Vector Geometry & Algebra

Problem 3: For the vectors in Problem 1, which is larger: $\mathbf{u} \cdot \mathbf{u}$ or $\mathbf{v} \cdot \mathbf{v}$? Explain.

Problem 4: Determine if the vector $\langle 2, -4, 10 \rangle$ is parallel to $\langle -1, 2, -5 \rangle$.

Problem 5: Determine if the vector (1, 0, -3) is parallel to the vector (-2, 0, 6).

Problem 6: Determine if the vector (1, 2, 0) is parallel to the vector (0, 1, 2).

Problem 7: Let $\mathbf{u} = \langle 1, -1 \rangle$, $\mathbf{v} = \langle -2, 3 \rangle$, and $\mathbf{w} = \langle 4, 0 \rangle$, find the following and if the result is a vector, sketch the vector:

- (a) 2u (c) 2u 3v
- (b) $-\mathbf{w}$ (d) $\|\mathbf{u} + \mathbf{w}\|$

1 of 15

(e)
$$\mathbf{u} - \mathbf{v} + \mathbf{w}$$
 (f) $\|\mathbf{w}\|\mathbf{u}$

Problem 8: Let $\mathbf{u} = \langle 1, 3, -2 \rangle$, $\mathbf{v} = \langle 1, 1, 1 \rangle$, and $\mathbf{w} = \langle 0, -1, 5 \rangle$, find the following and if the result is a vector, sketch the vector:

(a)	2 u	(d) $\ \mathbf{u} + \mathbf{w}\ $
(b)	$-\mathbf{w}$	(e) $\mathbf{u} - \mathbf{v} + \mathbf{w}$

(c) $2\mathbf{u} - 3\mathbf{v}$ (f) $\|\mathbf{w}\|\mathbf{u}$

Problem 9: Given $\mathbf{u} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$, find a unit vector which points in the opposite direction of \mathbf{u} . Find also a unit vector which points in the same direction of \mathbf{u} .

Problem 10: Find a vector parallel to $\mathbf{i} + \mathbf{j} - \mathbf{k}$ with length 5.

Problem 11: Find a vector which points from (1, 2, 3) to (1, 0, -1).

Problem 12: Find the displacement vector from the point (1,3) to the point (-1,5).

Problem 13: Determine if the points (1, 1, 1), (1, -1, 2), and (3, 0, 2) are collinear.

Problem 14: Given a vector $\mathbf{w} = \langle -1, 7 \rangle$, find scalars a, b so that $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, where $\mathbf{u} = \langle 1, 2 \rangle$ and $\mathbf{v} = \langle 1, -1 \rangle$.

Problem 15: If $||\mathbf{u}|| = 6$, what is $||c\mathbf{u}||$, where c = -2?

Problem 16: If $||\mathbf{u}|| = 2$ and \mathbf{u} makes an angle of 60° with the positive *x*-axis, write \mathbf{u} in the form $\mathbf{u} = a \mathbf{i} + b \mathbf{j}$.

Problem 17: If $||\mathbf{u}|| = 3$ and \mathbf{u} makes an angle of 30° with the positive *y*-axis, write \mathbf{u} in the form $\mathbf{u} = a \mathbf{i} + b \mathbf{j}$.

Problem 18: Let $f(x) = 5 - x^2$. Find a vector which is parallel to the graph of f(x) at (1, 4). Find also a vector which is perpendicular to the graph of f(x) at (1, 4).

Problem 19: Suppose that $\mathbf{u} = a \mathbf{i} + b \mathbf{j}$ is a unit vector. Is it then true that the point (a, b) lies on the unit circle?

Problem 20: Suppose that $\mathbf{u} = a \mathbf{i} + b \mathbf{j} = \mathbf{0}$. Is it then true that a = -b?

Problem 21: Suppose that a = b, is it true that $||a\mathbf{i} + b\mathbf{j}|| = \sqrt{2}a$.

Problem 22: Suppose that $\mathbf{u} = \mathbf{i} + \sqrt{3}\mathbf{j}$. Find the angle \mathbf{u} makes with the positive *y*-axis.

Problem 23: Suppose a 50 lb weight is suspended by two cables which make angles of 50° and 30° with the ceiling, respectively. Find the tension vectors for each cable, as well as the total tension in each cable.

Problem 24: If u and v are vectors, prove that $|u + v| \le |u| + |v|$. Prove this algebraically and geometrically.

Dot & Cross Product

Problem 25: Let $\mathbf{u} = \langle 1, -3 \rangle$ and $\mathbf{v} = \langle -2, 1 \rangle$. Compute the following:

- (a) $\mathbf{u} \cdot \mathbf{v}$
- (b) $\mathbf{u} \cdot \mathbf{u}$
- (c) $2\mathbf{u} \cdot \mathbf{v}$
- (d) **u** · 3**v**
- (e) $2\mathbf{u} \cdot 3\mathbf{v}$

Problem 26: Let $\mathbf{u} = \langle 1, -1, 1 \rangle$ and $\mathbf{v} = \langle 2, 0, 1 \rangle$. Compute the following:

- (a) $\mathbf{u} \cdot \mathbf{v}$
- (b) $\mathbf{u} \cdot \mathbf{u}$
- (c) $2\mathbf{u} \cdot \mathbf{v}$
- (d) $\mathbf{u} \cdot 3\mathbf{v}$
- (e) $2\mathbf{u} \cdot 3\mathbf{v}$

Problem 27: Let $\mathbf{u} = \langle 1, -1, 1 \rangle$, $\mathbf{v} = \langle 2, 3, 1 \rangle$, and $\mathbf{w} = \langle 2, 0, 1 \rangle$. Is $\mathbf{u} \perp \mathbf{v}$? Is $\mathbf{u} \perp bw$? Is $\mathbf{v} \perp \mathbf{w}$? Explain.

Problem 28: Find at least four vectors perpendicular to the vector $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$.

Problem 29: Find at least 3 pairs (a, b) so that the vector $\mathbf{u} = \langle a, -2, b \rangle$ is perpendicular to the vector $\mathbf{v} = \langle 3, -1, 4 \rangle$.

Problem 30: Find $\mathbf{u} \cdot \mathbf{v}$ if $||\mathbf{u}|| = 8$, $||\mathbf{v}|| = 5$, and the angle between the vectors is 45° .

Problem 31: Find the angle between the vectors $\mathbf{u} = \mathbf{i} + \mathbf{j}$ and $\mathbf{v} = \mathbf{i} - 2\mathbf{j}$.

Problem 32: Find the angle between the vectors $\mathbf{u} = \mathbf{i} - \mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} - \mathbf{j}$.

Problem 33: Use the dot product to compute the length of $\mathbf{u} = \langle -1, 3, 4 \rangle$.

Problem 34: Given $\mathbf{u} = \langle 1, -3 \rangle$, find the angle \mathbf{u} makes with the positive x and y axes.

Problem 35: Given $\mathbf{u} = \langle 1, -3, 1 \rangle$, find the angle u makes with the positive x, y, and z axes.

Problem 36: Determine if the triangle with vertices (2, -7, 3), (-1, 5, 8), and (4, 6, -1) is acute, obtuse, or right. Is the triangle an equilateral or isosceles triangle?

Problem 37: Find the acute angle between $(y + 1)^2 = x$ and $y = x^3 - 1$ at their point(s) of intersection.

Problem 38: Find a pair of vectors that point in opposite directions that are both perpendicular to $\mathbf{u} = \langle 2, -3 \rangle$. Can these be forced to be unit vectors? Are there infinitely many such vectors? If there are, do they all have to be parallel?

Problem 39: Find the angles the diagonal of a cube makes with its edges and faces.

Problem 40: Find the acute angle between the lines x + 2y = 7 and 5x - y = 2.

Problem 41: A force vector $\mathbf{F} = 2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ acts on a body, pushing it straight from (1, 0, 1) to (-3, 1, 2). Find the work done.

Problem 42: Find the values of x such that the angle between (1, 1, 1) and (x, 2, -1) is 60°.

Problem 43: Let $\mathbf{u} = \langle 1, 3 \rangle$ and $\mathbf{v} = \langle 1, -1 \rangle$. Find **proj**_u v and **proj**_v u. Use these vectors to determine if $\mathbf{u} \perp \mathbf{v}$.

Problem 44: Let $\mathbf{u} = \langle 1, -4, 1 \rangle$ and $\mathbf{v} = \langle 5, 0, -1 \rangle$. Find $\mathbf{proj}_{\mathbf{u}} \mathbf{v}$ and $\mathbf{proj}_{\mathbf{v}} \mathbf{u}$. Use these vectors to determine if $\mathbf{u} \perp \mathbf{v}$.

Problem 45: Compute the determinant

	$\begin{vmatrix} 1 & 3 \\ -5 & 2 \end{vmatrix}$
Problem 46: Compute the determinant	
	$egin{array}{ccc} 0 & \pi \ 6 & \pi^3 \end{array}$
Problem 47: Compute the determinant	
	$ 5 \ 1 \ 2$
	$ 1 \ 2 \ 3$
	$ 1 \ 3 \ 5$
Problem 48: Compute the determinant	
	1 1 1

Problem 49: Let $\mathbf{u} = \langle 1, 3 \rangle$ and $\mathbf{v} = \langle -1, 2 \rangle$. Find a vector perpendicular to both \mathbf{u} and \mathbf{v} . Can you find infinitely many such vectors? If not, explain why, and if it is possible, find at least 3 more such vectors.

Problem 50: Let $\mathbf{u} = \langle 1, 0, -2 \rangle$ and $\mathbf{v} = \langle 5, -1, 0 \rangle$. Find a vector perpendicular to both \mathbf{u} and \mathbf{v} . Can you find infinitely many such vectors? If not, explain why, and if it is possible, find at least 3 more such vectors.

Problem 51: Find a unit vector which is perpendicular to both $\mathbf{u} = \langle 1, 0, -1 \rangle$ and $\mathbf{v} = \langle 0, 1, 2 \rangle$. Is this the only possible unit vector with this property?

Problem 52: Find the area of the parallelogram spanned by $\mathbf{u} = 2\mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 5\mathbf{i} + 2\mathbf{j}$.

Problem 53: Find the area of the parallelogram spanned by $\mathbf{u} = \mathbf{i} + 3\mathbf{j}$ and $\mathbf{v} = -\mathbf{i} + \mathbf{j}$.

Problem 54: Find the area of the parallelogram spanned by $\mathbf{u} = \langle 1, 1, 1 \rangle$ and $\mathbf{v} = \langle 3, -1, 2 \rangle$.

Problem 55: Find the area of the triangle with vertices (1, 1), (2, 3), and (-5, -1).

Problem 56: Find the area of the triangle with vertices (1, 0, 3), (-1, 2, 5), and (0, 0, -1).

Problem 57: Show that the quadrilateral with vertices (5, 2, 0), (2, 6, 1), (2, 4, 7), and (5, 0, 6) is a parallelogram. Sketch this parallelogram and find its area.

Problem 58: Use the cross product to determine if the vectors (1, 1, 1) and (3, 3, 3) are parallel.

Problem 59: Find the angle between $\langle 1, 0 \rangle$ and $\langle 1, -3 \rangle$ using the cross product. Use the cross product to determine the angle between $\langle 1, 1, 1 \rangle$ and $\langle 1, -2, 1 \rangle$.

Problem 60: Find the volume of the parallelepiped spanned by $3\mathbf{i} - 5\mathbf{j} + \mathbf{k}$, $2\mathbf{j} - 2\mathbf{k}$, and $3\mathbf{i} + \mathbf{j} + \mathbf{k}$.

Problem 61: Are the vectors (1, 4, -7), (2, -1, 4), and (0, -9, 18) coplanar? Explain.

Problem 62: Find $|\mathbf{u} \times \mathbf{v}|$ if $||\mathbf{u}|| = 2$, $||\mathbf{v} = 4||$, and the angle between \mathbf{u} and \mathbf{v} is 30°.

Problem 63: If u and v are vectors, what is $v \cdot (u \times v)$? What is $2u \times u$? Explain.

Problem 64: Determine if the vectors $\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$, $3\mathbf{i} - \mathbf{j}$, and $5\mathbf{i} + 9\mathbf{j} - 4\mathbf{k}$ are coplanar.

Problem 65: Is the following statement true or false: if $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.

Problem 66: Is it always the case that $\mathbf{u} \times \mathbf{u} = \mathbf{0}$? Explain.

Problem 67: If $\mathbf{u} \cdot \mathbf{v} = \sqrt{3}$ and $\mathbf{u} \times \mathbf{v} = \langle 1, 2, 2 \rangle$, what is teh angle between \mathbf{u} and \mathbf{v} ?

Problem 68: Find all vectors **u** so that $\langle 1, 2, 1 \rangle \times \mathbf{u} = \langle 3, 1, -5 \rangle$. Is there a vector **u** so that $\langle 1, 2, 1 \rangle \times \mathbf{u} = \langle 3, 1, 5 \rangle$.

Problem 69: Prove that if u and v are vectors that $|\mathbf{u} + \mathbf{v}|^2 + |\mathbf{u} - \mathbf{v}|^2 = 2(|\mathbf{u}|^2 + |\mathbf{v}|^2)$.

Problem 70: Prove the Law of Cosines: if a triangle has sides *a*, *b*, *c*, then

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

where θ is the angle opposite *c*.

Problem 71: Prove that if the diagonals of a parallelogram are perpendicular, then the parallelogram is a square.

Problem 72: Prove that if P_1, P_2, \ldots, P_n are vertices of a regular polygon with *n*-sides and \mathcal{O} is the center of the polygon, that $\sum_{i=1}^{n} \mathcal{OP}_i = \mathbf{0}$.

Problem 73: Find the vector, parametric, and symmetric forms of the line $\ell(t) = \langle 1, -1, 2 \rangle t + (1, 2, 3)$.

Problem 74: Find the vector, parametric, and symmetric forms of the line

$$\begin{cases} x = 2t + 1\\ y = 5\\ z = 3 - 2t \end{cases}$$

Problem 75: Find the vector, parametric, and symmetric forms of the line

$$\frac{x-1}{3} = \frac{2y-1}{4} = \frac{z+1}{5}$$

Problem 76: Find the equation of the line parallel to the vector (1,3,1) through the point (1,-1,2).

Problem 77: Find the equation of the line through (1, 3, -2) and (5, 2, 4).

Problem 78: Find the (parametric) equation of the line through (1,3) and (-5,4).

Problem 79: Find the equation of the line perpendicular to the plane 2x - y + 3z = 5 that passes through the point (5, 0, -2).

Problem 80: Find the equation of the line passing through the origin that is perpendicular to both $\mathbf{i} + 2\mathbf{j}$ and $\mathbf{i} - 3\mathbf{k}$.

Problem 81: Show that the lines r(t) = (4t+3, 6t+3, 2t) and s(t) = (2t, 3t-2, t-1) are the same.

Problem 82: Show that the lines $r(t) = \langle 2, -1, 3 \rangle t + (0, 1, 1)$ and $s(t) = \langle 4, -2, 6 \rangle t + (1, 1, -1)$ are parallel.

Problem 83: Show that the lines r(t) = (t + 4, t + 3, 1 - t) and s(t) = (6t + 3, 2 - 4t, 2t + 2) are perpendicular.

Problem 84: Show that the lines r(t) = (3t+1, t, 2t+1) and s(t) = (3t-4, 6t-10, 3t-4) intersect.

Problem 85: Show that the lines r(t) = (t + 1, 2 - t, 2t + 1) and s(t) = (t, 2t, 1 - t) are skew.

Problem 86: Determine if the lines r(t) = (2t, t - 1, t) and s(t) = (-2 - t, 3t + 5, 2t + 4) intersect, are skew, perpendicular, parallel, or the same.

Problem 87: Determine if the lines r(t) = (t + 1, 2 - t, 3t) and s(t) = (s + 5, 4 - s, 3s + 2) intersect, are skew, perpendicular, parallel, or the same.

Problem 88: Determine if the lines r(t) = (2t + 1, 3 - t, t + 5) and s(t) = (2t, t + 1, 1 - t) intersect, are skew, perpendicular, parallel, or the same.

Problem 89: Determine if the lines r(t) = (2t - 1, t + 1, 3t + 1) and s(t) = (5t - 1, 1 - t, 1 - 3t) intersect, are skew, perpendicular, parallel, or the same.

Problem 90: Determine if the lines r(t) = (2t+1, 1, -1-t) and s(t) = (4t+5, 1, -3-2t) intersect, are skew, perpendicular, parallel, or the same.

Problem 91: Determine the equation of the plane passing through (1, 2, 3) with normal vector $\mathbf{n} = \langle 2, -1, 3 \rangle$.

Problem 92: Determine the equation of the plane that is perpendicular to the vectors $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ and $2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and passes through the point (1, 0, 1).

Problem 93: Determine the equation of the plane passing through the points (1, 0, 1), (0, 1, 1), and (1, 1, 0).

Problem 94: Determine the equation of the plane which is perpendicular to the planes x+y+z=3 and 2x + y - z = -2 and contains the point (1, 1, -1).

Problem 95: Find an equation of the plane passing through (0, 1, 2) that is parallel to the *xz*-plane. Is this plane unique? Explain.

Problem 96: Find an equation of a plane containing the *x*-axis and making an angle of $\frac{\pi}{3}$ with the positive *y*-axis.

Problem 97: Find the equation of the plane with x, y, z intercepts a, b, c, respectively.

Problem 98: Determine the equation of the plane containing (2, 2, 2) and perpendicular to the line

$$\begin{cases} x = 2t + 1\\ y = 1 - 5t\\ z = t + 1 \end{cases}$$

Problem 99: Determine the equation of the plane containing the line $\ell(t) = (t + 1, 1 - t, t + 2)$ and parallel to the plane 3x + 4y - z = 2.

Problem 100: Determine the equation of the plane passing through the line of intersection between x - z = 1 and y + 2z = 3 and is perpendicular to x + y - 2z = 1.

Problem 101: Determine where (if anywhere) the line $\ell(t) = (t + 1, 3t + 1, t)$ intersects the plane x + y + z = 3.

Problem 102: Determine where (if anywhere) the line $\ell(t) = (t + 1, 4 - t, t)$ intersects the plane 2x + 3y + z = 0.

Problem 103: Determine where (if anywhere) the line $\ell(t) = (4 - t, 3 + t, 2t)$ intersects the plane x - y + 3z = 5.

Problem 104: Find parametric equations for the line of intersection between the planes x+y-z = 4 and 2x - y + 3z = 4.

Problem 105: Determine if the plane x + 2y - 3z = 4 contains the line $\ell(t) = (t + 6, 1 - t, t)$.

Problem 106: Determine if the plane x - y + z = 2 contains the line $\ell(t) = (2t - 1, 3t + 1, t + 4)$.

Problem 107: Are the planes x+y+z=5 and x-y+z=6 parallel, intersecting, or perpendicular?

Problem 108: Are the planes 2x - z = 4 and x + 2z = 6 parallel, intersecting, or perpendicular?

Problem 109: Are the planes x - 2y + z = 5 and -2x + 4y - 2z = 2 parallel, intersecting, or perpendicular?

Problem 110: Determine the angle of intersection between the planes x - 2y + z = 2 and x + 2y - 4z = 1.

Problem 111: Find the angle of intersection between the planes x - 2y + z = 0 and 2x + 3y - 2z = 0.

Problem 112: Determine a method to determine if a given point P lies on, 'above', or 'below' a given plane.

Distance Problems

Problem 113: Find the projection of the point P = (1, -3, 2) to the *xy*, *yz*, and *xz*-planes. Use this to determine the distance from *P* to these planes.

Problem 114: Sketch the point P = (-1, -3, -2) in \mathbb{R}^3 . Then find the distance from P to...

(a)	<i>xy</i> -plane	(e)	y-axis
(b)	yz-plane	(f)	z-axis
(c)	xz-plane	(g)	the origin
(d)	<i>x</i> -axis	(h)	the point $(1, 4, 2)$

Problem 115: Sketch the point P = (1, -5, 2) in \mathbb{R}^3 . Then find the distance from P to...

(a)	<i>xy</i> -plane	(e)	y-axis
(b)	yz-plane	(f)	z-axis
(c)	xz-plane	(g)	the origin
(d)	x-axis	(h)	the point $(1, 4, 2)$

Problem 116: Find the distance from the point (3, -1, 2) to the line $\ell(t) = (2t - 1, t - 2, t - 1)$.

Problem 117: Find the distance from the plane x + y - z = 5 to the plane 2x - y + 3z = 4.

Problem 118: Find the distance between the lines $r(t) = \langle 2, -2, 2 \rangle t + (-1, 0, 1)$ and $s(t) = \langle 1, 2, 1 \rangle t + (-1, 1, -2)$.

Problem 119: Find the distance from the line r(t) = (2t + 1, t + 1, 1 - 2t) to the line x(t) = (2t, t - 1, 2 - 2t).

Problem 120: Find the distance between the lines r(t) = (t+3, 3t+6, t+1) and x(t) = (2t-1, 1-t+2t-3).

Problem 121: Find the distance from the line x(t) = (6t + 4, -2t, 4t + 3) and s(t) = (3t - 8, 4 - t, 2t - 5).

Problem 122: Find the distance between the planes x + y = 3 and x - z = 5.

Problem 123: Find the distance from the point (1, 1, 3) and the line

$$\begin{cases} x = 4t + 1\\ y = -t - 1\\ z = t + 1 \end{cases}$$

Problem 124: Find the distance between the planes x - y + 3z = 17 and x - y + 3z = 6.

Problem 125: Find the distance from the line r(t) = (5, 1, 1) t + (4, 3, 1) to the line s(t) = (3, 2, 1) t + (5, 6, 2).

Problem 126: Find the distance between the given lines

$$\begin{cases} x = t - 2\\ y = 1 - 3t\\ z = t + 3 \end{cases} \qquad \begin{cases} x = t + 1\\ y = 1 - 2t\\ z = t \end{cases}$$

Problem 127: Find the distance between the following lines

$$\begin{cases} x = t - 1 \\ y = t - 2 \\ z = t \end{cases} \qquad \begin{cases} x = 2t - 1 \\ y = 2t + 1 \\ z = 2t \end{cases}$$

Problem 128: Find the distance from the plane x - 5y + z = -5 and x - 5y + z = -8.

Problem 129: Find the distance from the line r(t) = (2t+3, 1-t, t+1) to the sphere $x^2+y^2+z^2 = 1$. [Hint: Sketch the scenario and think about how you can reduce this to a case you already know how to do, making the necessary adjustments.]

Problem 130: Prove that the distance from a point $P \in \mathbb{R}^3$ to a line with direction vector **L** is given by

$$d = \frac{|\vec{PQ} \times \mathbf{L}|}{|\mathbf{L}|}$$

where Q is any point on the line.

Problem 131: Prove that the distance between a point P and a plane with normal vector n is given by

$$d = \frac{|\vec{PQ} \cdot \mathbf{n}|}{|\mathbf{n}|}$$

where Q is any point on the plane.

Problem 132: Given lines $r(t) = P + t\mathbf{L}_1$ and $s(t) = Q + t\mathbf{L}_2$, show that the distance between them is

$$d = \frac{|PQ \cdot (\mathbf{L}_1 \times \mathbf{L}_2)|}{|\mathbf{L}_1 \times \mathbf{L}_2|}$$

Curves & Quadratic Surfaces

Problem 133: Identify the following curves/surfaces in \mathbb{R}^3 , being as specific as possible:

(a) ______:
$$x + 2y - z = 3$$

(b) ______: $z^2 - 4 = 2x^2 + 3y^2$
(c) ______: $\frac{1}{2}x^2 + 5y^2 = 1 - z^2$
(d) ______: $2t \mathbf{i} - \mathbf{j} + (1 - t) \mathbf{k}$
(e) ______: $y = x^2 + 2x + 1$
(f) ______: $x + y^2 - z^2 = 0$
(g) ______: $(t - 5, 1 + \cos t, 3 + \sin t)$
(h) ______: $y = x^2 + z^2$

Problem 134: Identify the following curves/surfaces in \mathbb{R}^3 , being as specific as possible:

(a) ______:
$$(2t + 3, \cos 2t, \sin 2t + 4)$$

(b) ______: $y = 2x + 3$
(c) ______: $\frac{5}{3}x^2 = \pi - y^2 + \frac{1}{2}z^2$
(d) ______: $(y - 1)^2 = x^2 + (z + 3)^2$
(e) ______: $(y - 1)^2 - (z + 1)^2 = 5 - x^2$
(f) ______: $(\cos 8t, 3, \sin 8t + 5)$
(g) ______: $(z - 1)^2 = y$
(h) ______: $\frac{1}{3}x = y^2 - 5(z + 1)^2$
(i) ______: $(x + 1)^2 = 4 + y^2 + (z - 3)^2$
(j) ______: $(1 - 2t, 3, 4t + 5)$
(k) ______: $(1 - t)(0, 0, 0) + t(1, 2, 3)$
(l) ______: $1 - x = (z + 2)^2 + (y - 1)^2$

Problem 135: Identify the following curves/surfaces in \mathbb{R}^3 , being as specific as possible:

(k) ____:
$$(y-1)^2 + (z-5)^2 = 3 + x^2$$

(l) ____: $(0,0,t)$

Problem 136: Use level curves to sketch the surface $4x^2 + \frac{1}{9}y^2 + z^2 = 1$. **Problem 137:** Use level curves to sketch the surface $4x^2 + y^2 - z^2 = 1$. **Problem 138:** Use level curves to sketch the surface $y = (x - 1)^2 + \frac{(z+1)^2}{2}$. **Problem 139:** Use level curves to sketch the surface $y^2 - 2x^2 - z^2 = 1$. **Problem 140:** Use level curves to sketch the surface yz = 1.

Vector Functions

Problem 141: Find the domain of the vector function $r(t) = \sin t \mathbf{i} + t^2 \mathbf{j} - e^t \mathbf{k}$.

Problem 142: Find the domain of the vector function $x(t) = \left\langle \sin e^t, \frac{1}{\sqrt{t}}, \sqrt{1-t} \right\rangle$.

Problem 143: Find the domain of the vector function $x(t) = \frac{1}{t^2 - 1} \mathbf{i} + \ln t \mathbf{j} + t^{-1/2} \mathbf{k}$.

Problem 144: Evaluate the vector valued function $r(t) = \sin(\pi t)\mathbf{i} - (2t^2 + 1)\mathbf{j} + \frac{t+1}{t-3}\mathbf{k}$ at times t = -1, 0, 1, 2.

Problem 145: Let $r(t) = \langle t, 2, t-1 \rangle$. Evaluate $r(t + \Delta t)$.

Problem 146: Evaluate the limit $\lim_{t\to 0} x(t)$, where $x(t) = \frac{\sin t}{t} \mathbf{i} + \sqrt{1-t} \mathbf{j} + \frac{1-e^t}{t} \mathbf{k}$.

Problem 147: Evaluate the limit $\lim_{t\to 1} r(t)$, where $r(t) = \left\langle \sqrt{t}, \frac{\ln t}{t^2 - 1}, \frac{1}{t - 1} \right\rangle$.

Problem 148: Sketch the curves given by the following vector-valued functions:

 ≤ 1

(a)
$$r(t) = (\cos t + 1, \sin t - 3)$$

(b) $r(t) = (3\cos t + 4, 2\sin t + 1)$
(c) $r(t) = (1 - t)(1, 2) + t(4, -1); 0 \le t \le 1$
(d) $r(t) = (1 - t)(1, 1, 0) + t(-2, 1, 3); 0 \le t$
(e) $r(t) = (2\cos t + 1, 2\sin t, t)$

(f) $r(t) = (t, t^2, t^3)$

Problem 149: Parametrize the following plane curves:

- (a) y = 2x + 7(b) x = 3(c) $y = \sin x$ (d) $x = \sin y$ (e) $(\ln y + 1)^3 = x$
- (f) $(x-1)^2 + y^2 = 9$

Problem 150: Determine the plane/space curve represented by the following vector-valued functions:

- (a) (2t+1,t)
- (b) (3,*t*)
- (c) (t^2, t)
- (d) $(t^2, t+1)$
- (e) $(3\cos t, 3\sin t)$
- (f) $(2\cos t, 3\sin t)$
- (g) $(\cos t, \sin t, \sin 2t)$

Problem 151: Let $r(t) = \langle t, t^2 + 1, 1 - t \rangle$, and $x(t) = \langle t, 0, \sqrt{t} \rangle$. Find the following:

- (a) 2r(t)
- (b) r(t) + x(t)
- (c) 3r(t) 2x(t)
- (d) $r(t) \cdot x(t)$
- (e) $r(t) \times x(t)$

Problem 152: Prove that if r(t) is a vector valued function and $r(t) \cdot r(t)$ is constant, that $r(t) \cdot r'(t) = 0$.

Problem 153: Consider the vector functions $r(t) = \langle 2, t + 1, t^2 \rangle$ and $x(t) = \langle 1, 2 - t, 1 \rangle$. Are r(t) and x(t) every perpendicular to each other? If so, where? Are they ever parallel to each other? If so, where?

Problem 154: If $r(t) = \sin 2t \, \mathbf{i} - t^{-1/2} \, \mathbf{j} + e^{\sqrt{t}} \, \mathbf{k}$, find r'(t).

Problem 155: If $x(t) = \frac{2t+1}{1-3t}\mathbf{i} - e^t \sin t \mathbf{j} + (2+3t)^{10}\mathbf{k}$, find x'(t).

Problem 156: If $r(t) = \left\langle \frac{\ln t}{t+1}, \sin e^{1-t}, \tan t \sec t \right\rangle$.

Problem 157: If
$$x(t) = \left\langle \frac{1}{t}, \frac{\sin\sqrt{t}}{\sqrt{t}}, \frac{1}{\sqrt[3]{t}} \right\rangle$$
, find $\int x(t) dt$.

Problem 158: If $r(t) = te^t \mathbf{i} - \frac{t - \sqrt{t}}{\sqrt{t}} \mathbf{j}$, find $\int r(t) dt$.

Problem 159: Given $x'(t) = \langle t, e^{2t} \rangle$ and $x(0) = \langle 0, 3 \rangle$, find x(t).

Problem 160: Given $r'(t) = 3t^2 \mathbf{j} + 6\sqrt{t} \mathbf{k}$ and $r(0) = \mathbf{i} + 2\mathbf{j}$, find r(t).

Problem 161: Given $r''(t) = \langle 0, -4\cos t, -3\sin t \rangle$, r'(0) = 3 k, and r(0) = 4 j, find r(t).

Problem 162: Given r''(t) = i + k, r'(1) = i + 2j + k, and r(0) = i - k, find r(t).

Problem 163: Given a(t) = i + j + k, v(0) = 0, and r(0) = 0, find r(t).

Problem 164: Parametrize the circle with radius 3 centered at (-1, 2), oriented counterclockwise. Sketch the curve.

Problem 165: Parametrize the line segment which goes from (1, 2, 3) to (-2, 1, 4). Sketch the curve.

Problem 166: Parametrize the ellipse centered at (1, -3), with major axis parallel to the *y*-axis with length 6 and semi-minor axis of length 2, oriented counterclockwise.

Problem 167: Parametrize the circle centered at (1, 1) of radius 1, oriented clockwise.

Problem 168: Parametrize a helix centered around the point (1, 2, 3), whose projection to the yz-plane is a circle of radius 3.

Problem 169: Parametrize a helix centered around (1, 0, -1), whose projection to the *xz*-plane is an ellipse with semi-major and semi-minor axis lengths of 1 and 3, respectively.

Problem 170: Parametrize the curve of intersection between the given surfaces:

- (a) $z = x^2 + y^2$, x + y = 0
- (b) $z = x^2 + y^2$, z = 4

(c)
$$x^2 + y^2 = 4, z = x^2$$

(d)
$$x^2 + 4y^2 + z^2 = 16, x = z^2$$

(e) $x^2 + z^2 = 4$, $y^2 + z^2 = 4$ [In the first octant.]

Problem 171: Give parametrizations for the curve which traces out the triangle with vertices (0, 0), (2, 0), (3, 1), oriented clockwise.

Problem 172: Give parametrizations for the curve which traces out the boundary of the curve formed by $x^2 + y^2 \le 1$ with the Quadrant I.

Problem 173: Find the curve resulting from the intersection of the plane x + y = 2 with the paraboloid $z = 1 - x^2 + y^2$.

Problem 174: Find the curve resulting from the intersection of the plane z - y = 3 with the hyperbolic paraboloid $x = y^2 - 3z^2$.

Problem 175: Find equations for the surface resulting from revolving the curve $y = x^2$ about the *x*-axis.

Problem 176: Given $r(t) = \langle -t, 4t, 2t \rangle$, find the length of the curve given by r(t) over the interval [0, 3].

Problem 177: Given $x(t) = \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$, find the length of the portion of the curve from x(0) and x(1).

Problem 178: Find the length of the helix $r(t) = (2 \cos t, 2 \sin t, \frac{1}{2}t)$ located between the planes z = 0 and z = 6.

Problem 179: Find the curvature of the curve $r(t) = \langle t, 2 \sin t, 2 \cos t \rangle$.

Problem 180: Find the curvature of the curve $x(t) = t \mathbf{i} + t^2 \mathbf{j}$.

Problem 181: Find the curvature of the curve $r(t) = \langle e^t, 4t \rangle$ at the point (1, 0).

Problem 182: Find the *T*, *N*, *B* frame for $r(t) = \langle t, 2 \cos t, 2 \sin t \rangle$.

Problem 183: Find the *T*, *N*, *B* frame for $x(t) = t^2 \mathbf{i} - \mathbf{j} + 2t \mathbf{k}$.