Vector Geometry \& Algebra

Problem 1: Given the vectors

Sketch the following vectors:
(a) 2 v
(d) $\mathbf{u}+2 \mathbf{v}$
(b) $-\frac{1}{3} \mathbf{u}$
(e) $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$
(c) $\mathbf{v}-\mathbf{u}$
(f) $\mathbf{u} \times \mathbf{v}$

Problem 2: Given the vectors

\mathbf{u}
Sketch the following vectors:
(a) $2 \mathbf{v}$
(d) $\mathbf{u}+2 \mathbf{v}$
(b) $-\frac{1}{3} \mathbf{u}$
(e) $\operatorname{proj}_{\mathrm{v}} \mathbf{u}$
(c) $\mathbf{v}-\mathbf{u}$
(f) $\mathbf{u} \times \mathbf{v}$

Problem 3: For the vectors in Problem 1, which is larger: $\mathbf{u} \cdot \mathbf{u}$ or $\mathbf{v} \cdot \mathbf{v}$? Explain.
Problem 4: Determine if the vector $\langle 2,-4,10\rangle$ is parallel to $\langle-1,2,-5\rangle$.
Problem 5: Determine if the vector $\langle 1,0,-3\rangle$ is parallel to the vector $\langle-2,0,6\rangle$.
Problem 6: Determine if the vector $\langle 1,2,0\rangle$ is parallel to the vector $\langle 0,1,2\rangle$.
Problem 7: Let $\mathbf{u}=\langle 1,-1\rangle, \mathbf{v}=\langle-2,3\rangle$, and $\mathbf{w}=\langle 4,0\rangle$, find the following and if the result is a vector, sketch the vector:
(a) $2 \mathbf{u}$
(c) $2 \mathbf{u}-3 \mathbf{v}$
(b) -w
(d) $\|\mathbf{u}+\mathbf{w}\|$
(e) $\mathbf{u}-\mathbf{v}+\mathbf{w}$
(f) $\|\mathbf{w}\| \mathbf{u}$

Problem 8: Let $\mathbf{u}=\langle 1,3,-2\rangle, \mathbf{v}=\langle 1,1,1\rangle$, and $\mathbf{w}=\langle 0,-1,5\rangle$, find the following and if the result is a vector, sketch the vector:
(a) $2 \mathbf{u}$
(d) $\|\mathbf{u}+\mathbf{w}\|$
(b) $-\mathbf{w}$
(e) $\mathbf{u}-\mathbf{v}+\mathbf{w}$
(c) $2 \mathbf{u}-3 \mathbf{v}$
(f) $\|\mathrm{w}\| \mathrm{u}$

Problem 9: Given $\mathbf{u}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$, find a unit vector which points in the opposite direction of \mathbf{u}. Find also a unit vector which points in the same direction of \mathbf{u}.

Problem 10: Find a vector parallel to $\mathbf{i}+\mathbf{j}-\mathbf{k}$ with length 5 .
Problem 11: Find a vector which points from $(1,2,3)$ to $(1,0,-1)$.
Problem 12: Find the displacement vector from the point $(1,3)$ to the point $(-1,5)$.
Problem 13: Determine if the points $(1,1,1),(1,-1,2)$, and $(3,0,2)$ are collinear.
Problem 14: Given a vector $\mathbf{w}=\langle-1,7\rangle$, find scalars a, b so that $\mathbf{w}=a \mathbf{u}+b \mathbf{v}$, where $\mathbf{u}=\langle 1,2\rangle$ and $\mathbf{v}=\langle 1,-1\rangle$.

Problem 15: If $\|\mathbf{u}\|=6$, what is $\|c \mathbf{u}\|$, where $c=-2$?
Problem 16: If $\|\mathbf{u}\|=2$ and \mathbf{u} makes an angle of 60° with the positive x-axis, write \mathbf{u} in the form $\mathbf{u}=a \mathbf{i}+b \mathbf{j}$.

Problem 17: If $\|\mathbf{u}\|=3$ and \mathbf{u} makes an angle of 30° with the positive y-axis, write \mathbf{u} in the form $\mathbf{u}=a \mathbf{i}+b \mathbf{j}$.

Problem 18: Let $f(x)=5-x^{2}$. Find a vector which is parallel to the graph of $f(x)$ at $(1,4)$. Find also a vector which is perpendicular to the graph of $f(x)$ at $(1,4)$.

Problem 19: Suppose that $\mathbf{u}=a \mathbf{i}+b \mathbf{j}$ is a unit vector. Is it then true that the point (a, b) lies on the unit circle?

Problem 20: Suppose that $\mathbf{u}=a \mathbf{i}+b \mathbf{j}=\mathbf{0}$. Is it then true that $a=-b$?
Problem 21: Suppose that $a=b$, is it true that $\|a \mathbf{i}+b \mathbf{j}\|=\sqrt{2} a$.
Problem 22: Suppose that $\mathbf{u}=\mathbf{i}+\sqrt{3} \mathbf{j}$. Find the angle \mathbf{u} makes with the positive y-axis.

Problem 23: Suppose a 50 lb weight is suspended by two cables which make angles of 50° and 30° with the ceiling, respectively. Find the tension vectors for each cable, as well as the total tension in each cable.

Problem 24: If \mathbf{u} and \mathbf{v} are vectors, prove that $|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|$. Prove this algebraically and geometrically.

Dot \& Cross Product

Problem 25: Let $\mathbf{u}=\langle 1,-3\rangle$ and $\mathbf{v}=\langle-2,1\rangle$. Compute the following:
(a) $\mathbf{u} \cdot \mathbf{v}$
(b) $\mathbf{u} \cdot \mathbf{u}$
(c) $2 \mathbf{u} \cdot \mathbf{v}$
(d) $\mathbf{u} \cdot 3 \mathbf{v}$
(e) $2 \mathbf{u} \cdot 3 \mathbf{v}$

Problem 26: Let $\mathbf{u}=\langle 1,-1,1\rangle$ and $\mathbf{v}=\langle 2,0,1\rangle$. Compute the following:
(a) $\mathbf{u} \cdot \mathbf{v}$
(b) $\mathbf{u} \cdot \mathbf{u}$
(c) $2 \mathbf{u} \cdot \mathbf{v}$
(d) $\mathbf{u} \cdot 3 \mathbf{v}$
(e) $2 \mathbf{u} \cdot 3 \mathbf{v}$

Problem 27: Let $\mathbf{u}=\langle 1,-1,1\rangle, \mathbf{v}=\langle 2,3,1\rangle$, and $\mathbf{w}=\langle 2,0,1\rangle$. Is $\mathbf{u} \perp \mathbf{v}$? Is $\mathbf{u} \perp b w$? Is $\mathbf{v} \perp \mathbf{w}$? Explain.

Problem 28: Find at least four vectors perpendicular to the vector $\mathbf{u}=2 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$.
Problem 29: Find at least 3 pairs (a, b) so that the vector $\mathbf{u}=\langle a,-2, b\rangle$ is perpendicular to the vector $\mathbf{v}=\langle 3,-1,4\rangle$.

Problem 30: Find $\mathbf{u} \cdot \mathbf{v}$ if $\|\mathbf{u}\|=8,\|\mathbf{v}\|=5$, and the angle between the vectors is 45°.
Problem 31: Find the angle between the vectors $\mathbf{u}=\mathbf{i}+\mathbf{j}$ and $\mathbf{v}=\mathbf{i}-2 \mathbf{j}$.
Problem 32: Find the angle between the vectors $\mathbf{u}=\mathbf{i}-\mathbf{k}$ and $\mathbf{v}=2 \mathbf{i}-\mathbf{j}$.
Problem 33: Use the dot product to compute the length of $\mathbf{u}=\langle-1,3,4\rangle$.

Problem 34: Given $\mathbf{u}=\langle 1,-3\rangle$, find the angle \mathbf{u} makes with the positive x and y axes.
Problem 35: Given $\mathbf{u}=\langle 1,-3,1\rangle$, find the angle \mathbf{u} makes with the positive x, y, and z axes.
Problem 36: Determine if the triangle with vertices $(2,-7,3),(-1,5,8)$, and $(4,6,-1)$ is acute, obtuse, or right. Is the triangle an equilateral or isosceles triangle?

Problem 37: Find the acute angle between $(y+1)^{2}=x$ and $y=x^{3}-1$ at their point(s) of intersection.

Problem 38: Find a pair of vectors that point in opposite directions that are both perpendicular to $\mathbf{u}=\langle 2,-3\rangle$. Can these be forced to be unit vectors? Are there infinitely many such vectors? If there are, do they all have to be parallel?

Problem 39: Find the angles the diagonal of a cube makes with its edges and faces.
Problem 40: Find the acute angle between the lines $x+2 y=7$ and $5 x-y=2$.
Problem 41: A force vector $\mathbf{F}=2 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ acts on a body, pushing it straight from $(1,0,1)$ to $(-3,1,2)$. Find the work done.

Problem 42: Find the values of x such that the angle between $\langle 1,1,1\rangle$ and $\langle x, 2,-1\rangle$ is 60°.
Problem 43: Let $\mathbf{u}=\langle 1,3\rangle$ and $\mathbf{v}=\langle 1,-1\rangle$. Find $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ and $\mathbf{p r o j}_{\mathbf{v}} \mathbf{u}$. Use these vectors to determine if $\mathbf{u} \perp \mathbf{v}$.

Problem 44: Let $\mathbf{u}=\langle 1,-4,1\rangle$ and $\mathbf{v}=\langle 5,0,-1\rangle$. Find $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ and $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$. Use these vectors to determine if $\mathbf{u} \perp \mathbf{v}$.

Problem 45: Compute the determinant

$$
\left|\begin{array}{cc}
1 & 3 \\
-5 & 2
\end{array}\right|
$$

Problem 46: Compute the determinant

$$
\left|\begin{array}{cc}
0 & \pi \\
6 & \pi^{3}
\end{array}\right|
$$

Problem 47: Compute the determinant

$$
\left|\begin{array}{lll}
5 & 1 & 2 \\
1 & 2 & 3 \\
1 & 3 & 5
\end{array}\right|
$$

Problem 48: Compute the determinant

$$
\left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 2 & 3 & 4 \\
2 & 3 & 5 & 5
\end{array}\right|
$$

Problem 49: Let $\mathbf{u}=\langle 1,3\rangle$ and $\mathbf{v}=\langle-1,2\rangle$. Find a vector perpendicular to both \mathbf{u} and \mathbf{v}. Can you find infinitely many such vectors? If not, explain why, and if it is possible, find at least 3 more such vectors.

Problem 50: Let $\mathbf{u}=\langle 1,0,-2\rangle$ and $\mathbf{v}=\langle 5,-1,0\rangle$. Find a vector perpendicular to both \mathbf{u} and \mathbf{v}. Can you find infinitely many such vectors? If not, explain why, and if it is possible, find at least 3 more such vectors.

Problem 51: Find a unit vector which is perpendicular to both $\mathbf{u}=\langle 1,0,-1\rangle$ and $\mathbf{v}=\langle 0,1,2\rangle$. Is this the only possible unit vector with this property?

Problem 52: Find the area of the parallelogram spanned by $\mathbf{u}=2 \mathbf{i}-\mathbf{j}$ and $\mathbf{v}=5 \mathbf{i}+2 \mathbf{j}$.
Problem 53: Find the area of the parallelogram spanned by $\mathbf{u}=\mathbf{i}+3 \mathbf{j}$ and $\mathbf{v}=-\mathbf{i}+\mathbf{j}$.
Problem 54: Find the area of the parallelogram spanned by $\mathbf{u}=\langle 1,1,1\rangle$ and $\mathbf{v}=\langle 3,-1,2\rangle$.
Problem 55: Find the area of the triangle with vertices $(1,1),(2,3)$, and $(-5,-1)$.
Problem 56: Find the area of the triangle with vertices $(1,0,3),(-1,2,5)$, and $(0,0,-1)$.
Problem 57: Show that the quadrilateral with vertices $(5,2,0),(2,6,1),(2,4,7)$, and $(5,0,6)$ is a parallelogram. Sketch this parallelogram and find its area.

Problem 58: Use the cross product to determine if the vectors $\langle 1,1,1\rangle$ and $\langle 3,3,3\rangle$ are parallel.
Problem 59: Find the angle between $\langle 1,0\rangle$ and $\langle 1,-3\rangle$ using the cross product. Use the cross product to determine the angle between $\langle 1,1,1\rangle$ and $\langle 1,-2,1\rangle$.

Problem 60: Find the volume of the parallelepiped spanned by $3 \mathbf{i}-5 \mathbf{j}+\mathbf{k}, 2 \mathbf{j}-2 \mathbf{k}$, and $3 \mathbf{i}+\mathbf{j}+\mathbf{k}$.
Problem 61: Are the vectors $\langle 1,4,-7\rangle,\langle 2,-1,4\rangle$, and $\langle 0,-9,18\rangle$ coplanar? Explain.
Problem 62: Find $|\mathbf{u} \times \mathbf{v}|$ if $\|\mathbf{u}\|=2,\|\mathbf{v}=4\|$, and the angle between \mathbf{u} and \mathbf{v} is 30°.
Problem 63: If \mathbf{u} and \mathbf{v} are vectors, what is $\mathbf{v} \cdot(\mathbf{u} \times \mathbf{v})$? What is $2 \mathbf{u} \times \mathbf{u}$? Explain.
Problem 64: Determine if the vectors $\mathbf{i}+5 \mathbf{j}-2 \mathbf{k}, 3 \mathbf{i}-\mathbf{j}$, and $5 \mathbf{i}+9 \mathbf{j}-4 \mathbf{k}$ are coplanar.
Problem 65: Is the following statement true or false: if $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{u} \times \mathbf{v}=\mathbf{u} \times \mathbf{w}$, then $\mathbf{v}=\mathbf{w}$.
Problem 66: Is it always the case that $\mathbf{u} \times \mathbf{u}=\mathbf{0}$? Explain.
Problem 67: If $\mathbf{u} \cdot \mathbf{v}=\sqrt{3}$ and $\mathbf{u} \times \mathbf{v}=\langle 1,2,2\rangle$, what is teh angle between \mathbf{u} and \mathbf{v} ?
Problem 68: Find all vectors \mathbf{u} so that $\langle 1,2,1\rangle \times \mathbf{u}=\langle 3,1,-5\rangle$. Is there a vector \mathbf{u} so that $\langle 1,2,1\rangle \times \mathbf{u}=\langle 3,1,5\rangle$.

Problem 69: Prove that if \mathbf{u} and \mathbf{v} are vectors that $|\mathbf{u}+\mathbf{v}|^{2}+|\mathbf{u}-\mathbf{v}|^{2}=2\left(|\mathbf{u}|^{2}+|\mathbf{v}|^{2}\right)$.
Problem 70: Prove the Law of Cosines: if a triangle has sides a, b, c, then

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

where θ is the angle opposite c.
Problem 71: Prove that if the diagonals of a parallelogram are perpendicular, then the parallelogram is a square.

Problem 72: Prove that if $P_{1}, P_{2}, \ldots, P_{n}$ are vertices of a regular polygon with n-sides and \mathcal{O} is the center of the polygon, that $\sum_{i=1}^{n} \overrightarrow{\mathcal{O} P_{i}}=\mathbf{0}$.

Problem 73: Find the vector, parametric, and symmetric forms of the line $\ell(t)=\langle 1,-1,2\rangle t+$ $(1,2,3)$.

Problem 74: Find the vector, parametric, and symmetric forms of the line

$$
\left\{\begin{array}{l}
x=2 t+1 \\
y=5 \\
z=3-2 t
\end{array}\right.
$$

Problem 75: Find the vector, parametric, and symmetric forms of the line

$$
\frac{x-1}{3}=\frac{2 y-1}{4}=\frac{z+1}{5}
$$

Problem 76: Find the equation of the line parallel to the vector $\langle 1,3,1\rangle$ through the point $(1,-1,2)$.
Problem 77: Find the equation of the line through $(1,3,-2)$ and $(5,2,4)$.
Problem 78: Find the (parametric) equation of the line through $(1,3)$ and $(-5,4)$.
Problem 79: Find the equation of the line perpendicular to the plane $2 x-y+3 z=5$ that passes through the point $(5,0,-2)$.

Problem 80: Find the equation of the line passing through the origin that is perpendicular to both $\mathbf{i}+2 \mathbf{j}$ and $\mathbf{i}-3 \mathbf{k}$.

Problem 81: Show that the lines $r(t)=(4 t+3,6 t+3,2 t)$ and $s(t)=(2 t, 3 t-2, t-1)$ are the same.
Problem 82: Show that the lines $r(t)=\langle 2,-1,3\rangle t+(0,1,1)$ and $s(t)=\langle 4,-2,6\rangle t+(1,1,-1)$ are parallel.

Problem 83: Show that the lines $r(t)=(t+4, t+3,1-t)$ and $s(t)=(6 t+3,2-4 t, 2 t+2)$ are perpendicular.

Problem 84: Show that the lines $r(t)=(3 t+1, t, 2 t+1)$ and $s(t)=(3 t-4,6 t-10,3 t-4)$ intersect.

Problem 85: Show that the lines $r(t)=(t+1,2-t, 2 t+1)$ and $s(t)=(t, 2 t, 1-t)$ are skew.
Problem 86: Determine if the lines $r(t)=(2 t, t-1, t)$ and $s(t)=(-2-t, 3 t+5,2 t+4)$ intersect, are skew, perpendicular, parallel, or the same.

Problem 87: Determine if the lines $r(t)=(t+1,2-t, 3 t)$ and $s(t)=(s+5,4-s, 3 s+2)$ intersect, are skew, perpendicular, parallel, or the same.

Problem 88: Determine if the lines $r(t)=(2 t+1,3-t, t+5)$ and $s(t)=(2 t, t+1,1-t)$ intersect, are skew, perpendicular, parallel, or the same.

Problem 89: Determine if the lines $r(t)=(2 t-1, t+1,3 t+1)$ and $s(t)=(5 t-1,1-t, 1-3 t)$ intersect, are skew, perpendicular, parallel, or the same.

Problem 90: Determine if the lines $r(t)=(2 t+1,1,-1-t)$ and $s(t)=(4 t+5,1,-3-2 t)$ intersect, are skew, perpendicular, parallel, or the same.

Problem 91: Determine the equation of the plane passing through ($1,2,3$) with normal vector $\mathbf{n}=\langle 2,-1,3\rangle$.

Problem 92: Determine the equation of the plane that is perpendicular to the vectors $\mathbf{i}-2 \mathbf{j}+\mathbf{k}$ and $2 \mathbf{i}+\mathbf{j}+\mathbf{k}$ and passes through the point $(1,0,1)$.

Problem 93: Determine the equation of the plane passing through the points $(1,0,1),(0,1,1)$, and (1, 1, 0).

Problem 94: Determine the equation of the plane which is perpendicular to the planes $x+y+z=3$ and $2 x+y-z=-2$ and contains the point $(1,1,-1)$.

Problem 95: Find an equation of the plane passing through $(0,1,2)$ that is parallel to the $x z$-plane. Is this plane unique? Explain.

Problem 96: Find an equation of a plane containing the x-axis and making an angle of $\frac{\pi}{3}$ with the positive y-axis.

Problem 97: Find the equation of the plane with x, y, z intercepts a, b, c, respectively.
Problem 98: Determine the equation of the plane containing $(2,2,2)$ and perpendicular to the line

$$
\left\{\begin{array}{l}
x=2 t+1 \\
y=1-5 t \\
z=t+1
\end{array}\right.
$$

Problem 99: Determine the equation of the plane containing the line $\ell(t)=(t+1,1-t, t+2)$ and parallel to the plane $3 x+4 y-z=2$.

Problem 100: Determine the equation of the plane passing through the line of intersection between $x-z=1$ and $y+2 z=3$ and is perpendicular to $x+y-2 z=1$.

Problem 101: Determine where (if anywhere) the line $\ell(t)=(t+1,3 t+1, t)$ intersects the plane $x+y+z=3$.

Problem 102: Determine where (if anywhere) the line $\ell(t)=(t+1,4-t, t)$ intersects the plane $2 x+3 y+z=0$.

Problem 103: Determine where (if anywhere) the line $\ell(t)=(4-t, 3+t, 2 t)$ intersects the plane $x-y+3 z=5$.

Problem 104: Find parametric equations for the line of intersection between the planes $x+y-z=4$ and $2 x-y+3 z=4$.

Problem 105: Determine if the plane $x+2 y-3 z=4$ contains the line $\ell(t)=(t+6,1-t, t)$.
Problem 106: Determine if the plane $x-y+z=2$ contains the line $\ell(t)=(2 t-1,3 t+1, t+4)$.
Problem 107: Are the planes $x+y+z=5$ and $x-y+z=6$ parallel, intersecting, or perpendicular?
Problem 108: Are the planes $2 x-z=4$ and $x+2 z=6$ parallel, intersecting, or perpendicular?
Problem 109: Are the planes $x-2 y+z=5$ and $-2 x+4 y-2 z=2$ parallel, intersecting, or perpendicular?

Problem 110: Determine the angle of intersection between the planes $x-2 y+z=2$ and $x+2 y-$ $4 z=1$.

Problem 111: Find the angle of intersection between the planes $x-2 y+z=0$ and $2 x+3 y-2 z=0$.
Problem 112: Determine a method to determine if a given point P lies on, 'above', or 'below' a given plane.

Distance Problems

Problem 113: Find the projection of the point $P=(1,-3,2)$ to the $x y$, $y z$, and $x z$-planes. Use this to determine the distance from P to these planes.

Problem 114: Sketch the point $P=(-1,-3,-2)$ in \mathbb{R}^{3}. Then find the distance from P to...
(a) $x y$-plane
(e) y-axis
(b) $y z$-plane
(f) z-axis
(c) $x z$-plane
(g) the origin
(d) x-axis
(h) the point $(1,4,2)$

Problem 115: Sketch the point $P=(1,-5,2)$ in \mathbb{R}^{3}. Then find the distance from P to...
(a) $x y$-plane
(e) y-axis
(b) yz-plane
(f) z-axis
(c) $x z$-plane
(g) the origin
(d) x-axis
(h) the point $(1,4,2)$

Problem 116: Find the distance from the point $(3,-1,2)$ to the line $\ell(t)=(2 t-1, t-2, t-1)$.
Problem 117: Find the distance from the plane $x+y-z=5$ to the plane $2 x-y+3 z=4$.
Problem 118: Find the distance between the lines $r(t)=\langle 2,-2,2\rangle t+(-1,0,1)$ and $s(t)=$ $\langle 1,2,1\rangle t+(-1,1,-2)$.

Problem 119: Find the distance from the line $r(t)=(2 t+1, t+1,1-2 t)$ to the line $x(t)=$ ($2 t, t-1,2-2 t$).

Problem 120: Find the distance between the lines $r(t)=(t+3,3 t+6, t+1)$ and $x(t)=(2 t-1,1-$ $t+2 t-3)$.

Problem 121: Find the distance from the line $x(t)=(6 t+4,-2 t, 4 t+3)$ and $s(t)=(3 t-8,4-$ $t, 2 t-5)$.

Problem 122: Find the distance between the planes $x+y=3$ and $x-z=5$.
Problem 123: Find the distance from the point $(1,1,3)$ and the line

$$
\left\{\begin{array}{l}
x=4 t+1 \\
y=-t-1 \\
z=t+1
\end{array}\right.
$$

Problem 124: Find the distance between the planes $x-y+3 z=17$ and $x-y+3 z=6$.
Problem 125: Find the distance from the line $r(t)=\langle 5,1,1\rangle t+(4,3,1)$ to the line $s(t)=\langle 3,2,1\rangle t+$ $(5,6,2)$.

Problem 126: Find the distance between the given lines

$$
\left\{\begin{array} { l }
{ x = t - 2 } \\
{ y = 1 - 3 t } \\
{ z = t + 3 }
\end{array} \quad \left\{\begin{array}{l}
x=t+1 \\
y=1-2 t \\
z=t
\end{array}\right.\right.
$$

Problem 127: Find the distance between the following lines

$$
\left\{\begin{array} { l }
{ x = t - 1 } \\
{ y = t - 2 } \\
{ z = t }
\end{array} \quad \left\{\begin{array}{l}
x=2 t-1 \\
y=2 t+1 \\
z=2 t
\end{array}\right.\right.
$$

Problem 128: Find the distance from the plane $x-5 y+z=-5$ and $x-5 y+z=-8$.
Problem 129: Find the distance from the line $r(t)=(2 t+3,1-t, t+1)$ to the sphere $x^{2}+y^{2}+z^{2}=1$. [Hint: Sketch the scenario and think about how you can reduce this to a case you already know how to do, making the necessary adjustments.]

Problem 130: Prove that the distance from a point $P \in \mathbb{R}^{3}$ to a line with direction vector \mathbf{L} is given by

$$
d=\frac{|\overrightarrow{P Q} \times \mathbf{L}|}{|\mathbf{L}|}
$$

where Q is any point on the line.
Problem 131: Prove that the distance between a point P and a plane with normal vector \mathbf{n} is given by

$$
d=\frac{|\overrightarrow{P Q} \cdot \mathbf{n}|}{|\mathbf{n}|}
$$

where Q is any point on the plane.
Problem 132: Given lines $r(t)=P+t \mathbf{L}_{1}$ and $s(t)=Q+t \mathbf{L}_{2}$, show that the distance between them is

$$
d=\frac{\left|\overrightarrow{P Q} \cdot\left(\mathbf{L}_{1} \times \mathbf{L}_{2}\right)\right|}{\left|\mathbf{L}_{1} \times \mathbf{L}_{2}\right|}
$$

Curves \& Quadratic Surfaces

Problem 133: Identify the following curves/surfaces in \mathbb{R}^{3}, being as specific as possible:
(a) \qquad $: x+2 y-z=3$
(b) \qquad $: z^{2}-4=2 x^{2}+3 y^{2}$
(c) \qquad $: \frac{1}{2} x^{2}+5 y^{2}=1-z^{2}$
(d) \qquad $: 2 t \mathbf{i}-\mathbf{j}+(1-t) \mathbf{k}$
(e) \qquad $: y=x^{2}+2 x+1$
(f) \qquad $: x+y^{2}-z^{2}=0$
(g) \qquad $:(t-5,1+\cos t, 3+\sin t)$
(h) \qquad $: y=x^{2}+z^{2}$
(i) \qquad $: 2 x^{2}-3 y^{2}-z^{2}=0$
(j) \qquad : $(2 \cos t+1,4,5 \sin t-2)$
(k) \qquad $: z^{2}+4=x^{2}-y^{2}$
(1) \qquad $:(1-t)(5,4,-1)+t(1,0,-1)$

Problem 134: Identify the following curves/surfaces in \mathbb{R}^{3}, being as specific as possible:
(a) \qquad $:(2 t+3, \cos 2 t, \sin 2 t+4)$
(b) \qquad : $y=2 x+3$
(c) \qquad : $\frac{5}{3} x^{2}=\pi-y^{2}+\frac{1}{2} z^{2}$
(d) \qquad $:(y-1)^{2}=x^{2}+(z+3)^{2}$
(e) \qquad $:(y-1)^{2}-(z+1)^{2}=5-x^{2}$
(f) \qquad $:(\cos 8 t, 3, \sin 8 t+5)$
(g) \qquad $:(z-1)^{2}=y$
(h) \qquad $: \frac{1}{3} x=y^{2}-5(z+1)^{2}$
(i) \qquad $:(x+1)^{2}=4+y^{2}+(z-3)^{2}$
(j) \qquad $:(1-2 t, 3,4 t+5)$
(k) \qquad $:(1-t)(0,0,0)+t(1,2,3)$
(1) \qquad $: 1-x=(z+2)^{2}+(y-1)^{2}$

Problem 135: Identify the following curves/surfaces in \mathbb{R}^{3}, being as specific as possible:
(a) \qquad $:(x-1)+(y+3)+(z-4)=7$
(b) \qquad $:(y-1)^{2}=(z+1)^{2}+(x-3)^{2}$
(c) \qquad $:(y-1)^{2}=x$
(d) \qquad $: 5-y=5 x^{2}+(z+1)^{2}$
(e) \qquad : $(2 \cos t, 3 \sin t, 0)$
(f) \qquad $:(2 \cos t, 1-t, 3 \sin t)$
(g) \qquad $: \frac{(x-1)^{2}}{5}+2 y^{2}+\frac{(z+3)^{2}}{4}=1$
(h) \qquad : $y^{2}-x=(z-1)^{2}$
(i) \qquad $:(1-t)(1,1,1)+t(\pi, 2 \pi, 3 \pi)$
(j) \qquad $:(x-1)^{2}-(y+1)^{2}+(z+3)^{2}=6$
(k) \qquad $:(y-1)^{2}+(z-5)^{2}=3+x^{2}$
(1) \qquad $:(0,0, t)$

Problem 136: Use level curves to sketch the surface $4 x^{2}+\frac{1}{9} y^{2}+z^{2}=1$.
Problem 137: Use level curves to sketch the surface $4 x^{2}+y^{2}-z^{2}=1$.
Problem 138: Use level curves to sketch the surface $y=(x-1)^{2}+\frac{(z+1)^{2}}{2}$.
Problem 139: Use level curves to sketch the surface $y^{2}-2 x^{2}-z^{2}=1$.
Problem 140: Use level curves to sketch the surface $y z=1$.

Vector Functions

Problem 141: Find the domain of the vector function $r(t)=\sin t \mathbf{i}+t^{2} \mathbf{j}-e^{t} \mathbf{k}$.
Problem 142: Find the domain of the vector function $x(t)=\left\langle\sin e^{t}, \frac{1}{\sqrt{t}}, \sqrt{1-t}\right\rangle$.
Problem 143: Find the domain of the vector function $x(t)=\frac{1}{t^{2}-1} \mathbf{i}+\ln t \mathbf{j}+t^{-1 / 2} \mathbf{k}$.
Problem 144: Evaluate the vector valued function $r(t)=\sin (\pi t) \mathbf{i}-\left(2 t^{2}+1\right) \mathbf{j}+\frac{t+1}{t-3} \mathbf{k}$ at times $t=-1,0,1,2$.

Problem 145: Let $r(t)=\langle t, 2, t-1\rangle$. Evaluate $r(t+\Delta t)$.
Problem 146: Evaluate the limit $\lim _{t \rightarrow 0} x(t)$, where $x(t)=\frac{\sin t}{t} \mathbf{i}+\sqrt{1-t} \mathbf{j}+\frac{1-e^{t}}{t} \mathbf{k}$.
Problem 147: Evaluate the limit $\lim _{t \rightarrow 1} r(t)$, where $r(t)=\left\langle\sqrt{t}, \frac{\ln t}{t^{2}-1}, \frac{1}{t-1}\right\rangle$.
Problem 148: Sketch the curves given by the following vector-valued functions:
(a) $r(t)=(\cos t+1, \sin t-3)$
(b) $r(t)=(3 \cos t+4,2 \sin t+1)$
(c) $r(t)=(1-t)(1,2)+t(4,-1) ; 0 \leq t \leq 1$
(d) $r(t)=(1-t)(1,1,0)+t(-2,1,3) ; 0 \leq t \leq 1$
(e) $r(t)=(2 \cos t+1,2 \sin t, t)$
(f) $r(t)=\left(t, t^{2}, t^{3}\right)$

Problem 149: Parametrize the following plane curves:
(a) $y=2 x+7$
(b) $x=3$
(c) $y=\sin x$
(d) $x=\sin y$
(e) $(\ln y+1)^{3}=x$
(f) $(x-1)^{2}+y^{2}=9$

Problem 150: Determine the plane/space curve represented by the following vector-valued functions:
(a) $(2 t+1, t)$
(b) $(3, t)$
(c) $\left(t^{2}, t\right)$
(d) $\left(t^{2}, t+1\right)$
(e) $(3 \cos t, 3 \sin t)$
(f) $(2 \cos t, 3 \sin t)$
(g) $(\cos t, \sin t, \sin 2 t)$

Problem 151: Let $r(t)=\left\langle t, t^{2}+1,1-t\right\rangle$, and $x(t)=\langle t, 0, \sqrt{t}\rangle$. Find the following:
(a) $2 r(t)$
(b) $r(t)+x(t)$
(c) $3 r(t)-2 x(t)$
(d) $r(t) \cdot x(t)$
(e) $r(t) \times x(t)$

Problem 152: Prove that if $r(t)$ is a vector valued function and $r(t) \cdot r(t)$ is constant, that $r(t) \cdot r^{\prime}(t)=$ 0.

Problem 153: Consider the vector functions $r(t)=\left\langle 2, t+1, t^{2}\right\rangle$ and $x(t)=\langle 1,2-t, 1\rangle$. Are $r(t)$ and $x(t)$ every perpendicular to each other? If so, where? Are they ever parallel to each other? If so, where?

Problem 154: If $r(t)=\sin 2 t \mathbf{i}-t^{-1 / 2} \mathbf{j}+e^{\sqrt{t}} \mathbf{k}$, find $r^{\prime}(t)$.

Problem 155: If $x(t)=\frac{2 t+1}{1-3 t} \mathbf{i}-e^{t} \sin t \mathbf{j}+(2+3 t)^{10} \mathbf{k}$, find $x^{\prime}(t)$.
Problem 156: If $r(t)=\left\langle\frac{\ln t}{t+1}, \sin e^{1-t}, \tan t \sec t\right\rangle$.
Problem 157: If $x(t)=\left\langle\frac{1}{t}, \frac{\sin \sqrt{t}}{\sqrt{t}}, \frac{1}{\sqrt[3]{t}}\right\rangle$, find $\int x(t) d t$.
Problem 158: If $r(t)=t e^{t} \mathbf{i}-\frac{t-\sqrt{t}}{\sqrt{t}} \mathbf{j}$, find $\int r(t) d t$.
Problem 159: Given $x^{\prime}(t)=\left\langle t, e^{2 t}\right\rangle$ and $x(0)=\langle 0,3\rangle$, find $x(t)$.
Problem 160: Given $r^{\prime}(t)=3 t^{2} \mathbf{j}+6 \sqrt{t} \mathbf{k}$ and $r(0)=\mathbf{i}+2 \mathbf{j}$, find $r(t)$.
Problem 161: Given $r^{\prime \prime}(t)=\langle 0,-4 \cos t,-3 \sin t\rangle, r^{\prime}(0)=3 \mathbf{k}$, and $r(0)=4 \mathbf{j}$, find $r(t)$.
Problem 162: Given $r^{\prime \prime}(t)=\mathbf{i}+\mathbf{k}, r^{\prime}(1)=\mathbf{i}+2 \mathbf{j}+\mathbf{k}$, and $r(0)=\mathbf{i}-\mathbf{k}$, find $r(t)$.
Problem 163: Given $a(t)=\mathbf{i}+\mathbf{j}+\mathbf{k}, v(0)=\mathbf{0}$, and $r(0)=\mathbf{0}$, find $r(t)$.
Problem 164: Parametrize the circle with radius 3 centered at $(-1,2)$, oriented counterclockwise. Sketch the curve.

Problem 165: Parametrize the line segment which goes from $(1,2,3)$ to $(-2,1,4)$. Sketch the curve.

Problem 166: Parametrize the ellipse centered at $(1,-3)$, with major axis parallel to the y-axis with length 6 and semi-minor axis of length 2, oriented counterclockwise.

Problem 167: Parametrize the circle centered at $(1,1)$ of radius 1 , oriented clockwise.
Problem 168: Parametrize a helix centered around the point $(1,2,3)$, whose projection to the $y z$-plane is a circle of radius 3 .

Problem 169: Parametrize a helix centered around $(1,0,-1)$, whose projection to the $x z$-plane is an ellipse with semi-major and semi-minor axis lengths of 1 and 3 , respectively.

Problem 170: Parametrize the curve of intersection between the given surfaces:
(a) $z=x^{2}+y^{2}, x+y=0$
(b) $z=x^{2}+y^{2}, z=4$
(c) $x^{2}+y^{2}=4, z=x^{2}$
(d) $x^{2}+4 y^{2}+z^{2}=16, x=z^{2}$
(e) $x^{2}+z^{2}=4, y^{2}+z^{2}=4$ [In the first octant.]

Problem 171: Give parametrizations for the curve which traces out the triangle with vertices $(0,0)$, $(2,0),(3,1)$, oriented clockwise.

Problem 172: Give parametrizations for the curve which traces out the boundary of the curve formed by $x^{2}+y^{2} \leq 1$ with the Quadrant I.

Problem 173: Find the curve resulting from the intersection of the plane $x+y=2$ with the paraboloid $z=1-x^{2}+y^{2}$.

Problem 174: Find the curve resulting from the intersection of the plane $z-y=3$ with the hyperbolic paraboloid $x=y^{2}-3 z^{2}$.

Problem 175: Find equations for the surface resulting from revolving the curve $y=x^{2}$ about the x-axis.

Problem 176: Given $r(t)=\langle-t, 4 t, 2 t\rangle$, find the length of the curve given by $r(t)$ over the interval $[0,3]$.

Problem 177: Given $x(t)=\mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$, find the length of the portion of the curve from $x(0)$ and $x(1)$.

Problem 178: Find the length of the helix $r(t)=\left(2 \cos t, 2 \sin t, \frac{1}{2} t\right)$ located between the planes $z=0$ and $z=6$.

Problem 179: Find the curvature of the curve $r(t)=\langle t, 2 \sin t, 2 \cos t$.
Problem 180: Find the curvature of the curve $x(t)=t \mathbf{i}+t^{2} \mathbf{j}$.
Problem 181: Find the curvature of the curve $r(t)=\left\langle e^{t}, 4 t\right\rangle$ at the point $(1,0)$.
Problem 182: Find the T, N, B frame for $r(t)=\langle t, 2 \cos t, 2 \sin t\rangle$.
Problem 183: Find the T, N, B frame for $x(t)=t^{2} \mathbf{i}-\mathbf{j}+2 t \mathbf{k}$.

