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1. Determine the following limits. If the limit exists, compute its value. If the limit does
not exist, prove it.

(a) (3 points) lim
(x,y)→(1,2)

x− 2y

2x2 + 3y

lim
(x,y)→(1,2)

x− 2y

2x2 + 3y
=

1− 2(2)

2 + 3(2)
=

1− 4

2 + 6
= −3

8

(b) (4 points) lim
(x,y,z)→(2,−1,2)

x− z
x2 + xy − xz − yz

lim
(x,y,z)→(2,−1,2)

x− z
x2 + xy − xz − yz

= lim
(x,y,z)→(2,−1,2)

x− z
x(x+ y)− z(x+ y)

= lim
(x,y,z)→(2,−1,2)

x− z
(x− z)(x+ y)

= lim
(x,y,z)→(2,−1,2)

1

x+ y

=
1

2− 1

= 1
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(c) (4 points) lim
(x,y)→(0,0)

3xy

x2 + 2y2

Along y = 0: lim
(x,0)→(0,0)

0

x2
= 0

Along x = 0: lim
(0,y)→(0,0)

0

2y2
= 0

Along y = x: lim
(x,x)→(0,0)

3x2

x2 + 2x2
= lim

x→0

3x2

3x2
= 1

Therefore, the limit does not exist.

(d) (4 points) lim
(x,y)→(0,0)

y3 sinx

x4 + y2

We know that | sinx| ≤ 1 for all x. We also know that y2 ≤ x4 + y2, so that
1

y2
≥ 1

x4 + y2
. But then we have

∣∣∣∣y3 sinx

x4 + y2

∣∣∣∣ =

∣∣∣∣y3 · sinx · 1

x4 + y2

∣∣∣∣ ≤ ∣∣∣∣y3 · 1 · 1

y2

∣∣∣∣ = |y|

But lim
(x,y)→(0,0)

|y| = 0. Therefore by the Squeeze Theorem,

lim
(x,y)→(π

4
,0)

y3 sinx

x4 + y2
= 0
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2. Let f(x, y, z) :=
xexy + yx − z2

1− z
. Find the following:

(a) (4 points) fx =
exy + xyexy + yx ln y

1− z
=
exy(1 + xy) + yx ln y

1− z

(b) (4 points) fy =
x2exy + xyx−1

1− z

(c) (4 points) fz =
(1− z)(−2z)− (−1)(xexy + yx − z2)

(1− z)2
=
−2z + 2z2 + xexy + yx − z2

(1− z)2
=

xexy + yx + z2 − 2z

(1− z)2

(d) (4 points) fyz =
x2exy + xyx−1

(1− z)2
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3. (15 points) Define the following functions:

f(x, y) =
x2

y

x(m) = tan(lnm) + 3 m(s, t) = 3− t
√
s

y(n) = n2 − arctann− 1 n(s, t) = 2− tesin(t−2s)

Compute
∂f

∂t
when (s, t) = (1, 2).

Using the Chain Rule, we have

∂f

∂t
=
∂f

∂x

dx

dm

∂m

∂t
+
∂f

∂y

dy

dn

∂n

∂t

If s = 1 and t = 2, then m(1, 2) = 3 − 2
√

1 = 1 and n(1, 2) = 2 − 2esin(2−2(1)) = 0. But
then we have x(1) = tan(ln 1) + 3 = 3 and y(0) = 02 − arctan 0− 1 = −1. Therefore, we
have points

(x, y) = (3,−1)

(m,n) = (1, 0)

(s, t) = (1, 2)

Now taking derivatives, we find

∂f

∂x
=

2x

y

∣∣∣∣
x=3
y=−1

= −6

dx

dm
= sec2(lnm) · 1

m

∣∣∣∣
m=1

= 1

∂m

∂t
= −
√
s

∣∣∣∣
s=1
t=2

= −1

∂f

∂y
= −x

2

y2

∣∣∣∣
x=3
y=−1

= −9

dy

dn
= 2n− 1

1 + n2

∣∣∣∣
n=0

= −1

∂n

∂t
= −esin(t−2s) − tesin(t−2s) · cos(t− 2s)

∣∣∣∣
s=1
t=2

= −1− 2 · 1 · 1 = −3

Therefore,
∂f

∂t
= (−6)(1)(−1) + (−9)(−1)(−3) = 6− 27 = −21
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4. Let S be the surface defined by z = x− y2.

(a) (10 points) Find the equation of the tangent plane to S at (2,−1, 1).

Let F (x, y, z) = z − x+ y2. Then the surface S is given by F (x, y, z) = 0. We have

∇F = 〈−1, 2y, 1〉
∣∣∣∣ x=2
y=−1
z=1

= 〈−1,−2, 1〉

Then the tangent plane is given by

〈−1,−2, 1〉 · 〈x− 2, y − (−1), z − 1〉 = 0

−1(x− 2)− 2(y + 1) + 1(z − 1) = 0

−x+ 2− 2y − 2 + z − 1 = 0

−x− 2y + z − 1 = 0

x+ 2y − z = −1

(b) (1 point) Find a direction perpendicular to S at (2,−1, 1).

If a surface S is given by F = 0, then ∇F is a direction perpendicular to the surface.
Therefore, a direction perpendicular to S at (2,−1, 1) is 〈−1,−2, 1〉. Equivalently,
〈1, 2,−1〉 is perpendicular to S at (2,−1, 1), as is k〈−1,−2, 1〉 for any nonzero k.

(c) (4 points) Find the equation of the normal line to S at (2,−1, 1).

`(t) = ~mt+~b

`(t) = 〈−1,−2, 1〉t+ 〈2,−1, 1〉
`(t) = 〈−t,−2t, t〉+ 〈2,−1, 1〉
`(t) = 〈2− t,−2t− 1, t+ 1〉
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5. Let f(x, y, z) := x10 + 2
√
y − e4−z.

(a) (3 points) Compute f(1, 9, 4).

f(1, 9, 4) = 110 + 2
√

9− e0 = 1 + 2(3)− 1 = 6

(b) (6 points) Find the total differential for f(x, y, z).

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = 10x9 dx+

1
√
y
dy + e4−z dz

(c) (6 points) Approximate (0.99)10 + 2
√

8.7− e4.1.

df = 10(1) · −0.01 +
1√
9
· −0.3 + e0 · 0.1 = −0.1− 0.1 + 0.1 = −0.1

Then we have

(0.99)10 + 2
√

8.7− e4.1 = f(0.99, 8.7, 4.1) ≈ f(1, 9, 4) + df = 6− 0.1 = 5.9
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6. The temperature in the region of a research facility is given by the function

f(x, y) =
x2 + y + ex+2y

3

where x is the number of miles East/West (+x̂/−x̂) from the facility and y is number
of miles North/South (+ŷ/−ŷ) from the facility. Suppose you are at a point 4 miles
East and 2 mile South of the facility, i.e. (x, y) = (4,−2).

(a) (6 points) What is the rate of change in the temperature if you are hiking straight
towards the facility?

This isDuf(−2, 1), where u the direction towards the facility at (4,−2). Now (0, 0)−
(4,−2) = 〈−4, 2〉 and ‖〈−4, 2〉‖ =

√
(−4)2 + 22 =

√
20 = 2

√
5. Now we have

gradient

∇f(x, y) =

〈
2x+ ex+2y

3
,
1 + 2ex+2y

3

〉 ∣∣∣∣
x=4
y=−2

=

〈
8 + e0

3
,
1 + 2e0

3

〉
= 〈3, 1〉

Then we have

Duf(−2, 1) = 〈3, 1〉 · 〈−4, 2〉
2
√

5
=

3(−4) + 1(2)

2
√

5
=
−12 + 2

2
√

5
=
−10

2
√

5
=
−5√

5
= −
√

5

(b) (2 points) At your current position, what direction does the temperature increase
most rapidly?

∇f(4,−2) = 〈3, 1〉

(c) (2 points) At your current position, what direction does the temperature de-
crease most rapidly?

−∇f(4,−2) = −〈3, 1〉 = 〈−3,−1〉
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(d) (3 points) Approximately how far must you travel in the direction you gave in

(c) to see a decrease of
1√
5

in the temperature?

Rate of Change · Distance = ∆T

Duf(−2, 1) · d = ∆T

−
√

5 d = − 1√
5

d =
1

5
Distance = 0.20 miles

Therefore, you need to travel approximately 0.20 miles.

(e) (3 points) At your current position, what is a direction you can travel so that the
temperature does not change?
There is no change at (x, y) in the direction u if Duf(x, y) = 0. We then have

0 = Duf(−2, 1) = ∇f(4,−2) · u = 〈3, 1〉 · u

Therefore, any direction u (not necessarily a unit vector) perpendicular to∇f(4,−2)
will suffice. For example, 〈1,−3〉 is such a factor. Writing u = 〈a, b〉, we have

0 = 〈3, 1〉 · u = 〈3, 1〉 · 〈a, b〉 = 3a+ b

Then b = −3a so that u = 〈a, b〉 = 〈a,−3a〉 = a〈1,−3〉 for any nonzero a ∈ R is the
collection of all such vectors.



MAT 397: Exam 2 10 of 14

7. (16 points) Find and classify all critical points for the function f(x, y) = e−x(x2 +3y2).

We have

fx = −e−x(x2 + 3y2) + 2xe−x = (2x− x2 − 3y2)e−x

fy = 6ye−x

fxx = −e−x(2x− x2 − 3y2) + (2− 2x)e−x = e−x(2− 2x− 2x+ x2 + 3y2) = e−x(2− 4x+ x2 + 3y2)

fxy = fyx = −6ye−x

fyy = 6e−x

Now we set fx = 0 and fy = 0. From fy = 0, we know that 6y = 0 or e−x = 0. But
e−x is never 0 so 6y = 0, which implies y = 0. But then y = 0 in fx = 0 so that we
have 0 = (2x − x2 − 3y2)e−x = (2x − x2)e−x = x(2 − x)e−x. As e−x 6= 0, then x = 0 or
2− x = 0. Therefore, x = 0, 2. Then the critical points are (0, 0) and (2, 0). We form the
Hessian:

(
fxx fxy
fyx fyy

)
=

(
e−x(2− 4x+ x2 + 3y2) −6ye−x

−6ye−x 6e−x

)

Now we examine sequence of principal minors for the critical points:

[
e0(2− 0 + 0 + 0) 0

0 6e0

]
=

[
2 0
0 6

]
(0, 0) :

d1 = 2 > 0, d2 = 2(6)− 0(0) = 12 > 0

[
e−2(2− 4(2) + 22 + 0) 0

0 6e−2

]
=

[
−2e−2 0

0 6e−2

]
(2, 0) :

d1 = −2e−2 < 0, d2 = −12e−4 < 0

Therefore, (0, 0, 0) is a local minimum and (2, 0, 4e−2) is a saddle point.
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8. (16 points) An exoplanet’s orbit about its star is given by x2+y2 = 1, i.e. the exoplanet
has a circular orbit. The planet has 12 moons, and number of moons on the dark side
of the planet at a point (x, y) in its orbit is given by f(x, y) = x2 + 4xy + y2 + 4. Find
the greatest and fewest number of moons you could see at night on this exoplanet.

Let g(x, y) = x2 + y2 − 1 so that the path of the planet is given by the curve g(x, y) = 0.
We then want to maximize f(x, y) with respect to the constraint that g(x, y) = 0. Now

∇f(x, y) = λ∇g(x, y)

〈2x+ 4y, 4x+ 2y〉 = λ〈2x, 2y〉

Equating components, we have a system of equations

2x+ 4y = 2λx

4x+ 2y = 2λy

x2 + y2 = 1

Note that neither x nor y can be 0. For example, if x = 0, then from the second equation
we find that 4x = 0 so that x = 0. But then x2 + y2 = 1. This follows mutatis mutandis
for y = 0. Then solving for λ in the first and second equation, we find

λ =
x+ 2y

x
=

2x+ y

y

Then cross multiplying we find

2x2 + xy = xy + 2y2

But then 2x2 = 2y2, which implies x2 = y2. Then 0 = x2−y2 = (x−y)(x+y). Therefore,
x = y or x = −y. Then 1 = x2 + y2 = x2 + (±x)2 = 2x2 so that x = ±1/

√
2. Now

y = ±x. If x = 1/
√

2, then y = ±1/
√

2. If x = −1/
√

2, then y = ∓1/
√

2. Then we have
solutions (±1/

√
2,±1/

√
2), where the signs are taken independently. Finally, (taking the

signs simultaneously)

f

(
± 1√

2
,∓ 1√

2

)
= 3

f

(
± 1√

2
,± 1√

2

)
= 7

Therefore looking up at the night sky, you would see as few as three moons and as many
as seven moons.
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9. Complete the following parts:

(a) (8 points)
∫ 0

−2

∫ 4

x2
x sin(y2) dy dx

−2 −1 1 2

1

2

3

4

x

y

∫ 0

−2

∫ 4

x2
x sin y2 dy dx =

∫ 4

0

∫ 0

−√y
x sin y2 dx dy

=

∫ 4

0

x2

2
sin y2

∣∣∣∣x=0

x=−√y
dx dy

= −1

2

∫ 4

0

y sin y2 dy

= −1

2
· − cos y2

2

∣∣∣∣y=4

y=0

=
1

4
(cos 16− cos 0)

=
cos 16− 1

4

(b) (8 points) Compute the volume bounded by x + 2y + 3z = 4 and the coordinate
planes by using a triple integral.

1
2

3
4

1
2

3

1

2

3

x y

z

V =

∫∫∫
R

dV =

∫ 4/3

0

∫ (4−3z)/2

0

∫ 4−2y−3z

0

1 dx dy dz

=

∫ 4/3

0

∫ (4−3z)/2

0

4− 2y − 3z dy dz

=

∫ 4/3

0

4y − y2 − 3zy

∣∣∣∣y=(4−3z)/2

y=0

dz

=

∫ 4/3

0

4

(
4− 3z

2

)
−
(
4− 3z

2

)2

− 3z

(
4− 3z

2

)
dz

=
1

4

∫ 4/3

0

16− 24z + 9z2 dz

=
1

4
· (16z − 12z2 + 3z3)

∣∣∣∣z=4/3

z=0

=
1

4
·

(
16 · 4

3
− 12 ·

(
4

3

)2

+ 3 ·
(
4

3

)3
)

=
1

4
· 4
3

(
16− 12 · 4

3
+ 3 · 16

9

)
=

1

3

(
48

3
− 48

3
+

16

3

)
=

16

9

This is more easily computed by noting 16− 24z + 9z2 = (4− 3z)2.
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10. Complete the following parts—you need not evaluate any of the integrals:

(a) (5 points) Change the following integral to polar coordinates:
∫ 1

0

∫ 1

y

y√
x2 + y2

dx dy

∫ 1

0

∫ 1

y

y√
x2 + y2

dx dy =

∫ π/4

0

∫ sec θ

0

r sin θ√
r2
· r dr dθ =

∫ π/4

0

∫ sec θ

0

r sin θ dr dθ

(b) (5 points) Change the following integral to cylindrical coordinates:∫ 2

0

∫ √4−y2

−
√

4−y2

∫ 2

√
x2+y2

xz dz dx dy

∫ 2

0

∫ √4−y2

−
√

4−y2

∫ 2

√
x2+y2

xz dz dx dy =

∫ π

0

∫ 2

0

∫ 2

r

(r cos θ)z·r dz dr dθ =

∫ π

0

∫ 2

0

∫ 2

r

zr2 cos θ dz dr dθ

(c) (5 points) Change the following integral to spherical coordinates:
∫∫∫

R

z dV ,

where R is the bounded by x =
√
y2 + z2 and the sphere x2 + y2 + z2 = 9

∫∫∫
R

z dV =

∫ 3π/4

π/4

∫ π/4

−π/4

∫ 3

0

(ρ cosφ)·ρ2 sinφ dρ dθ dφ =

∫ 3π/4

π/4

∫ π/4

−π/4

∫ 3

0

ρ3 sinφ cosφ dρ dθ dφ
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11. (15 points) A steel plate has density function δ(x, y) = x + y, and shape given by the
region R given below:

R

2

2

x

y

Find the total mass and the center of mass for this steel plate.

M =

∫∫
R

δ(x, y) dA =

∫ 2

0

∫ 2−x

0

(x+ y) dy dx =

∫ 2

0

(
xy +

y2

2

) ∣∣∣∣y=2−x

y=0

dx =

∫ 2

0

x(2− x) +
(2− x)2

2
dx

=

∫ 2

0

(
2− x2

2

)
dx =

(
2x− x3

6

) ∣∣∣∣x=2

x=0

= 2(2)− 8

6
= 4− 8

6
=

24

6
− 8

6
=

16

6
=

8

3

Mx =

∫∫
R

xδ(x, y) dA =

∫ 2

0

∫ 2−x

0

x(x+ y) dy dx =

∫ 2

0

∫ 2−x

0

(x2 + xy) dy dx =

∫ 2

0

(
x2y + x · y

2

2

) ∣∣∣∣y=2−x

y=0

dx

=

∫ 2

0

(
x2(2− x) + x · (2− x)2

2

)
dx =

∫ 2

0

(
2x− x3

2

)
dx =

(
x2 − x4

8

) ∣∣∣∣x=2

x=0

= 4− 16

8
= 4− 2 = 2

My =

∫∫
R

yδ(x, y) dA =

∫ 2

0

∫ 2−x

0

y(x+ y) dy dx =

∫ 2

0

∫ 2−x

0

(xy + y2) dy dx =

∫ 2

0

(
x · y

2

2
+
y3

3

) ∣∣∣∣y=2−x

y=0

dx

=

∫ 2

0

(
x(2− x)2

2
+

(2− x)3

3

)
dx =

∫ 2

0

(
x3

6
− 2x+

8

3

)
dx =

(
x4

24
− x2 +

8

3
x

) ∣∣∣∣x=2

x=0

=
16

24
− 4 +

16

3
=

2

3
− 12

3
+

16

3
=

2− 12 + 16

3
=

6

3
= 2

Therefore, the total mass is M = 8/3 and the center of mass is

(x, y) =

(
My

M
,
Mx

M

)
=

(
2

8/3
,

2

8/3

)
=

(
3

4
,
3

4

)
Note: The region is symmetric about y = x and so is the function δ(x, y). Therefore, we know Mx = My , so only one need be

computed.


