x^{5}(2 y-x) e^{(2 y-x)^{2}} d y d x=\int_{0}^{2} \int_{0}^{2} u^{5} v e^{v^{2}} \cdot \frac{1}{2} d u d v=\frac{1}{2} \int_{0}^{2} \int_{0}^{2} u^{5} v e^{v^{2}} d u d v=\frac{8}{3}\left(e^{4}-1\right)
$$

Quiz 21: Evaluate the following:

$$
\int_{0}^{\pi} \int_{0}^{3} \int_{0}^{x} \frac{d y d x d z}{\sqrt{x^{2}+y^{2}}}
$$

Solution. We make a change to cylindrical coordinates. We have $x=r \cos \theta, y=r \sin \theta, z=z$, and Jacobian r. Drawing the projection of our region to the plane, we have

Given θ, r varies from 0 to the distance where r 'hits' the vertical portion of the triangle. This gives another, smaller triangle with hypotenuse r and sides $3, y$. Then we know that $\cos \theta=\frac{3}{r}$. Then $r=3 \sec \theta$. The smallest angle choice is 0 and the largest is $\pi / 4$. Then we have

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{3} \int_{0}^{x} \frac{d y d x d z}{\sqrt{x^{2}+y^{2}}} & =\int_{0}^{\pi} \int_{0}^{\pi / 4} \int_{0}^{3 \sec \theta} \frac{1}{\sqrt{r^{2}}} \cdot r d r d \theta d z \\
& =\int_{0}^{\pi} \int_{0}^{\pi / 4} \int_{0}^{3 \sec \theta} d r d \theta d z \\
& =\int_{0}^{\pi} \int_{0}^{\pi / 4} 3 \sec \theta d \theta d z \\
& =\left.\int_{0}^{\pi} 3 \ln |\sec \theta+\tan \theta|\right|_{\theta=0} ^{\theta=\pi / 4} d z \\
& =\int_{0}^{\pi} 3 \ln |\sqrt{2}+1|-3 \ln |1+0| d z \\
& =3 \ln (1+\sqrt{2}) \int_{0}^{\pi} d z \\
& =3 \pi \ln (1+\sqrt{2})
\end{aligned}
$$

Quiz 22: Let R be the region bounded by the two sphere $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=5$. Evaluate the following

$$
\iiint_{R} \frac{d V}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

Solution. We use spherical coordinates: $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$, and Jacobian $\rho^{2} \sin \phi$. Then

$$
\begin{aligned}
\iiint_{R} \frac{d V}{\sqrt{x^{2}+y^{2}+z^{2}}} & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{\sqrt{5}} \frac{1}{\sqrt{\rho^{2}}} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{\sqrt{5}} \rho \sin \phi d \rho d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{\sqrt{5}} \frac{\rho^{2}}{2} \sin \phi\right|_{\rho=1} ^{\rho=5} d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\sin \phi}{2}(5-1) d \phi d \theta \\
& =2 \int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi d \phi d \theta \\
& =2 \int_{0}^{2 \pi}-\left.\cos \phi\right|_{\phi=0} ^{\phi=\pi} d \theta \\
& =2 \int_{0}^{2 \pi}-\cos (\pi)-(-\cos 0) d \theta \\
& =2 \int_{0}^{2 \pi}-(-1)+1 d \theta \\
& =2 \int_{0}^{2 \pi} 2 d \theta \\
& =8 \int_{0}^{2 \pi} d \theta \\
& =8 \pi
\end{aligned}
$$

Quiz 23: Find the center of mass of a lamina given by the region $\{(x, y): 0 \leq y \leq \sqrt{x}, 0 \leq x \leq 9\}$ with density varying as $x y$. [You may use an integration calculator for the integrals.]

Solution.

$$
\begin{aligned}
M & =\iint \rho(x, y) d A=\int_{0}^{9} \int_{0}^{\sqrt{x}}(x y) d y d x=\frac{243}{2} \\
M_{x} & =\iint y \rho(x, y) d A=\int_{0}^{9} \int_{0}^{\sqrt{x}}\left(x y^{2}\right) d y d x=\frac{1458}{7} \\
M_{y} & =\iint x \rho(x, y) d A=\int_{0}^{9} \int_{0}^{\sqrt{x}}\left(x^{2} y\right) d y d x=\frac{6561}{8}
\end{aligned}
$$

$$
\begin{gathered}
\bar{x}=\frac{M_{y}}{M}=\frac{6561 / 8}{243 / 2}=\frac{27}{4} \\
\bar{y}=\frac{M_{x}}{M}=\frac{1458 / 7}{243 / 2}=\frac{12}{7} \\
(\bar{x}, \bar{y})=(27 / 4,12 / 7) \approx(6.75,1.71)
\end{gathered}
$$

Quiz 24: Let R be the region under the plane $z=1+x+y$ and above the region lying in the $x y$-plane bounded by $y=\sqrt{x}, y=0$, and $x=1$. Evaluate the following:

$$
\iiint_{R} 3 x y d V
$$

Solution. Observe z varies from $z=0$ up to the plane $z=1+x+y$. In the plane, if we 'slice' in x, y varies from $y=0$ to $y=\sqrt{x}$. We can choose any x from $x=0$ to $x=1$. This gives the integral as

$$
\begin{aligned}
\iiint_{R} 3 x y d V & =\int_{0}^{1} \int_{0}^{\sqrt{x}} \int_{0}^{1+x+y} 3 x y d z d y d x \\
& =\left.\int_{0}^{1} \int_{0}^{\sqrt{x}} 3 x y z\right|_{z=0} ^{z=1+x+y} d y d x \\
& =\int_{0}^{1} \int_{0}^{\sqrt{x}} 3 x y((1+x+y)-0) d y d x \\
& =\int_{0}^{1} \int_{0}^{\sqrt{x}}\left(3 x y+3 x^{2} y+3 x y^{2}\right) d y d x \\
& =\left.\int_{0}^{1}\left(\frac{3 x y^{2}}{2}+\frac{3 x^{2} y^{2}}{2}+\frac{3 x y^{3}}{3}\right)\right|_{y=0} ^{y=\sqrt{x}} d x \\
& =\int_{0}^{1}\left(\frac{3 x^{2}}{2}+\frac{3 x^{3}}{2}+\frac{3 x^{5 / 2}}{3}\right)-0 d x \\
& =\frac{1}{6} \int_{0}^{1}\left(9 x^{2}+9 x^{3}+6 x^{5 / 2}\right) d x \\
= & \left.\frac{1}{6}\left(3 x^{3}+\frac{9 x^{4}}{4}+\frac{12 x^{7 / 2}}{7}\right)\right|_{x=0} ^{x=1} \\
= & \frac{1}{6}\left[\left(3+\frac{9}{4}+\frac{12}{7}\right)-0\right] \\
= & \frac{1}{6}\left(\frac{84+63+48}{28}\right) \\
= & \frac{1}{6} \cdot \frac{195}{28} \\
= & \frac{65}{56}
\end{aligned}
$$

Quiz 25: Sketch the vector field $\mathbf{F}(x, y)=-(x+y) \mathbf{i}+(x-y) \mathbf{j}$. On your vector plot, sketch a few streamlines.

Solution.

Quiz 26: Find the divergence and curl of the vector field $\mathbf{F}(x, y)=\left\langle x^{2} y, x \cos y\right\rangle$.

Solution.

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}\left(x^{2} y\right)+\frac{\partial}{\partial y}(x \cos y)=2 x y-x \sin y \\
\operatorname{curl} \mathbf{F} & =\nabla \times \mathbf{F} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y & x \cos y & 0
\end{array}\right| \\
& =\mathbf{i}\left(\frac{\partial}{\partial y}(0)-\frac{\partial}{\partial z}(x \cos y)\right)-\mathbf{j}\left(\frac{\partial}{\partial x}(0)-\frac{\partial}{\partial z}\left(x^{2} y\right)\right)+\mathbf{k}\left(\frac{\partial}{\partial x}(x \cos y)-\frac{\partial}{\partial y}\left(x^{2} y\right)\right) \\
& =0 \mathbf{i}-0 \mathbf{j}+\left(\cos y-x^{2}\right) \mathbf{k} \\
& =\left\langle 0,0, \cos y-x^{2}\right\rangle
\end{aligned}
$$

Quiz 27: Let C be the curve given by $\mathbf{r}(t)=t \mathbf{i}+(2-t) \mathbf{j}$ for $0 \leq t \leq 2$. Compute the following

$$
\int_{C} 3(x-y) d s
$$

Solution.

$$
\begin{aligned}
\mathbf{r}(t) & =\langle t, 2-t\rangle \\
\mathbf{r}^{\prime}(t) & =\langle 1,-1\rangle \\
\left|\mathbf{r}^{\prime}(t)\right| & =\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
x(t) & =t \\
y(t) & =2-t
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\int_{C} 3(x-y) d s & =\int_{0}^{2} 3(t-(2-t)) \cdot \sqrt{2} d t \\
& =3 \sqrt{2} \int_{0}^{2}(2 t-2) d t \\
& =\left.3 \sqrt{2} \cdot\left(t^{2}-2 t\right)\right|_{0} ^{2} \\
& =3 \sqrt{2} \cdot((4-4)-0) \\
& =0
\end{aligned}
$$

Quiz 28: Let C be the curve given by $y^{2}=x^{3}$ from $(1,-1)$ to $(1,1)$. Evaluate the following

$$
\int_{C} x^{2} y d x-x y d y
$$

Solution. We can parametrize this curve by $\mathbf{r}(t)=\left\langle t^{2}, t^{3}\right\rangle,-1 \leq t \leq 1$. Then $\mathbf{r}^{\prime}(t)=\left\langle 2 t, 3 t^{2}\right\rangle$. Therefore,

$$
\begin{aligned}
\int_{C} x^{2} y d x-x y d y & =\int_{-1}^{1}\left(\left(t^{2}\right)^{2} t^{3}\right) \cdot 2 t d t-\left(t^{2} \cdot t^{3}\right) \cdot 3 t^{2} d t \\
& =\int_{-1}^{1} 2 t^{8}-3 t^{7} d t \\
& =\left.\left(\frac{2 t^{9}}{9}-\frac{3 t^{8}}{8}\right)\right|_{-1} ^{1} \\
& =\left(\frac{2}{9}-\frac{3}{8}\right)-\left(-\frac{2}{9}-\frac{3}{8}\right) \\
& =\frac{2}{9}-\frac{3}{8}+\frac{2}{9}+\frac{3}{8} \\
& =\frac{4}{9}
\end{aligned}
$$

Quiz 29: Let C be the curve given by $\mathbf{r}(t)=\frac{t^{3} e^{t(3-t)}}{3} \mathbf{i}+\frac{10 \sin (\pi t / 6) \cos (2 \pi t)}{1+t^{2}} \mathbf{j}, 0 \leq t \leq 3$. Evaluate the following integral

$$
\int_{C}(2 x y-y) d x+\left(x^{2}-x+1\right) d y
$$

Solution. Observe that

$$
\begin{gathered}
\frac{\partial N}{\partial x} \stackrel{?}{=} \frac{\partial M}{\partial y} \\
2 x-1=2 x-1
\end{gathered}
$$

Therefore, the vector field $\mathbf{F}(x, y)=\left\langle 2 x y-y, x^{2}-x+1\right\rangle$ is conservative.

$$
\begin{aligned}
\int\left(x^{2}-x+1\right) d y & =x^{2} y-x y+y+g(x) \\
\frac{\partial}{\partial x}\left(x^{2} y-x y+y+g(x)\right) & =2 x y-y+g^{\prime}(x) \\
2 x y-y+g^{\prime}(x) & =2 x y-y \\
g^{\prime}(x) & =0 \\
\int g^{\prime}(x) d x & =\int 0 d x \\
g(x) & =C
\end{aligned}
$$

Therefore, $f(x, y)=x^{2} y-x y+y+C$ is a function such that $\nabla f(x, y)=\mathbf{F}$. Now $\mathbf{r}(3)=\langle 9,1\rangle$ and $\mathbf{r}(0)=\langle 0,0\rangle$. Then

$$
\int_{C}(2 x y-y) d x+\left(x^{2}-x+1\right) d y=f(\mathbf{r}(3))-f(\mathbf{r}(0))=f(9,1)-f(0,0)=73-0=73
$$

Quiz 30: Use Green's Theorem to evaluate the line integral

$$
\oint_{C} x^{2} y^{2} d x+x^{3} y d y
$$

where C is the triangle with vertices $(0,0),(1,0),(1,3)$, oriented counterclockwise.
Solution. Using Green's Theorem,

$$
\begin{aligned}
\oint_{C} x^{2} y^{2} d x+x^{3} y d y & =\iint_{R} \frac{\partial}{\partial x}\left(x^{3} y\right)-\frac{\partial}{\partial y}\left(x^{2} y^{2}\right) d A \\
& =\iint_{R}\left(3 x^{2} y-2 x^{2} y\right) d A \\
& =\int_{0}^{1} \int_{0}^{3 x} x^{2} y d y d x \\
& =\left.\int_{0}^{1} \frac{x^{2} y^{2}}{2}\right|_{y=0} ^{y=3 x} \\
& =\frac{9}{2} \int_{0}^{1} x^{4} d x \\
& =\left.\frac{9}{2} \cdot \frac{x^{5}}{5}\right|_{0} ^{1} \\
& =\frac{9}{2} \cdot \frac{1}{5} \\
& =\frac{9}{10}
\end{aligned}
$$

Quiz 31: Let $\mathbf{F}(x, y)=e^{x} \sin y \mathbf{i}+\left(e^{x} \cos y+2 y\right) \mathbf{j}$, and C be the line segment from $(1,0)$ to $(0, \pi / 2)$. Evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Solution. Observe that

$$
\begin{gathered}
\frac{\partial N}{\partial x} \stackrel{?}{=} \frac{\partial M}{\partial y} \\
e^{x} \cos y=e^{x} \cos y
\end{gathered}
$$

Therefore, \mathbf{F} is a conservative vector field. Now

$$
\begin{aligned}
\int\left(e^{x} \cos y+2 y\right) d y & =e^{x} \sin y+y^{2}+g(x) \\
\frac{\partial}{\partial x}\left(e^{x} \sin y+y^{2}+g(x)\right)=e^{x} \sin y+g^{\prime}(x) & \\
e^{x} \sin y+g^{\prime}(x) & =e^{x} \sin y \\
g^{\prime}(x) & =0 \\
\int g^{\prime}(x) d x & =\int 0 d x \\
g(x) & =C
\end{aligned}
$$

Therefore, $f(x, y)=e^{x} \sin y+y^{2}+C$ is a function such that $\nabla f(x, y)=\mathbf{F}$. Then

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C} \nabla f(x, y) \cdot d \mathbf{r} \\
& =f(0, \pi / 2)-f(1,0) \\
& =\left(1+\frac{\pi^{2}}{4}+C\right)-C \\
& =1+\frac{\pi^{2}}{4}
\end{aligned}
$$

Quiz 32: Parametrize the part of the cylinder $x^{2}+z^{2}=4$ between $y=-1$ and $y=3$, and find \mathbf{N} for this surface.

Solution.

$$
\begin{aligned}
\mathbf{X}(s, t) & =\langle 2 \cos t, s, 2 \sin t\rangle ;-1 \leq s \leq 3,0 \leq t \leq 2 \pi \\
\mathbf{T}_{s}(s, t) & =\langle 0,1,0\rangle \\
\mathbf{T}_{t}(s, t) & =\langle-2 \sin t, 0,2 \cos t\rangle \\
\mathbf{N}(s, t) & =\mathbf{T}_{s}(s, t) \times \mathbf{T}_{t}(s, t) \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
0 & 1 & 0 \\
-2 \sin t & 0 & 2 \cos t
\end{array}\right| \\
& =\langle 2 \cos t, 0,2 \sin t\rangle
\end{aligned}
$$

Quiz 33: Let S be the surface with bottom $z=0$, top $z=4$, and sides $x^{2}+y^{2}=9$, oriented outward normals. Evaluate

$$
\iint_{S} z d S
$$

Solution. We parametrize the top, bottom, and sides of the cylinder.

$$
\begin{aligned}
X_{\text {top }}(s, t) & =\langle s \cos t, s \sin t, 4\rangle ; 0 \leq s \leq 3,0 \leq t \leq 2 \pi \\
X_{\text {bottom }}(s, t) & =\langle s \cos t, s \sin t, 0\rangle ; 0 \leq s \leq 3,0 \leq t \leq 2 \pi \\
X_{\text {sides }}(s, t) & =\langle 3 \cos t, 3 \sin t, s\rangle ; 0 \leq s \leq 4,0 \leq t \leq 2 \pi \\
\mathbf{N}_{\text {top }}(s, t) & =\langle 0,0, s\rangle \\
\mathbf{N}_{\text {bottom }}(s, t) & =\langle 0,0,-s\rangle \\
\mathbf{N}_{\text {side }}(s, t) & =\langle 3 \cos t, 3 \sin t\rangle \\
\left\|\mathbf{N}_{\text {top }}(s, t)\right\| & =s \\
\left\|\mathbf{N}_{\text {bottom }}(s, t)\right\| & =s \\
\left\|\mathbf{N}_{\text {side }}(s, t)\right\| & =3
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\iint_{S} z d S & =\iint_{\text {top }} z d S+\iint_{\text {bottom }} z d S+\iint_{\text {side }} z d S \\
& =\int_{0}^{2 \pi} \int_{0}^{3} 4 s d s d t+\int_{0}^{2 \pi} \int_{0}^{3} 0 d s d t+\int_{0}^{2 \pi} \int_{0}^{4} 3 s d s s t \\
& =36 \pi+0+48 \pi \\
& =84 \pi
\end{aligned}
$$

Quiz 34: Let $\mathbf{F}(x, y, z)=\left\langle 2 x, 2 y, z^{2}\right\rangle$, and define S to be the portion of the cone $x^{2}+y^{2}=z^{2}$ between the planes $z=-2$ and $z=1$, oriented outwards. Find the value of the following:

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

Solution. We can parametrize the surface by $\mathbf{X}(s, t)=\langle s \cos t, s \sin t, s\rangle$, where $-2 \leq s \leq 1$, $0 \leq t \leq 2 \pi$. Then we have

$$
\begin{aligned}
\mathbf{T}_{s} & =\langle\cos t, \sin t, 1\rangle \\
\mathbf{T}_{t} & =\langle-s \sin t, s \cos t, 0\rangle \\
\mathbf{N} & =\mathbf{T}_{s} \times \mathbf{T}_{t} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos t & \sin t & 1 \\
-s \sin t & s \cos t & 0
\end{array}\right| \\
& =\langle-s \cos t,-s \sin t, s\rangle
\end{aligned}
$$

Note that this \mathbf{N} is not the desired one. We want an upward normal but this points downward as it points upward when $z=s>0$ and downward when $z=s<0$. Therefore, we use $-\mathbf{N}=$ $\langle s \cos t, s \sin t,-s\rangle$. Then

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{2 \pi} \int_{-2}^{1}\left\langle 2 s \cos t, 2 s \sin t, s^{2}\right\rangle \cdot\langle s \cos t, s \sin t,-s\rangle d s d t \\
& =\int_{0}^{2 \pi} \int_{-2}^{1}\left(2 s^{2} \sin ^{2} t+2 s^{2} \cos ^{2} t-s^{3}\right) d s d t \\
& =\int_{0}^{2 \pi} \int_{-2}^{1}\left(2 s^{2}-s^{3}\right) d s d t \\
& =\left(\int_{0}^{2 \pi} d t\right)\left(\int_{-2}^{1}\left(2 s^{2}-s^{3}\right) d s\right) \\
& =\left.2 \pi \cdot\left(\frac{2 s^{3}}{3}-\frac{s^{4}}{4}\right)\right|_{-2} ^{1} \\
& =2 \pi\left[\left(\frac{2}{3}-\frac{1}{4}\right)-\left(-\frac{16}{3}-4\right)\right] \\
& =2 \pi \cdot \frac{8-3+64+48}{12} \\
& =2 \pi \cdot \frac{117}{12} \\
& =\frac{39 \pi}{2}
\end{aligned}
$$

Quiz 35: Let S be the surface given by the four sides and the bottom of the cube with vertices $(\pm 1, \pm 1, \pm 1)$. Orient S with outward-pointing normals. Let $\mathbf{F}(x, y, z)=x^{2} y z^{3} \mathbf{i}+x^{2} y \mathbf{j}+x e^{x} \sin y z \mathbf{k}$. Compute

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}
$$

Solution. Stoke's Theorem implies

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}=\iint_{S^{\prime}} \nabla \times \mathbf{F} \cdot d \mathbf{S}^{\prime}
$$

where \tilde{S} is the top face ($z=1$) of the cube, oriented with downward normal $-\mathbf{k}$.

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left\langle x z e^{x} \cos y z, 3 x^{2} y z-(1+x) e^{x} \sin y z, 2 x y-x^{2} z^{3}\right\rangle \\
\tilde{\mathbf{S}}(s, t) & =(s, t, 1) ; 0 \leq s, t, \leq 1 \\
\mathbf{N}(s, t) & =-\mathbf{k} \\
\iint_{\tilde{S}} \nabla \times \mathbf{F} \cdot d \tilde{\mathbf{S}} & =\int_{-1}^{1} \int_{-1}^{1}\left\langle s e^{s} \cos t, 3 s^{2} t-(1+s) e^{s} \sin t, 2 s t-s^{2}\right\rangle \cdot\langle 0,0,-1\rangle d s d t \\
& =-\int_{-1}^{1} \int_{-1}^{1}\left(2 s t-s^{2}\right) d s d t \\
& =-\left.\int_{-1}^{1}\left(s^{2} t-\frac{s^{3}}{3}\right)\right|_{s=-1} ^{s=1} d t \\
& =-\int_{-1}^{1}\left[\left(t-\frac{1}{3}\right)-\left(t-\frac{-1}{3}\right)\right] d t \\
& =-\int_{-1}^{1} \frac{-2}{3} d t \\
& =\frac{2}{3} \int_{-1}^{1} d t \\
& =\frac{2}{3} \cdot 2 \\
& =\frac{4}{3}
\end{aligned}
$$

