Quiz 1: Plot the point $(-2,1,3)$ and find the distance to the following:
(a) $x y$-plane: 3
(d) x-axis: $\sqrt{1^{2}+3^{2}}=\sqrt{10}$
(b) yz-plane: 2
(e) y-axis: $\sqrt{(-2)^{2}+3^{2}}=\sqrt{13}$
(c) $x z$-plane: 1
(f) z-axis: $\sqrt{(-2)^{2}+1^{2}}=\sqrt{5}$

Quiz 2: Let $\mathbf{u}=\langle 1,0,-1,2\rangle$ and $\mathbf{v}=\langle 1,1,1,1\rangle$. Complete the following:
(a) Find $\mathbf{u}-2 \mathbf{v}$.

$$
\mathbf{u}-2 \mathbf{v}=\langle 1,0,-1,2\rangle-2\langle 1,1,1,1\rangle=\langle 1,0,-1,2\rangle-\langle 2,2,2,2\rangle=\langle-1,-2,-3,0\rangle
$$

(b) Find $\|\mathbf{v}\|$.

$$
\|\mathbf{v}\|=\sqrt{1^{2}+1^{2}+1^{2}+1^{2}}=\sqrt{4}=2
$$

(c) Is \mathbf{u} parallel to \mathbf{v} ? Explain.

No, \mathbf{u} is not parallel to \mathbf{v}. If \mathbf{u} were parallel to \mathbf{v}, then there would be $c \in \mathbb{R}$ such that $\mathbf{u}=c \mathbf{v}=\langle c, c, c, c\rangle$. Comparing the first component, it is clear that we need $c=1$. But $\mathbf{1} \mathbf{v}=\mathbf{v} \neq \mathbf{u}$.

Quiz 3: Let $\mathbf{a}=\langle 1,-1,2\rangle, \mathbf{b}=\langle 3,-1,2\rangle, \mathbf{c}=\mathbf{i}+\mathbf{k}$, and $\mathbf{d}=2 \mathbf{j}-\mathbf{k}$.
(a) What is $\mathbf{a} \cdot \mathbf{b}$?

$$
\mathbf{a} \cdot \mathbf{b}=\langle 1,-1,2\rangle \cdot\langle 3,-1,2\rangle=1(3)-1(-1)+2(2)=3+1+4=8
$$

(b) Is $\mathbf{a} \perp \mathbf{b}$? Explain.

No, $\mathbf{a} \cdot \mathbf{b} \neq 0$, so that \mathbf{a} cannot be perpendicular to \mathbf{b}.
(c) What is $\mathbf{c} \cdot \mathrm{d}$?

$$
\mathbf{c} \cdot \mathbf{d}=\langle 1,0,1\rangle \cdot\langle 0,2,-1\rangle=1(0)+0(2)+1(-1)=0+0-1=-1
$$

(d) If \mathbf{u}, \mathbf{v} are vectors in \mathbb{R}^{3}, what is $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})$?
$\mathbf{u} \times \mathbf{v}$ is a vector perpendicular to both \mathbf{u} and \mathbf{v}. Because $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u}, we must have $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})=0$.

Quiz 4: Find the vector and parametric forms of the line that passes through $(-1,3,5)$ and is parallel to the line $\mathbf{r}(t)=(2 t+1) \mathbf{i}-(t+2) \mathbf{j}+3 \mathbf{k}$.

Solution. The line must have direction vector $\langle 2,-1,0\rangle$ and go through the point $(-1,3,5)$. Therefore, the vector form is $\ell(t)=\langle 2,-1,0\rangle t+(-1,3,5)$. Then we have $\ell(t)=(2 t-1,3-t, 5)$. This gives parametric form

$$
\left\{\begin{array}{l}
x=2 t-1 \\
y=3-t \\
z=5
\end{array}\right.
$$

Quiz 5: Find the equation of the plane that passes through the point $(4,5,0)$ and is perpendicular to the line $\ell(t)=(5 t+1,1-2 t, 3 t+2)$.

Solution. If the line is perpendicular to the plane, then it points in the direction of a normal vector for the plane. But then $\langle 5,-2,3\rangle$ is a normal vector for the plane. The point $(4,5,0)$ is in the plane. Then

$$
\begin{aligned}
\langle 5,-2,3\rangle \cdot\langle x-4, y-5, z-0\rangle & =0 \\
5(x-4)-2(y-5)+3(z-0) & =0 \\
5 x-20-2 y+10+3 z & =0 \\
5 x-2 y+3 z & =10
\end{aligned}
$$

Quiz 6: Find the point where the line $\ell(t)=\langle 2,-1,1\rangle t+(1,1,2)$ intersects the plane $x+y+z=6$.
Solution. The parametric form of the line is

$$
\left\{\begin{array}{l}
x=2 t+1 \\
y=1-t \\
z=t+2
\end{array}\right.
$$

If the line and the plane intersect, the x, y, z in the plane satisfy these relations. Therefore,

$$
\begin{aligned}
x+y+z & =6 \\
(2 t+1)+(1-t)+(t+2) & =6 \\
2 t+4 & =6 \\
2 t & =2 \\
t & =1
\end{aligned}
$$

Given that each point on the line is of the form $(2 t+1,1-t, t+2)$, if $t=1$, then the point is $(3,0,3)$.

Quiz 7: Is the point $(1,2,3)$ on the line $\ell(t)=\langle 2,-1,1\rangle t+(-3,4,1)$? Is the point $(1,2,3)$ on the plane $2 x+y-z=3$? Justify your answers.

Solution. The parametric form of the line is

$$
\left\{\begin{array}{l}
x=2 t-3 \\
y=4-t \\
z=t+1
\end{array}\right.
$$

Then $(x, y, z)=(1,2,3)$ so that $(2 t-3,4-t, t+1)=(1,2,3)$. Relating the z-component, we have $t+1=3$ so that $t=2$. Plugging in $t=2$, we have $(2 \cdot 2-3,4-2,2+1)=(1,2,3)$. Then the point is on the line.

Now at the point $(1,2,3)$, we have $(x, y, z)=(1,2,3)$. Then we have

$$
\begin{array}{r}
2 x+y-z \stackrel{?}{=} 3 \\
2(1)+2-3 \stackrel{?}{=} 3 \\
2+2-3 \stackrel{?}{=} 3 \\
1 \neq 3
\end{array}
$$

Therefore, the point $(1,2,3)$ does not satisfy the relation $2 x+y-z=3$. The point $(1,2,3)$ is not on the plane.

Quiz 8: Is the line $\ell(t)=(t-2,1-t, t-1)$ contained in the plane $3 x+9 y+7 z=0$? Explain.
Solution. The line has parametric form

$$
\left\{\begin{array}{l}
x=t-2 \\
y=1-t \\
z=t-1
\end{array}\right.
$$

Therefore, if the line is contained in the plane then these x, y, z satisfy the relation $3 x+9 y+7 z=0$ for all x, y, z on the line, i.e. for all t. This means

$$
\begin{aligned}
3 x+9 y+7 z & =0 \\
3(t-2)+9(1-t)+7(t-1) & =0 \\
3 t-6+9-9 t+7 t-7 & =0 \\
t-4 & =0
\end{aligned}
$$

Notice while this does have a solution, it is not true for all t. Therefore, the line merely intersects the plane (when $t=4$) but is not contained in the plane.

Quiz 9: Find parametrizations for the following:
(a) The line segment 'pointing' from $(1,2,3)$ to $(4,5,6)$.

$$
\ell(t)=(1-t)(1,2,3)+t(4,5,6) ; \quad t \in[0,1]
$$

(b) The circle with radius 3 centered at $(4,5)$, oriented counterclockwise.

$$
r(t)=(3 \cos t+4,3 \sin t+5)
$$

(c) A helix with 'radius' 2 , centered around ($1,0,1$).

$$
x(t)=(2 \cos t+1, t, 2 \sin t+1)
$$

(d) The curve $y=e^{x} \sin x$.

$$
C(t)=\left(t, e^{t} \sin t\right)
$$

Quiz 10: Identify the following surfaces in \mathbb{R}^{3} :
(a) \qquad
(b) \qquad : $x=y+z$
(c) \qquad $: z^{2}=1+2 x^{2}+3 y^{2}$
(d) \qquad : $y=x^{2}+x+1$
(e) \qquad : $y^{2}-z^{2}-x^{2}=0$
(f) \qquad : $y^{2}=z+x^{2}$
(g) \qquad : $\frac{1}{2} x^{2}+y^{2}+2 z^{2}=4$
(h) \qquad $: z^{2}+4=x^{2}+y^{2}$

Quiz 11: Use limits along the x and y axes to show that the following limit does not exist: $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}$

Along x-axis, $y=0: \lim _{x \rightarrow 0} \frac{x-0}{x+y}=\lim _{x \rightarrow 0} \frac{x}{x}=1$
Along y-axis, $x=0: \lim _{y \rightarrow 0} \frac{0-y}{0+y}=\lim _{y \rightarrow 0}-\frac{y}{y}=-1$
But as these limits are not the same, the $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{x+y}$ does not exist.

Quiz 12: Define $f(x, y)=\frac{x \cos (x y)}{y+1}$. Find the following:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{1}{y+1}(\cos (x y)-x y \sin (x y)) \\
& \frac{\partial f}{\partial y}=\frac{-x^{2} \sin (x y)(y+1)-x \cos (x y)}{(y+1)^{2}}
\end{aligned}
$$

Quiz 13: Let $f(x, y)=y^{x}$.
(a) $f_{x}(x, y)=y^{x} \ln y$
(b) $f_{y}(x, y)=x y^{x-1}$
(c) $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y)=\lim _{x \rightarrow 0} 0^{x}=0$
(d) $\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)=\lim _{y \rightarrow 0} y^{0}=1$
(e) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\mathrm{DNE}$
\star Note: This is why 0^{0} is undefined. We want the values of y^{x} to be consistent (meaning continuous) near $(0,0)$. But from (c), (d), and (e), we can see there is no consistent definition of 0^{0} to achieve this.
\qquad

Quiz 14: Use the Chain Rule to find $\frac{\partial f}{\partial s}$, where $f(x, y, z)=x^{2}+y+\cos z, x(s, t)=e^{s t}, y(s, t)=\frac{s}{t}$, and $z(s, t)=t-s$.

Solution.

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s} \\
& =(2 x+1) \cdot t e^{s t}+1 \cdot \frac{1}{t}+(-\sin z) \cdot(-1) \\
& \left.=t e^{s t}\left(2 e^{s t}+1\right)+\frac{1}{t}+\sin (t-s)\right]
\end{aligned}
$$

Quiz 15: Find the tangent plane to $x^{2}+\cos y=2 e^{3-z}$ at the point $(1,0,3)$.
Solution. Let $F(x, y, z)=x^{2}+\cos y-2 e^{3-z}$, so that the surfaces is the points where $F(x, y, z)=0$. Then

$$
\begin{aligned}
\nabla F & =\left\langle 2 x,-\sin y, 2 e^{3-z}\right\rangle \\
\nabla F(1,0,3) & =\langle 2,0,2\rangle
\end{aligned}
$$

Then the tangent plane is

$$
\begin{aligned}
\langle 2,0,2\rangle \cdot\langle x-1, y-0, z-3\rangle & =0 \\
2\langle 1,0,1\rangle \cdot\langle x-1, y-0, z-3\rangle & =0 \\
\langle 1,0,1\rangle \cdot\langle x-1, y-0, z-3\rangle & =0 \\
1(x-1)+0(y-0)+1(z-3) & =0 \\
x-1+0+z-3 & =0 \\
x+z & =4
\end{aligned}
$$

Quiz 16: Suppose $f(x, y)=5 x y$ measures the temperature at a point (x, y) on a flat surface.
(a) $\nabla f=\langle 5 y, 5 x\rangle$
(b) What is the rate of change for $f(x, y)$ at $(2,1)$ in the direction $3 \mathbf{i}+4 \mathbf{j}$?

$$
\begin{aligned}
\nabla f(2,1) & =\langle 5(1), 5(2)\rangle=\langle 5,10\rangle \\
\|\mathbf{u}\| & =\|3 \mathbf{i}+4 \mathbf{j}\|=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=\sqrt{25}=5 \\
D_{\mathbf{u}} f(2,1) & =\langle 5,10\rangle \cdot \frac{\langle 3,4\rangle}{5}=5\langle 1,2\rangle \cdot \frac{\langle 3,4\rangle}{5}=\frac{5}{5} \cdot(1(3)+2(4))=3+8=11
\end{aligned}
$$

(c) What is the direction in which the temperature decreases fastest at $(2,1)$?

$$
-\nabla f(2,1)-\langle 5,10\rangle=\langle-5,-10\rangle
$$

(d) At the point $(2,1)$, name a direction in which one could move to keep the temperature constant.

Any direction perpendicular to $\pm \nabla f(2,1)$ will suffice. For instance, $\pm\langle 2,-1\rangle$.

Quiz 17: Integrate $\int_{0}^{3} \int_{1}^{e^{y}} \frac{x+y}{x} d x d y$

Solution.

$$
\begin{aligned}
\int_{0}^{3} \int_{1}^{e^{y}} \frac{x+y}{x} d x d y & =\int_{0}^{3} \int_{1}^{e^{y}}\left(1+\frac{y}{x}\right) d x d y \\
& =\left.\int_{0}^{3}(x+y \ln |x|)\right|_{x=1} ^{x=e^{y}} d y \\
& =\int_{0}^{3}\left[\left(e^{y}+y \ln e^{y}\right)-(1+y \ln 1)\right] d y \\
& =\int_{0}^{3}\left(e^{y}+y^{2}-1\right) d y \\
& =e^{y}+\frac{y^{3}}{3}-\left.y\right|_{y=0} ^{y=3} \\
& =\left(e^{3}+\frac{3^{3}}{3}-3\right)-\left(e^{0}+0-0\right) \\
& =e^{3}+5
\end{aligned}
$$

Quiz 18: Evaluate $\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin y}{y} d y d x$ by reversing the order of integration. Evaluate $\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin y}{y} d y d x$ by reversing the order of integration.

Solution.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin y}{y} d y d x & =\int_{0}^{\pi / 2} \int_{0}^{y} \frac{\sin y}{y} d x d y \\
& =\int_{0}^{\pi / 2} \frac{\sin y}{y} \int_{0}^{y} 1 d x d y \\
& =\left.\int_{0}^{\pi / 2} \frac{\sin y}{y} \cdot x\right|_{0} ^{y} d y \\
& =\int_{0}^{\pi / 2} \frac{\sin y}{y} \cdot(y-0) d y \\
& =\int_{0}^{\pi / 2} \frac{\sin y}{y} \cdot y d y \\
& =\int_{0}^{\pi / 2} \sin y d y \\
& =-\left.\cos y\right|_{0} ^{\pi / 2} \\
& =-\cos (\pi / 2)-(-\cos 0) \\
& =0-(-1) \\
& =1
\end{aligned}
$$

Quiz 19: Set up, but do not integrate, a triple integral that computes the volume bounded by $x^{2}+z^{2}=1, y=0$, and $y+z=1$.

Solution.

$$
V=\iiint_{R} d V=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{1-z} d y d z d x
$$

Quiz 20: Make a change of variables to polar coordinates in $\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{2-y^{2}}}\left(x^{2}+y^{2}\right) d x d y$. You do not need to integrate.

Solution.

$$
\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{2-y^{2}}}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} r^{2} \cdot r d r d \theta=r^{3} d r d \theta
$$

Quiz 21: Set up an integral, but do not integrate, using cylindrical coordinates that computes $\iiint_{R} y d V$, where R is the region bounded by $z=x^{2}+y^{2}$ and $z=3$.

Solution.

$$
\iiint_{R} y d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{3} r \sin \theta \cdot r d z d r d \theta
$$

Quiz 22: Set up, but do not integrate, a spherical integral which computes $\iiint_{R} x e^{\left(x^{2}+y^{2}+z^{2}\right)^{2}} d V$, where R is the region between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant.

Solution.

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{2} \rho \sin \phi \cos \theta e^{\left(\rho^{2}\right)^{2}} \cdot \rho^{2} \sin \phi d \rho d \phi d \theta=\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{2} \rho^{3} e^{\rho^{4}} \sin ^{2} \phi \cos \theta d \rho d \phi d \theta
$$

\qquad

Quiz 23: Sketch the vector field $\mathbf{F}(x, y)=\langle x-y, x+2 y\rangle$.
Solution.

Quiz 24: Let \mathbf{F} be the vector field given by $\mathbf{F}(x, y)=\langle y,-x\rangle$.
(a) Find $\operatorname{div} \mathbf{F}$.
(b) Find curl \mathbf{F}.
(c) Is \mathbf{F} incompressible? Is \mathbf{F} irrotational?

Solution.

(a)

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x}(y)+\frac{\partial}{\partial y}(-x)=0+0=0
$$

(b)

$$
\begin{aligned}
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & -x & 0
\end{array}\right| & =\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-x & 0
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
y & 0
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
y & -x
\end{array}\right| \mathbf{k} \\
& =\left(\frac{\partial}{\partial y}(0)-\frac{\partial}{\partial z}(-x)\right) \mathbf{i}-\left(\frac{\partial}{\partial x}(0)-\frac{\partial}{\partial z}(y)\right) \mathbf{j}+\left(\frac{\partial}{\partial x}(-x)-\frac{\partial}{\partial y}(y)\right) \mathbf{k} \\
& =(0-0) \mathbf{i}-(0-0) \mathbf{j}+(-1-1) \mathbf{k} \\
& =-2 \mathbf{k}
\end{aligned}
$$

(c) The vector field \mathbf{F} is incompressible (or solenoidal or divergence free) because $\nabla \cdot \mathbf{F}=0$. However, the vector field \mathbf{F} is not irrotational (or a conservative vector field or a gradient field) because $\nabla \times \mathbf{F} \neq \mathbf{0}$.
\qquad

Quiz 25: Compute $\int_{C}(x-y) d s$, where C is the line segment from $(-3,-5)$ to $(2,-4)$.
Solution. We parametrize the line segment:

$$
\begin{aligned}
\mathbf{m} & =(2,-4)-(-3,-5)=(2,-4)+(3,5)=\langle 5,1\rangle \\
\mathbf{r}(t) & =\mathbf{m} t+P_{0}=\langle 5,1\rangle t+(-3,-5)=\langle 5 t-3, t-5\rangle ; \quad 0 \leq t \leq 1
\end{aligned}
$$

Then we have $d s=\left|\mathbf{r}^{\prime}(t)\right| d t=|\langle 5,1\rangle| d t=\sqrt{26} d t$. Therefore,

$$
\begin{aligned}
\int_{C}(x-y) d s & =\int_{0}^{1}((5 t-3)-(t-5)) \sqrt{26} d t \\
& =\sqrt{26} \int_{0}^{1}(4 t+2) d t \\
& =\sqrt{26} \cdot\left[2 t^{2}+2 t\right]_{0}^{1} \\
& =\sqrt{26}[(2+2)-0] \\
& =4 \sqrt{26}
\end{aligned}
$$

Quiz 26: Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=-x \mathbf{i}+y \mathbf{j}$ and $\mathbf{r}(t)$ is the circle centered at $(0,0)$ with radius 2 , oriented counterclockwise.

Solution. We parametrize the circle:

$$
\begin{aligned}
\mathbf{r}(t) & =\langle\cos t, \sin t\rangle ; \quad 0 \leq t \leq 2 \pi \\
\mathbf{r}^{\prime}(t) & =\langle-\sin t, \cos t\rangle
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{2 \pi}\langle-\cos t, \sin t\rangle \cdot\langle-\sin t, \cos t\rangle d t \\
& =\int_{0}^{2 \pi} \sin t \cos t+\sin t \cos t d t \\
& =\int_{0}^{2 \pi} 2 \sin t \cos t d t \\
& =\int_{0}^{2 \pi} \sin (2 t) d t \\
& =-\left.\frac{\cos 2 t}{2}\right|_{0} ^{2 \pi} \\
& =-\frac{1}{2}(\cos 4 \pi-\cos 0) \\
& =-\frac{1}{2}(1-1) \\
& =0
\end{aligned}
$$

Quiz 27: Compute $\int_{C}(2 x+y) d x+(y+z) d y+(x-z) d z$, where C is the line segment from $(1,1,2)$ to $(3,-1,3)$.

Solution. We parametrize the line segment:

$$
\begin{aligned}
\mathbf{m} & =(3,-1,3)-(1,1,2)=(3,-1,3)+(-1,-1,-2)=\langle 2,-2,1\rangle \\
\mathbf{r}(t) & =\mathbf{m} t+P_{0}=\langle 2,-2,1\rangle t+(1,1,2)=\langle 2 t+1,1-2 t, t+2\rangle ; \quad 0 \leq t \leq 1
\end{aligned}
$$

Now we find the differentials:

$$
\begin{aligned}
d x & =2 d t \\
d y & =-2 d t \\
d z & =1 d t
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \int_{C}(2 x+y) d x+(y+z) d y+(x-z) d z= \\
& \int_{0}^{1}(2(2 t+1)+(1-2 t)) \cdot 2 d t+((1-2 t)+(t+2)) \cdot-2 d t+((2 t+1)-(t+2)) \cdot 1 d t
\end{aligned}
$$

This becomes

$$
\begin{aligned}
\int_{0}^{1}(7 t-1) d t & =\frac{7 t^{2}}{2}-\left.t\right|_{0} ^{1} \\
& =\left(\frac{7}{2}-1\right)-0 \\
& =\frac{7}{2}-\frac{2}{2} \\
& =\frac{5}{2}
\end{aligned}
$$

Quiz 28: Show that the vector field $\mathbf{F}(x, y)=\left\langle 2 x y-y^{2}, x^{2}-2 x y+1\right\rangle$ is conservative. Find a potential function for \mathbf{F}. What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the line segment from $(1,0)$ to $(0,1)$? What about $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{r}(t)$ is the unit circle, oriented counterclockwise?

Solution. A vector field \mathbf{F} is conservative if and only if $\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\mathbf{0}$.

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x y-y^{2} & x^{2}-2 x y+1 & 0
\end{array}\right| \\
& =\left\langle\frac{\partial}{\partial y} 0-\frac{\partial}{\partial z}\left(x^{2}-2 x y+1\right),-\left(\frac{\partial}{\partial x} 0-\frac{\partial}{\partial z}\left(2 x y-y^{2}\right)\right), \frac{\partial}{\partial x}\left(x^{2}-2 x y+1\right)-\frac{\partial}{\partial y}\left(2 x y-y^{2}\right)\right\rangle \\
& =\langle 0-0,-(0-0),(2 x-2 y)-(2 x-2 y)\rangle \\
& =\mathbf{0}
\end{aligned}
$$

Equivalently because \mathbf{F} is two-dimensional, $\mathbf{F}=\langle M, N\rangle$ is conservative if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. Observe

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(2 x y-y^{2}\right) & \stackrel{?}{=} \frac{\partial}{\partial x}\left(x^{2}-2 y x+1\right) \\
2 x-2 y & =2 x-2 y
\end{aligned}
$$

In either case, we now know \mathbf{F} is conservative. We need find a potential function for \mathbf{F}, i.e. a function $f(x, y)$ so that $\mathbf{F}=\nabla f$. Now $\mathbf{F}=\nabla f=\left\langle f_{x}, f_{y}\right\rangle$. So

$$
f=\int \frac{\partial f}{\partial x} d x=\int\left(2 x y-y^{2}\right) d x=x^{2} y-x y^{2}+g(y)
$$

where $g(y)$ is some function of y alone. But we know also

$$
x^{2}-2 x y+1=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{2} y-x y^{2}+g(y)\right)=x^{2}-2 x y+g^{\prime}(y)
$$

Therefore, $g^{\prime}(y)=1$ so that $g(y)=\int g^{\prime}(y) d y=\int 1 d y=y+C$, where C is a constant. Then we have found $f(x, y)=x^{2} y-x y^{2}+y+C$. Now using the Fundamental Theorem of Calculus for Line Integrals, we know

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(0,1)-f(1,0)=(1+C)-(0+C)=1
$$

We know also that $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$ because the path is closed and \mathbf{F} is conservative.

Quiz 29: Use Green's Theorem to compute $\oint_{C}(y-3 x) d x+(2 x-y) d y$, where C is the square with vertices $(0,0),(2,0),(2,2),(0,2)$, oriented counterclockwise.

Solution. From the integral, we know that $\mathbf{F}=\langle M, N\rangle=\langle y-3 x, 2 x+y\rangle$. Then by Green's Theorem,

$$
\begin{aligned}
\oint_{C}(y-3 x) d x+(2 x-y) d y & =\iint\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\iint\left(\frac{\partial}{\partial x}(2 x+y)-\frac{\partial}{\partial y}(y-3 x)\right) d A \\
& =\iint 1 d A \\
& =\text { Area bounded by } C \\
& =2 \cdot 2=4
\end{aligned}
$$

Quiz 30: Find a parametrizations $\mathbf{r}(u, v)$ for the cylinder $x^{2}+z^{2}=4$ with $-1 \leq y \leq 1$ (both the sides and 'top'/'bottom'). Find $\mathbf{r}_{u}, \mathbf{r}_{v}$, and $\mathbf{r}_{u} \times \mathbf{r}_{v}$ for these parametrizations.

Solution.

'Top':

$$
\begin{aligned}
\mathbf{r}(r, t) & =\langle r \cos t, 1, r \sin t\rangle ; \quad 0 \leq r \leq 2,0 \leq t \leq 2 \pi \\
\mathbf{r}_{r} & =\langle\cos t, 0, \sin t\rangle \\
\mathbf{r}_{t} & =\langle-r \sin t, 0, r \cos t\rangle \\
\mathbf{r}_{r} \times \mathbf{r}_{t} & =\langle 0,-r, 0\rangle
\end{aligned}
$$

Sides:

$$
\begin{aligned}
\mathbf{r}(y, t) & =\langle 2 \cos t, y, 2 \sin t\rangle ; \quad-1 \leq y \leq 1,0 \leq t \leq 2 \pi \\
\mathbf{r}_{y} & =\langle 0,1,0\rangle \\
\mathbf{r}_{t} & =\langle-2 \sin t, 0,2 \cos t\rangle \\
\mathbf{r}_{y} \times \mathbf{r}_{t} & =\langle 2 \cos t, 0,2 \sin t\rangle
\end{aligned}
$$

'Bottom':

$$
\begin{aligned}
\mathbf{r}(r, t) & =\langle r \cos t,-1, r \sin t\rangle ; \quad 0 \leq r \leq 2,0 \leq t \leq 2 \pi \\
\mathbf{r}_{r} & =\langle\cos t, 0, \sin t\rangle \\
\mathbf{r}_{t} & =\langle-r \sin t, 0, r \cos t\rangle \\
\mathbf{r}_{r} \times \mathbf{r}_{t} & =\langle 0,-r, 0\rangle
\end{aligned}
$$

Quiz 31: Find the surface area of the portion of the plane $2 x+3 y+z=6$ lying about the $x y$-plane in the first octant.

Solution. Observe we have $z=6-2 x-3 y$. Then we can parametrize the surface as $z=g(x, y):=$ $6-2 x-3 y$, where $0 \leq x \leq 3,0 \leq y \leq 2$. Then we have normal vector $\mathbf{n}=\left\langle-g_{x},-g_{y}, 1\right\rangle=\langle 2,3,1\rangle$. Then $|\mathbf{n}|=\sqrt{2^{2}+3^{2}+1^{2}}=\sqrt{14}$. Now

$$
\begin{aligned}
\mathrm{SA} & =\iint_{S} 1 d S \\
& =\int_{0}^{2} \int_{0}^{3} \sqrt{14} d x d y \\
& =\sqrt{14} \int_{0}^{2} \int_{0}^{3} 1 d x d y \\
& =6 \sqrt{14}
\end{aligned}
$$

Quiz 32: Use the Divergence Theorem to compute $\oiint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\langle x, y, z\rangle$ and S is the sphere at $(0,0,0)$ with radius 2 with outward pointing normal.

Solution. By the Divergence Theorem (Gauss' Theorem), we have

$$
\begin{aligned}
\oiint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{R} \nabla \cdot \mathbf{F} d V \\
& =\iiint_{R}(1+1+1) d V \\
& =3 \iiint_{R} 1 d V \\
& =3 \cdot \text { volume } R \\
& =3 \cdot \frac{4 \pi}{3} r^{3} \\
& =3 \cdot \frac{4 \pi}{3} \cdot 2^{3} \\
& =32 \pi
\end{aligned}
$$

Quiz 33: Use Stokes' Theorem to compute $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\left\langle x^{2}-z, 2 x+y, z^{2}+x\right\rangle$ and C is the square with vertices $(0,0),(2,0),(2,2),(0,2)$, oriented counterclockwise.

Solution. Note that C bounds a square in the plane $z=0$ (our surface). Writing $z=g(x, y):=0$, the surface has normal $\left\langle-g_{x},-g_{y}, 1\right\rangle=\langle 0,0,1\rangle$. By Stokes' Theorem, we have

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{\mathbf{S}} \nabla \times \mathbf{F} \cdot d \mathbf{S} \\
& =\iint_{R}\langle 0,-2,2\rangle \cdot\langle 0,0,1\rangle d A \\
& =2 \iint_{R} 1 d A \\
& =8 \cdot \text { Square Area } \\
& =8 \cdot(2 \cdot 2) \\
& =8
\end{aligned}
$$

