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Preface

One can only learn Mathematics by doing Mathematics. It is then be necessary to solve problems—lots
of them! There are 799 problems in this text. The new student to Multivariable Calculus should try
to solve as many as possible. However, solving problems is not enough. Trying every problem ‘type’
in Calculus could be a lifetime journey. Treat the problems as small lights in the dark, illuminating the
paths connecting different concepts. Whenever possible, the student should have in mind the connection
between the calculus being performed and the underlying geometry. The problems throughout this
text—even the subject itself—cannot be separated from underlying geometrical concepts. There is space
before each problem section for brief topic notes for reference.

As for texts, the author strongly suggests Vector Calculus by Colley or Calculus by Larson and Edwards.
These were a common reference when considering what problem types to integrate into the text. The
problems themselves were written and compiled by the author from lecture notes of previous iterations
of the course. Accordingly, these notes could have been taken or supplemented by sources the author
has since forgotten. If the author has seemingly missed a reference or has committed any other error,
please email him at cgmcwhor@syr.edu so that he may rectify his error!



Chapter 1

Spatial Geometry & Vectors



1.1: Basic n–Euclidean Geometry

1.1 Basic n–Euclidean Geometry

Euclidean n–space: Define Rn = {(a1, a2, . . . , an): ai ∈ R}. The case of n = 1 is the familiar real num-
bers and we drop the parenthesis. We plot these on a number line. The case of n = 2 we know as just
the set of ‘ordinary’ points. We gave the familiar graphical representation of points in the coordinate
plane. The case of n= 3 is the one we will be most interested in – three-space. Note that even if a point
is in three–space, we can get a point in two–space via (·, ·, 0) and the like.

Coordinate Axes: The axes are normally labeled x , y, z (or with hats). These are also sometimes given
the names i, j, k. There are eight octants. We can label the axes in any way but we want them to obey
the RHR. It would be good to always draw our axes in this way for now. We can plot points and project
onto any of the axes. Give the rectangular projections for a point.

Distance: The distance between P(x1, y1, z1) and Q(x2, y2, z2) is given by

|PQ|=
Æ

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

We define the distance from a point to a set of points to be the short line segment connecting the chosen
point to a point in a set – if it exists. In most cases, this is a perpendicular line segment.
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1.1: Basic n–Euclidean Geometry

1.1 | Exercises

1. One the set of axes below, sketch the points (1, 2,3), (6,−7,2), and (−3,0, 8). Choose a point and
carefully draw dotted lines connecting the chosen point perpendicularly to the coordinate planes.

x

z

y

-10

-10

-10

-5

-5

-5

5

5

5

10

10

10

2. Draw an appropriate set of coordinate axes – labeled – and plot the points (3, 6,−2), (−5,−5,5),
and (0,0,−7). Choose one of the first two points and carefully draw dotted lines connecting the chosen
point perpendicularly to the coordinate planes.

3. Find the distance between the points (2,−1,−3) and (4,3,−1). Which point is closer to the x y–
plane? Which point is closer to the yz–plane?

Ans: 2
p

6. (4,3,−1) is closer to the x y–plane and (2,−1,−3) is closer to the yz–plane.

4. Find the distance between the points (4,5,−2) and (3,1,−1). Which points is closer to the xz–plane?
Which points is closer to the yz–plane?

Ans: 3
p

2. (3,1,−1) is closer to both the xz–plane and yz–plane.

5. Consider a triangle formed by the points A(1, 0,−1), B(1,−2,−1) and C(1,−2,−3). Sketch this tri-
angle in 3–space. Determine if the triangle is an isosceles triangle. Determine if the triangle is a right

7 of 153



1.1: Basic n–Euclidean Geometry

triangle. Determine if the triangle is an equilateral triangle.

Ans: AB = 2, BC = 2, AC = 2
p

2. So the triangle is isosceles.
p

22 + 22 =
p

8 = 2
p

2 so the triangle is
right. The triangle is clearly not equilateral.

6. Consider a triangle formed by the points M(−1, 2,−1), N(−1,2,−3), and P(−1, 6,−2). Sketch this
triangle in 3–space. Determine the the triangle is an isosceles triangle. Determine if the triangle is a
right triangle. Determine if the triangle is an equilateral triangle.

Ans: MN = 2, N P =
p

17, M P =
p

17. The triangle is isosceles.
qp

17
2 + 22 =

p
17+ 4=

p
21 6=

p
17

so the triangle is not right. The triangle is not equilateral.

7. For the point (3, 5,4), determine the following:

(a) The distance to the x y–plane. Ans: 4

(b) The distance to the yz–plane. Ans: 3

(c) The distance to the xz–plane. Ans: 5

(d) The distance to the x–axis. Ans:
p

52 + 42 =

p
41

(e) The distance to the y–axis. Ans:
p

32 + 42 = 5

(f) The distance to the z–axis. Ans:
p

32 + 52 =p
34

8. For the point (−1, 4,2), determine the following:

(a) The distance to the x y–plane. Ans: 2

(b) The distance to the yz–plane. Ans: 1

(c) The distance to the xz–plane. Ans: 4

(d) The distance to the x–axis. Ans:
p

42 + 22 =

2
p

5

(e) The distance to the y–axis. Ans:
p

12 + 22 =
p

5

(f) The distance to the z–axis. Ans:
p

12 + 42 =p
17

9. Determine if the following three points lie along a straight line: A(−5,7,−4), B(1, 1,5), and C(−1, 3,2).
Ans: ~AB = 〈6,−6, 9〉 = 3〈2,−2,3〉. ~BC = 〈−2, 2,−3〉 = −1〈2,−2, 3〉. ~CA= 〈−4,4,−6〉 = −2〈2,−2,3〉.
So they lie along a straight line.

10. Determine if the following three points lie along a straight line: M(3,−4, 2), N(0,−1,8), and
P(2,−3, 4).
Ans: ~MN = 〈−3,3, 6〉 = −3〈1,−1,−2〉. ~N P = 〈2,−2,−4〉 = 2〈1,−1,−2〉. ~PM = 〈1,−1,−2〉. So the
points lie along a straight line.

11. Find at least 6 points that have distance 3 from the point (1,−2, 6). What shape does the set of all
points having distance 3 from the points (1,−2,6) make? Sketch the shape, the points found, and the
given point in the same plot.

Ans: (4,−2, 6), (−2,−2,6), (1,1, 6), (1,−5,6), (1,−2,9), (1,−2, 3). The shape is a sphere.

12. Find at least 6 points that have distance 4 from the point (2, 0,−5). What shape does the set of all
points having distance 4 from the points (2,0,−5) make? Sketch the shape, the points found, and the
given point in the same plot.

Ans: (6,0,−5), (−2,0,−5), (2,4,−5), (2,−4,−5), (2,0,−1), (2,0,−9). The shape is a sphere.
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1.1: Basic n–Euclidean Geometry

13. Show that the midpoint of the line segment connecting the points P1(x1, y1, z1) and P(x2, y2, z2) is
given by

� x1 + x2

2
,

y1 + y2

2
,
z1 + z2

2

�

Ans: Let M denote the proposed midpoint.

~M P1 =
D x1 − x2

2
,

y1 − y2

2
,
z1 − z2

2

E

~M P2 = −
D x1 − x2

2
,

y1 − y2

2
,
z1 − z2

2

E

|M P1|=
1
2

Æ

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

|M P2|=
1
2

Æ

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

The first two calculations show that M lies along the same line. The second two calculations show that
M is indeed the midpoint.
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1.2: Introduction to Vectors

1.2 Introduction to Vectors

Vector: This term has many meanings in various contexts. A vector is a set of ‘coordinates’ that indicate a
direction. These have a magnitude and direction. They can originate at any point. We can endow them
with an inner product which actually induces a metric – hence why they have a magnitude (length).
Vectors only indicate a direction and they can emanate from any point, though we often draw them
from the origin. Note even if a vector is in R3, we get a vector in ‘R2’ via 〈·, ·, 0〉 and the like.

Displacement Vector: A particular vector formed by joining two points. To the vector formed by joining
the point P, the initial point, to the point Q, the terminal point, is written ~PQ. Note the arrow goes
toward Q. So if P(x1, y1, z1) and Q(x2, y2, z2), then ~PQ = 〈x2 − x1, y2 − y1, z2 − z1〉.

Triangle/Parallelogram Law: How to add vectors. Note that we start wherever we start. The first vector
moves us the proper amount, then the second by the next proper amount. This gives the tail-to-tip
method (the Triangle Law). The addition should be commutative so we get the Parallelogram Law.
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1.2: Introduction to Vectors

Scalar Multiple: Scales the length of a vector. The sign of the scalar determines if the direction flips.
This allows us to do subtraction: negative one vector then add. Or we can do it by putting the vectors
tail-to-tail then connecting in the ‘opposite’ direction.

Parallel/Equal Vectors: Two vectors are parallel if one is a multiple of another; that is, once extended,
they create parallel lines. Note they can point in opposite directions. Two vectors are equal if u− v is
the zero vector (same length and point in same direction).

Length: ‖v‖= ‖〈x , y, z〉‖=
p

x2 + y2 + z2. Same idea works in any dimension.

Unit Vector: A vector with length 1. Note that any nonzero vector v can be ‘turned into’ a vector of

length 1 via
v
‖v‖

.

Standard Basis Vectors: x̂/î = 〈1,0, 0〉, ŷ/ ĵ = 〈0,1, 0〉, ẑ/k̂ = 〈0,0, 1〉. Note we get all other vectors
via v = v1 î + v2 ĵ + v3 k̂.
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1.2: Introduction to Vectors

1.2 | Exercises

1. Show that ‖ cv‖= |c| ‖v‖.

Ans: ‖cv‖=
q

∑n
i=1(cvi)2 = |c|

q

∑n
i=1 v2

i = |c| ‖v‖.

2. Show that if v is a nonzero vector then
v
‖v‖

is a unit vector.

Ans:













v
‖v‖













=
‖v‖
‖v‖
= 1.

3. Given the vectors u, v, and w below, find

(a) u+ v

(b) u+w

(c) u− v

(d) 2v

(e) −1
2w

(f) u+ v−w

4. Given the vectors u, v, and w below, find

(a) u− v

(b) u+ v

(c) u−w

(d) −2v

(e) 1
2w

(f) v+ u−w

12 of 153



1.2: Introduction to Vectors

5. Given the partially labeled parallelogram below, label all other vectors in the parallelogram.

6. Find and sketch the displacement vector between the two given points:

(a) P(−1, 1), Q(3,−1) Ans: 〈4,−2〉= 2〈2,−1〉

(b) M(2,1), N(3,5) Ans: 〈1,4〉

(c) A(4,−1), B(0,4)
Ans: 〈−4, 5〉

7. Find and sketch the displacement vector between the two given points:

(a) P(2,1, 1), Q(3,0,−1) Ans: 〈1,−1,−2〉

(b) M(4,2, 1), N(0,3, 5) Ans: 〈−4,1, 4〉

(c) A(4,−1, 1), B(−1,4,−1)
Ans: 〈−5, 5,−2〉

8. Given u= 〈1,−2〉 and v= 〈3, 2〉, find the following:

(a) 3u Ans: 〈3,−6〉

(b) u+ v Ans: 〈4, 0〉

(c) u− v Ans: 〈−2,−4〉

(d) 2u− 3v Ans: 〈−7,−10〉

(e) ‖u‖ Ans:
p

5

(f) ‖u+ v‖
Ans: 4

9. Given u= 〈2,−1, 1〉 and v= 〈3, 0,1〉, find the following:

(a) −2u Ans: 〈−4,2,−2〉

(b) u− v Ans: 〈−1,−1,0〉

(c) 2u+ v Ans: 〈7,−2,3〉

(d) 3u− v Ans: 〈3,−3,2〉

(e) ‖u‖ Ans:
p

6

(f) ‖u− v‖
Ans:

p
2

10. Describe geometrically the collection of points r〈1, 3〉+ s〈2, 1〉, where r and s are integers.

Ans: A lattice formed by integer multiples of the vectors.
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1.2: Introduction to Vectors

11. Find a unit vector in the same direction as 3i− 4j.

Ans: 1
5〈3,4〉

12. Find a unit vector in the same direction as −5i+ 12j.

Ans: 1
13〈−5,12〉

13. Find a unit vector in the same direction as 2i− 3j+ k.

Ans: 1p
14
〈2,−3,1〉

14. Find a unit vector that points in the ‘opposite’ direction as 2i− 3j.

Ans: 1p
13
〈2,−3〉

15. Find a unit vector in the ‘opposite direction’ as −2i+ 5k.

Ans: 1p
29
〈−2,0, 5〉

16. Find the angle between the given vector and the x–axis and the y–axis: 2i− 2
p

3j.

Ans: x–axis: arccos(1/2) = π
3 = 60◦. y–axis: arccos(−

p
3/2) = 5π

6 = 150◦

17. Find the angle between the given vector and the x–axis and the y–axis:
9i+ 9j
p

2
.

Ans: x–axis: arccos(1/
p

2) = π
4 = 45◦. y–axis: arccos(1/

p
2) = π

4 = 45◦

18. Find the angle between the given vector and the x–axis and the y–axis: 2i+ 5j.

Ans: x–axis: arccos(2/
p

29) = 68.1986◦. y–axis: arccos(5/
p

29) = 21.8014◦

19. If a vector in the plane has length 3 and makes angle π
3 with the positive x–axis, find the vector.

Ans: 〈3/2,3
p

3/2〉= 3〈1/2,
p

3/2〉

20. If a vector in the plane has length 5 and makes angle π
3 with the negative y–axis, find the vector.

Ans: 〈5
p

3/2,−5/2〉= 5〈
p

3/2,−1/2〉

21. A rocket launches from a launch pad traveling 6000 mph east, 10000 mph north, and 4000 mph
vertically. In 30 minutes, how high will the rocket be off the ground? How far East will it be? How far
from the launch pad will it be? How far would you have to drive from the launch pad to look up and
see the rocket straight above you?

Ans: 2000 mi. 3000 mi. 12,328.828 mi. 11,661.90378 mi (ignoring Earth curvature)

22. Complete the following parts:

(a) Write the chemical equation CO+H2O = H2 + CO2 as an equation in ordered triples. Represent it
as a vector in space.

(b) Write the chemical equation pC3H4O3+qO2 = rCO2+ sH2O as an equation in ordered triples with
unknown coefficients.

(c) Find the smallest possible integer solution for p, q, r, and s.
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1.2: Introduction to Vectors

(d) Demonstrate the solution by plotting it in space. What are the other possible solutions? How do
they relate geometrically to the vector solution you found?

23. If u and v are vectors, describe the set of points inside the parallelogram spanned by u and v. What
if the vectors originate at the point (p1, p2, p3)?
Ans: The points inside the parallelogram are of the form su+ tv, where 0 ≤ s, t ≤ 1. If they originate
at the point, the points are of the form 〈p1, p2, p3〉+ su+ tv.

24. Find the tension in each wire in the diagram below.

Ans: Left: 364. Right: 630.466

25. Find the tension in each wire in the diagram below.

Ans: Left: 1808.02. Right: 2304.09

26. Find the tension in each wire in the diagram below.
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1.2: Introduction to Vectors

Ans: Left: 145.008. Right: 396.853
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1.3: Dot Product

1.3 Dot Product

Dot Product: We have many operations for vectors thus far but we have no way to multiply vectors.
The dot product serves as a sort of multiplication for vectors. The dot product of two vectors u, v in Rn

is given by u ·v=
∑n

i=1 ui vi . Note that the dot product of two vectors gives a scalar. Give the properties
of the dot product. Note that u · u= ‖u‖2.

Angle between Vectors: The dot product allows us to define the angle between two vectors. Observe
the following diagram: Recognize the sizes as the length of the vectors: Law of Cosines gives |v−u|2 =

|u|2 + |v|2 − 2|u||v| cosθ . Now expand the left side as a dot product and we obtain u · v = |u||v| cosθ .

Then we can define the angle between vectors as cosθ =
u · v
|u||v|

. Solving for θ is a simple matter of

inverse functions. This works in any dimension.
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1.3: Dot Product

Test for Orthogonality: Two vectors are orthogonal if and only if they are perpendicular. The dot
product gives a way of testing for this. So u and v are orthogonal if and only if u · v= 0.

Projection: The projection of u onto v, denoted projv u, is the vector from the tail of v to the intersection
of the perpendicular line from the tip of u with the line formed by extending v. That is, the ‘shadow’
cast on v by u. You can project even if the resulting projection is longer than v or if u and v do not point
in the same direction. Using simple right triangle trig and multiplication by 1, we obtain

|projv u|=
|v · u
‖v‖

Note the top is the absolute value (resulting from the fact that the angle could be between π/2 and π)
while the bottom is length. The book calls this length compv u – which we shall not use. Note that the
vector you are projecting onto appears most often. If we want the projection vector, note we want it to
point in the direction of v. But we don’t want to change the length so we multiply by a unit vector: v

‖v‖ .

Then we have projv u=
�

v · u
v · v

�

v. Note that projections allow us to form and fill in right triangles using

any two nonparallel vectors
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1.3: Dot Product

1.3 | Exercises

1. Determine which of the following are meaningful expressions:

(a) (u · v) ·w Ans: Not meaningful

(b) (u · v)(v ·w) Ans: Meaningful

(c) u · v+w Ans: Not meaningful

(d) (u · v)w Ans: Meaningful

(e) |v| (u ·w) Ans: Meaningful

(f) |u| · (v ·w) Ans: Not meaningful

2. Given u= 〈2,−1, 3〉 and v= 〈1, 0,−2〉, find

(a) u · u Ans: 14

(b) |u| Ans:
p

14

(c) u · v Ans: −4

(d) projv u Ans: 1
5〈−4, 0,8〉

3. Given u= 〈3,−5, 1〉 and v= 〈2,−2, 1〉, find

(a) v · v Ans: 9

(b) |u| Ans:
p

35

(c) proju v Ans: 〈51/35,−17/7,17/35〉

(d) projv u Ans: 17
9 〈2,−2,1〉

4. If u = 〈1,2, 3〉 and v = 〈3, 4,5〉, what is the angle between u,v? Sketch these vectors and the angle
between them.

Ans: arccos(13/(5
p

7)) = 10.6707◦

5. If u = 〈−1,2, 0〉 and v = 〈2,0,−3〉, what is the angle between u,v? Sketch these vectors and the
angle between them.

Ans: arccos(−2/
p

65) = 104.363◦

6. If |u|= 2, |v|= 3, and the angle between them is π/6, what is u · v?

Ans: 3
p

3

7. If |u|= 4, |v|=
p

2, and the angle between them is 4π/3, what is u · v?

Ans: −2
p

2

8. Given the equilateral triangle below (each side is length 3), place an appropriate vector to label the
other side and find u · v.

Ans: 9/2
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1.3: Dot Product

9. Recall given two vectors u and v, we can form a right triangle using the projection projv u. Show that
u− projv u is orthogonal to v.

Ans: (u− projv u) · v= (u− u·v
|v|2 v) · v= u · v− u·v

|v|2 v · v= u · v− u · v= 0

10. If u= 〈3, 0,4〉, find a vector v such that |proju v|= 1
5 .

Ans: If v= 〈a, b, c〉, then 3a+ 4c = 1 so v= 〈1,0,−1〉 works.

11. A truck drags a wood pallet across the ground. The rope attaching the pallet to the truck makes an
angle of π/6 with the ground and the tension in the rope is 1000 N. How much work does the truck do
pulling the pallet 3 km?

Ans: 1,500, 000
p

3 J

12. A person pulls a sled along the ground. The tension in the rope is 10 N and the rope makes an angle
of π/4 with the ground. What is the work done pulling the sled 20 m?

Ans: 100
p

2

13. Find the acute angles between the curves y = x2 − 3x − 1 and y = 4x − 11. [The angle is defined
to be the angle between their tangents at the point.]
Ans: Intersection: (2,−3). Angle: arccos(5/

p
34) = 30.9638◦. Intersection: (5,9). Angle: arccos(29/(5

p
34)) =

5.90614◦

14. Find the acute angles between the curves y = x2−8x+21 and y = 5 at their points of intersection.
[The angle is defined to be the angle between their tangents at the point.]
Ans: arccos(0) = 0◦

15. Find the acute angles between the curves y = x3+3 and y = x2+4x−1t their points of intersection.
[The angle is defined to be the angle between their tangents at the point.]
Ans: Intersection: (−2,−5). Angle: arccos(1/

p
145) = 85.2364◦. Intersection: (1, 4). Angle: arccos(19/

p
370) =

8.97263◦. Intersection: (2, 11). Angle: arccos(97/(5
p

377)) = 2.36137◦.

16. Find the acute angle between the curves y = sinθ and y = cosθ at the smallest positive θ value of
intersection. [The angle is defined to be the angle between their tangents at the point.]
Ans: Intersection: (π/4,1/

p
2). Angle: arccos(1/3) = 70.5288◦

17. Find the angle between the diagonal and an adjacent edge in a cube. Ans: One edge is 〈1,0, 0〉 and
the diagonal is 〈1, 1,1〉. The angle between them is arccos(1/

p
3) = 54.7356◦.
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1.3: Dot Product

18. Find the work done by a force given by F= 2i− j+ 3k moving an object at the point (1,0,−2) in a
straight line to the point (5,6, 7)?
Ans: 29 J

19. Find the work done by a force given by F = 3i − 5k moving an object at the point (2, 2,0) in a
straight line to the point (2,−3,4)?
Ans: −20 J

20. Show that if u+ v and u− v are orthogonal, then |u|= |v|.
Ans: 0= (u+ v) · (u− v) = |u|2 − |v|2 so that |v|2 = |v|2 so that |u|= |v|.

21. Is it possible for projb a= proja b? If so, under what conditions is it true?

Ans: If the projection is zero, then proja b= 0 if and only if a ·b= 0 if and only if projb a = 0 if and only
if a · b = 0. But then a and b are orthogonal. Now if neither are zero, since they are equal as vectors,
they must be in the same direction. Then a= kb. But then

proja b= projkb b=
kb · b

kb · kb
= b

projb a= projb kb=
b · kb
b · b

= kb

But then k = 1 so that a= b.

22. Suppose an object starts at point P and is pushed to point Q with constant force F. If θ is the angle
between the displacement vector, d and the force vector, show that the work is F · d.

Ans: Use F · d= |F| |d| cosθ and simple geometry.
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1.4: Cross Product

1.4 Cross Product

Cross Product: This is another form of vector multiplication. The cross product of the vectors u and v is
denoted u×v. The result is a vector – unlike the dot product. This vector is perpendicular to both u and
v. So whereas before we tested orthogonality with the dot product, we can ‘create orthogonality’ with
the cross product. Give the properties of cross products. You will also want to give the circle diagram
with i, j, k and/or x , y, z. Show how we denote into the page and out of the page.

Determinants: Give the formula for the 2× 2 determinant and show how to calculate higher ones via
cofactor expansion. Show also the ‘diagonal trick’ with 3×3matrices. Give an example of how the cross
product is calculated with determinants. Note best to choose row/column with the most zeros.

Cross Product Formula: |u× v|= |u| |v| sinθ

Test for ‘Parallelity’: Two nonzero vectors u and v are parallel if and only if u× v = 0. Note the bold
zero because the result is a vector not a scalar.
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1.4: Cross Product

Parallelogram Area: The quantity |u×v| is the area of the parallelogram spanned by u and v. Note by
filling the triangle with the difference of the vectors, we can take this area to find the area of triangles
as well.

Volume of Parallelepiped: The volume of the parallelepiped determined by u, v, and w is V =
|u · (v×w)|. If the volume is 0, then these vectors must be coplanar.

Torque: A force F is acting on a body a vector ‘distance’ r from the center of rotation, the torque is
τ= r× F.
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1.4: Cross Product

1.4 | Exercises

1. Calculate the determinant
�

�

�

�

3 5
−2 6

�

�

�

�

Ans: 28

2. Calculate the determinant
�

�

�

�

−4 9
6 1

�

�

�

�

Ans: −58

3. Calculate the determinant
�

�

�

�

�

�

3 6 −1
4 0 3
5 5 1

�

�

�

�

�

�

Ans: 1

4. Calculate the determinant
�

�

�

�

�

�

−1 −1 −1
2 2 −5
4 6 4

�

�

�

�

�

�

Ans: −14

5. Calculate the determinant
�

�

�

�

�

�

�

�

�

�

1 −3 4 1 0
0 4 −2 −2 6
7 1 3 1 1
−2 0 4 5 4

3 4 0 −1 −4

�

�

�

�

�

�

�

�

�

�

Ans: 4188

6. Given u= 〈1, 3,0〉 and v= 〈−2, 5,0〉, find u× v.

Ans: 〈0,0, 11〉

7. Given u= −5i+ 3k and v= 4j+ 4k, find u× v.

Ans: 〈−12, 20,−20〉

8. Given u= 〈1, 2,3〉 and v= 〈3,4, 5〉, find u× v.

Ans: 〈−2, 4,−2〉

9. Given u= k− 6 i and v= k− 2i− 2j, find u× v.

Ans: 〈2,4, 12〉

10. Without using the determinant, calculate (i× j)× k and k× (j× j).
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1.4: Cross Product

Ans: Both are 0

11. Without using the determinant, calculate (j− k)× (k− i).
Ans: i+ j+ k

12. If u× v= 3i− 7j− 2k, find (u+ v)× (u− v).
Ans: (u+ v)× (u− v) = u× u+ v× u− u× v− v× v= −2(u× v) = 〈−6,14, 4〉.

13. Find two unit vectors perpendicular to both 〈1,0,−2〉 and 〈3, 3,1〉.
Ans: ±1p

94
〈6,−7,3〉

14. Find two unit vectors perpendicular to both 〈5,1, 2〉 and 〈−2,−2, 6〉.
Ans: ±1

2
p

330
〈10,−34,−8〉

15. Find the area of the parallelogram spanned by the vectors 〈2,3〉 and 〈−3, 5〉.
Ans: 19

16. Find the area of the parallelogram spanned by the vectors i− j+ 2k and 5k− 3i.

Ans:
p

155

17. Calculate the area of the parallelogram having vertices (1, 1), (3, 2), (1, 3), and (−1, 2).
Ans: 4

18. Calculate the area of the parallelogram having vertices (1, 2,3), (4,−2,1), (−3, 1,0), and (0,−3,−2).
Ans: 5

p
30

19. Find the volume of the parallelepiped determined by u= 2i− j+ k, v= 2j− 3k, and w= i+ k.

Ans: 7

20. Find the volume of the parallelepiped having vertices (3,0,−1), (4,2,−1), (−1, 1,0), (3,1, 5),
(0,3, 0), (4,3, 5), (−1,2, 6), and (0, 4,6).
Ans: 53

21. Determine if the vectors i+ 5j− 2k, 3i− j, and 5i+ 9j− 4k are coplanar.

Ans: The vectors are coplanar.

22. Find the area of the triangle having vertices (0,1, 2), (3,4, 5), and (−1,−1,0).
Ans: 3/

p
2

23. Find the area of the triangle having vertices (−1,−1, 0), (2, 3,4), and (5,6, 1).
Ans: 3

p

57/2

24. Use the cross product of 〈cosθ , sinθ 〉 and 〈cosφ, sinφ〉 to show that

sin(θ −φ) = sinθ cosφ − cosθ sinφ

25 of 153



1.4: Cross Product

Ans: Treating the vectors as in R3 and computing the cross product yields sinθ cosφ − cosθ sinφ. But
we also have the formula |u| |v| sinω, where ω is the angle between them. Both are unit vectors and
the angle between them is θ −φ.

25. If (u× v) ·w= 0, what is the geometric relationship between u, v, and w.

Ans: The parallelepiped formed by the vectors has no volume. Hence, the vectors must be coplanar.

26. Show that (u× v) · v= 0 for all vectors u and v.

Ans: This is mere computation. However, u× v is a vector perpendicular to v so the dot product must
be 0.

27. Show that

(u× v) ·w=

�

�

�

�

�

�

u1 u2 u3
v1 v2 v3

w1 w2 w3

�

�

�

�

�

�

Ans: This is just brute computation.

28. Show that a triangle with vertices P(x1, y1), Q(x2, y2), and R(x3, y3) is given by absolute value of

1
2

�

�

�

�

�

�

1 1 1
x1 x2 x3
y1 y2 y3

�

�

�

�

�

�

Ans: This is just brute computation.

29. Show that
�

�

�

�

�

�

x2 y2 z2

2x 2y 2z
2 2 2

�

�

�

�

�

�

6= 0

This is a simple example of a Wronskian, which can determine if a collection of functions is linearly
independent or not.

Ans: This is just brute computation.

30. If the vertices of a parallelogram are (listed in order) (1, 0,2), (1,4, 3), (2, 1,4), and (2,−3, 3), find
the area of the parallelogram. Find the area of the parallelogram projected to the x y–plane, to the
xz–plane?

Ans: One could use the formula that the area of a triangle formed by a and b is
1
2

p

‖a‖2‖b‖2 − (a · b)2.

We form the vectors using the first and second point and first and third point. These are 〈0,4, 1〉 and
〈1,−3,1〉. Then the area is the magnitude of the cross product, which is 〈7,1,−4〉, which is

p
66.

The projection to the x y–plane is (1, 0,0), (1, 4,0), (2, 1,0), and (2,−3,0), with vectors 〈0,4, 0〉 and
〈1,−3,0〉, with cross product 〈0,0,−4〉, which has magnitude 4. The projection to the xz–plane has
points (1,0, 2), (1,0, 3), (2, 0,4), and (2, 0,3), with vectors 〈0,0, 1〉, 〈1,0, 1〉, with cross product 〈0, 1,0〉,
with norm 1.

31. Show that
(u− v)× (u+ v) = 2(u× v)
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1.4: Cross Product

Ans: (u− v)× (u+ v) = u× u− v× v+ u× v− v× u= 2(u× v)

32. Show that
u× (v×w) = (u ·w)v− (u · v)w

Ans: This is just ‘brutual’ computation.

33. Prove the Jacobi Identity:

(u× v)×w+ (v×w)× u+ (w× u)× v= 0

Ans:

(u×v)×w+(v×w)×u+(w×u)×v= ((u ·w)v−(v ·w)u)+((v ·u)w−(w ·u)v)+((w ·v)u−(u ·v)w) = 0

34. Show that
|u× v|2 = |u|2 |v|2 − (u · v)2

Ans: This is just direct computation.

35. Show that

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) =
�

�

�

�

a · c a · d
b · c b · d

�

�

�

�

Ans: We know (a×b) · (c×d) = c · (d× (a×b)). We also know c · (d× (a×b)) = −c · ((a×b)×d). And
then

−c · ((a× b)× d) = −c · ((a · d)b− (b · d)a) = (a · c)(b · d)− (a · d)(b · c) =
�

�

�

�

a · c a · d
b · c b · d

�

�

�

�

36. Find a formula for the surface area of the tetrahedron formed by a, b, and c.

Ans:
1
2
(‖a× b‖+ ‖b× c‖+ ‖a× c‖+ ‖(b− a)× (c− a)‖)

37. Let r1, . . . , rn be the vectors connecting the origin to masses m1, . . . , mn. The center of mass of the
collection of these masses is

c=

∑n
i=1 miri

M
,

where M =
∑n

i=1 mi . Show that for any vector r,

n
∑

i=1

mi‖r− ri‖2 =
n
∑

i=1

mi‖ri − c‖2 +M‖r− c‖2
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1.5: Functions in n–Space

1.5 Functions in n–Space

Function: Ordinary one-input, one-output definition. Function of n–variables ‘looks like’ f (x1, x2, . . . , xn).

Domain: Set of possible inputs to a function.

Partial Function: A function holding some variables constant. This could not be done for one–variable
functions.
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1.5: Functions in n–Space

Parametric Equations: A function of one or more variables determine by a system of independent vari-
ables, called parameters. Note the following special ones:

Line Segment: p1 t + p0(1− t); 0≤ t ≤ 1

Circle: 〈r cosθ , r r sinθ 〉; 0 ≤ θ ≤ 2π. Note that the other way parametrizes a circle too but in the
clockwise direction.

Ellipse: 〈a cosθ , b sinθ 〉; 0 ≤ θ ≤ 2π. Note that the other way parametrizes a circle too but in the
clockwise direction.

Helix: x = a cos t, y = a sin t, and z = bt. Note this goes around the z–axis.

‘Traditional Curves’: We can parametrize any function in the plane that we are used to seeing, i.e.
y = x2, take x = t and y = t2.

Note parametric equations give many ‘spiral’ diagrams (spirographs) what you may have created as a
kid. Eventually, we will parametrize more than just curves but surfaces as well!

29 of 153



1.5: Functions in n–Space

1.5 | Exercises

Functions on n–Space

1. Given the function f (x , y) = 2x − y , find f (3,4).
Ans: 2

2. Given the function f (x , y) =
x + y
x y

, find f (−1, 3).

Ans: −2/3

3. Given the function f (x , y, z) = 2x + 3y − z, find f (5,−1,4).
Ans: 3

4. Given the function f (x , y, z) =
2x − y + z

x2 + y2 + z2
, find f (1, 1,1).

Ans: 2/3

5. Find the domain of the function f (x , y) = x + y . Plot this region.

Ans: The domain is the whole real plane, R2.

6. Find the domain of the function f (x , y) =
x + y
x − y

. Plot this region.

Ans: The whole real plane except the line y = x . So the regions above/below this line.

7. Find the domain of the function f (x , y) =
2

x y
. Plot this region.

Ans: The whole real plane except x = 0 or y = 0, i.e. the real plane removing the x–axis and y–axis.

8. Find the domain of the function f (x , y) =
p

2x − 3y . Plot this region.

Ans: The region 2x > 3y (equivalently, 2/3x > y), i.e. the region below the line y = 2/3x .

9. Find the domain of the function f (x , y) = ln(x2 − y). Plot this region.

Ans: The region x2 > y , i.e. the region above the curve y = x2.

10. Simplify the function f (x , y) =
x2 − y2

x − y
.

Ans: f (x , y) = x + y

11. Simplify the function f (x , y) =
x3 + y3

x + y
.

Ans: f (x , y) = x2 − x y + y2

12. Simplify the function f (x , y) =
x3 y + 2y
y2 + x y

.

Ans: f (x , y) =
x3 + 2
y + x

13. Simplify the function f (x , y) = ln(x2 y2)− ln(x y).
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1.5: Functions in n–Space

Ans: f (x , y) = ln(x y)

Parametric Equations

14. Give a parametric function for the line segment connecting the points (1,−3) and (5,2). Find x(t)
and y(t). Sketch this function.

Ans: (4t + 1,5t − 3); 0≤ t ≤ 1

15. Give a parametric function for the line segment connecting the points (5,5) and (−1,0). Find x(t)
and y(t). Sketch this function.

Ans: (5− 6t, 5− 5t); 0≤ t ≤ 1

16. Give a parametric function for the line segment connecting the points (−1, 0,4) and (4, 4,−3). Find
x(t), y(t), and z(t). Sketch this function.

Ans: (5t − 1,4t, 4− 7t); 0≤ t ≤ 1

17. Give a parametric function for the line segment connecting the points (0,1,−2) and (5,−1,3). Find
x(t), y(t), and z(t). Sketch this function.

Ans: (5t, 1− 2t, 5t − 2); 0≤ t ≤ 1

18. Give a parametric function for a circle of radius 3 centered at the origin. Find x(t) and y(t). Sketch
this function.

Ans: (3cos t, 3 sin t), 0≤ t ≤ 1 or (3cos 2πt, 3 sin2πt); 0≤ t ≤ 1

19. Give a parametric function for a circle of radius 4 centered at the point (−1,3). Find x(t) and y(t).
Sketch this function.

Ans: (4cos t − 1, 4 sin t + 3); 0≤ t ≤ 2π or (4cos 2πt − 1,4 sin2πt + 3); 0≤ t ≤ 1

20. Give a parametric function for a circle of radius 1 centered at the point (4, 4). Find x(t) and y(t).
Sketch this function.

Ans: (cos t + 4, sin t + 4); 0≤ t ≤ 2π or (cos 2πt + 4, sin2πt + 4); 0≤ t ≤ 1

21. Give a parametric function for an ellipse centered at the origin with semimajor axis 3 and semiminor
axis 2. Find x(t) and y(t). Sketch this function.

Ans: There are many choices. One is (3cos t, 2 sin t); 0≤ t ≤ 2π

22. Give a parametric function for an ellipse centered at the point (−4,3) with semimajor axis 5 and
semiminor axis 1. Find x(t) and y(t). Sketch this function.

Ans: There are many choices. ONe is (cos t − 4, 5 sin t + 3); 0≤ t ≤ 2π

23. Give a parametric function for an ellipse centered at the point (2,−1) with semimajor axis 6 and
semiminor axis 4. Find x(t) and y(t). Sketch this function.

Ans: There are many choices. One is (6cos t + 2, 4 sin t − 1); 0≤ t ≤ 2π

Vector Valued Functions
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1.5: Functions in n–Space

24. If x(t) = 〈t2 + 1, 1− t, 4〉, find x(0) and x(1).
Ans: 〈1,1, 4〉 and 〈2,0, 4〉

25. If x(t) = cosπt i+ (t3 − t + 1) j+ ln t k, find x(1).
Ans: 〈−1, 1,0〉

26. If x(t) = 〈arctan2t, t cos t,
p

t〉, find x′(t).

Ans: 〈
2

1+ 4t2
, cos t − t sin t,

1

2
p

t
〉

27. If x(t) = (1− t4) i+ te2t j+
1
p

t3
k, find x(t).

Ans: 〈−4t3, e2t + 2te2t ,−
1

2t5/2
〉

28. If a(t) = 〈6t, 0〉, v(0) = 〈0,−1〉, and x(0) = 〈4,1〉, find x(t).
Ans: 〈t3 + 4, 1− t〉

29. If a(t) = 〈−π2 sinπt, 6t,
−1
t2
〉, v(1) = 〈−π.2, 1〉, and x(1) = 〈0, 1,0〉, find x(t).

Ans: 〈sinπt, t3 − t + 1, ln t〉

30. If a(t) = 2i+ (6t − 4)j, v(0) = 0, and x(0) = i+ 3k, find x(t).
Ans: 〈t2 + 1, t3 − 2t2, 3〉

31. If a(t) = 〈− sin t, 0,− cos t〉, v(0) = 〈1, 1,0〉, and x(0) = 〈0, 0,1〉, find x(t).
Ans: 〈sin t, t, cos t〉

32. If a(t) = 4e2t−2 i−
1
t2

j− 24t k, v(1) = i+ j− 13k, and x(1) = −4k, find x(t).

Ans: 〈e2t−t − t, ln t, 1− t − 4t3〉
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1.6: Lines, Planes, & Surfaces

1.6 Lines, Planes, & Surfaces

Line: A line in n–space is much like those in R2. A line only requires 2 points or a point and a slope. A
line has a constant slope – constant change in each variable. However, unlike ordinary lines, there are
many ways of representing lines in n–space.

Vector Form: l(t) = b+ t m

Parametric Form: [Provided none of the mi ’s are zero.]










x = m1 t + b1

y = m2 t + b2

z = m3 t + b3

Symmetric Form: [Provided none of the mi are zero.]

x − b1

m1
=

y − b2

m2
=

z − b3

m3

It is also not a trivial matter to decide when two lines are even the same. As usual, two lines are parallel
if they have parallel slope vectors (they need not be equal – merely parallel). However, we have a third
situation, two lines can be non–parallel but not intersect. In this case, we say that the lines are skew.
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1.6: Lines, Planes, & Surfaces

Plane: A plane is a surface which when cut in the x , y , or z direction yields a line. Hence, there must
be a vector which is perpendicular to it at all times. [Take a point and a vector which will determine
the plane. Then the plane is generated by all vectors which when connected to the point form a vector
perpendicular to the given vector.] Notice then all you need to determine a plane is a point and a normal
vector – keep this in mind.

Vector Form: n · ~P0P = 0

‘Traditional’ Form: A(x − x0) + B(y − y0) + C(z − z0) = 0. This can be rewritten as Ax + B y + Cz + D.
Do you see now how the partial functions give lines?

Parametric Form: The parametric form for a plane containing a point (c1, c2, c3) with vector c =
〈c1, c2, c3〉 and two nonparallel vectors u, v is given by

x(s, t) = su+ tv+ c

Sphere: A sphere is formed by a center (x0, y0, z0) with a set of points with fixed distance r from the
point:

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = r2

Cylinder: Formed by a circle extended intoR3. But one need not restrict to ‘full’ cylinders. Any parabola
extended into 3–space will also form an open cylinder.

Level Curve/Surface: A partial function for a surface. Formed by holding one variable fixed.
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1.6: Lines, Planes, & Surfaces

1.6 | Exercises

Spheres

1. Find the equation of a sphere with radius 4 and center (1,0,−5).
Ans: (x − 1)2 + y2 + (z + 5)2 = 16.

2. Find the equation of a sphere with radius 3/2 and center (3,3,−2).
Ans: (x − 3)2 + (y − 3)2 + (z + 2)2 = 9/4.

3. Find the center and radius of the sphere x2 + y2 + z2 − 2x + 6y = −6.

Ans: Radius 2 and center (1,−3, 0).

4. Find the center and radius of the sphere x2 + y2 + z2 + 10− 4y + 2z = −21.

Ans: Radius 3 and center (−5,2,−1).

5. Find the center and radius of the sphere x2 + y2 + z2 − x + 3y − 2z = −5/4.

Ans: Radius 3/2 and center (1/2,−3/2, 1).

Cylinders

6. Plot the cylinder (x − 3)2 + y2 = 4.

Ans: Center (3,0, 0), Radius 2, about the z–axis.

7. Plot the cylinder (z + 5)2 + (y − 1)2 = 9.

Ans: Center (0,−5, 1), Radius 3, about the x–axis.

8. Plot the cylinder z = x2.

Ans: Open cylinder along the z–axis.

9. Plot the cylinder x = (z − 3)2.

Ans: Open cylinder along the plane z = 3.

10. Plot the cylinder x = (y + 3)2 + 2.

Ans: Open cylinder along the plane y = −3.

Lines

11. Find the equation of the line through the points (−1, 0,3) and (5, 2,2).
Ans: (6t − 1,2t, 3− t)

12. Find the equation of the line through the points (0,2,−7) and (5,−6, 0).
Ans: (5t, 2− 8t, 7t − 7)
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13. Find the equation of the line through the points (π, 6, e2) and (1,
p

2,−1
3).

Ans: ((1−π)t +π, (
p

2− 5)t + 5, (−1/3− e2)t + e2)

14. Find the equation of the line through the point (1,2, 3) parallel to the vector i− 2j+ k.

Ans: l(t) = (1,−2,1)t + (1,2, 3) = (t + 1, 2− 2t, t + 3)

15. Find the equation of the line through the point (1,−1, 0) and parallel to the vector 〈−2, 5,3〉.
Ans: l(t) = (−2,5, 3)t + (1,−1, 0) = (1− 2t, 5t − 1,3t)

16. Find the equation of the line through the point (3,−1,2) and perpendicular to the plane 2x −3y +
5z = 6.

Ans: l(t) = (2t + 3,−1− 3t, 5t + 2)

17. Find the equation of the line through the point (5,0, 5) and perpendicular to the plane x − z = 7.

Ans: l(t) = (t + 5,0, 5− t)

18. Find the equation of the line through (1,1, 1) and perpendicular to the vectors i+ j and i− j− k.

Ans: l(t) = (1− t, t + 1, 1− 2t)

19. Find the equation of the line through (−7,1, 1) and perpendicular to the vectors 2x+3y and 5z−y.

Ans: l(t) = (15t − 7, t − 10, t − 2)

20. Determine if the lines l1: x = 4t+1, y = 4− t, z = 3t+4 and l2: x = −2−8t, y = 2t−8, z = −6t−8
are the same, skew, parallel, or intersecting. If the lines intersect, find the point of intersection.

Ans: The lines are parallel.

21. Determine if the lines l1: x = t −2, y = 4− t, z = 2t +1 and l2: x = 2t −4, y = 8−2t, z = 2t +2
are the same skew, parallel, or intersecting. If the lines intersect, find the point of intersection.

Ans: The lines are not parallel and do not intersect.

22. Determine if the lines l1(t) = (7, 1,20) + t(2, 1,5) and l2(s) = (4,−17,−13) + s(−1, 5,6) are the
same skew, parallel, or intersecting. If the lines intersect, find the point of intersection.

Ans: The lines intersect at (1,−2,5).

23. Determine if the lines l1 :
x
4
=

y − 9
−3

=
z + 1

4
and l2 :

x + 12
8

=
y − 18
−6

=
z + 13

8
are the same,

skew, parallel, or intersecting. If the lines intersect, find the point of intersection.

Ans: Same line. t for first line, s for second. t = 2s− 3.

24. Determine if the lines l1(t) = (2t + 1, 3t − 4, 5− t) and l2(s) = (2s − 1, 3s + 1, 5− s) are the same,
skew, parallel, or intersecting. If the lines intersect, find the point of intersection.

Ans: Parallel

25. Determine if the lines l1: x = t, y = 1− t, z = 1− t and l2: x = 6t, y = −t − 1, z = 3t + 1 are the
same, skew, parallel, or intersecting. If the lines intersect, find the point of intersection.
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Ans: Skew

26. Determine if the lines l1(t) = (1− t, 5t − 3, t) and l2(s) = (9− 2s, 3− 10s, 2s) are the same, skew,
parallel, or intersecting. If the lines intersect, find the point of intersection.

Ans: Parallel

27. Determine if the lines l1(t): x = 2t + 5, y = 2t + 1, z = 3− t and l2(s): x = 11s − 1, y = 4− s,
z = 12s are perpendicular.

Ans: The lines are not perpendicular.

28. Determine if the lines l1(t) = (−1, 3,6) + t(−2,0, 1) and l2(t) = (11,−1,15) + t(−3, 2,−6) are
perpendicular.

Ans: The lines are not perpendicular.

29. Determine if the lines l1(t) = (t+6, t+7, t+9) and l2(t) = (13−4t, 3t−7, t+1) are perpendicular.

Ans: The lines are not perpendicular.

30. Determine if the lines l1(t): x = 3t+1, y = 2t+5, z = t−1 and l2: x = 7t, y = 7−14t, z = 6t+5
are perpendicular.

Ans: The lines are not perpendicular.

Planes

31. Find a normal vector to the plane 2x − 3y + z = 6 and three points on the plane.

Ans: 〈2,−3, 1〉, (3, 0,0), (0,−2,0), (0,0, 6), (2,−1,1)

32. Find a normal vector to the plane x + y − 4z = 3 and three points on the plane.

Ans: 〈1,1,−4〉, (3,0, 0), (0,3, 0), (0,0,−3/4)

33. Find a normal vector to the plane 2x − 3z = 5 and three points on the plane.

Ans: 〈2,0,−3〉, (5/2,0, 0), (0,0,−5/3), (−1/2, 0,−2), (5/2,π, 0)

34. Find a normal vector to the plane 3y + 2z − x = 7 and three points on the plane.

Ans: 〈−1, 3,2〉, (−7, 0,0), (0, 7/3,0), (0,0, 7/2)

35. Find a normal vector to the plane 2z − 5y = −1 and three points on the plane.

Ans: 〈0,−5, 2〉, (0, 1/5,0), (0,0,−1/2), (0,1, 2), (0,−1,−3),(π, 1/5,0)

36. Find the equation of the plane containing the point (1, 2,3) with normal vector 2i− j+ 3k.

Ans: 2(x − 1)− (y − 2) + 3(z − 3) = 0 or 2x − y + 3z = 9

37. Find the equation of the plane containing the point (0,−3, 5) with normal vector 〈−2,1,−3〉.
Ans: −2(x − 0) + (y + 3)− 3(z − 5) = 0 or −2x + y − 3z = −18

38. Find the equation of the plane containing the point (7,−2, 4) with normal vector i+ j− k.
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Ans: (x − 7) + (y + 2)− (z − 4) = 0 or x + y − z = 1

39. Find the equation of the plane containing the point (1/2,3, 0) with normal vector 〈2,−3,5〉.
Ans: 2(x − 1/2)− 3(y − 3) + 5z = 0 or 2x − 3y − 5z = −8

40. Find the equation of the plane containing the point (0, 5,0) with normal vector −1
5 i+ 1

2 j+ 1
4k.

Ans: −4x + 10(y − 5) + 5z = 0 or −4x + 10y + 5z = 50

41. Find the equation of the plane containing the point (2,2,−1) with normal vector 〈30, 60,−60〉.
Ans: (x − 2) + 2(y − 2)− 2(z + 1) = 0 or x + 2y − 2z = 8

42. Find the equation of the plane containing the points (1,1, 1), (0,1, 3), and (−1,2,−1).
Ans: n= 〈2, 6,1〉, 2x + 6(y − 1) + z = 3 or 2x + 6y + z = 9

43. Find the equation of the plane containing the points (2,1, 3), (2,2,−5), and (0,0, 1).
Ans: n= 〈5,−8,−1〉, 10(x − 2)− 16(y − 2)− 2(z + 5) = 0 or 10x − 16y − 2z = −2

44. Find the equation of the plane containing the points (1,1, 0), (1,0, 1), and (0, 1,1).
Ans: n= 〈1, 1,1〉, (x − 1) + y + (z − 1) = 0 or x + y + z = 2

45. Find the equation of the plane containing the points (0,0, 2), (5,2,−4), and (−1,−2, 4).
Ans: n= 〈−2,7, 2〉, −8(x − 5) + 28(y − 2) + 8(z + 4) = 0 or −8x + 28y + 8z = −16

46. Find the equation of the plane with x–intercept a, y–intercept b, and z–intercept c.

Ans: n= 〈bc, ac, ab〉, bcx + ac(y − b) + abz = 0 or bcx + ac y + abz = abc

47. Find the equation of the plane containing the line x = 3t, y = 2− 2t, z = t + 1 and parallel to the
plane x + 2y + z = 2.

Ans: x + 2y + z = 5

48. Find the equation of the plane containing the line l(t) = (4, 8,20)t + (1, 1,1) and parallel to the
plane 5y − 2z = 10.

Ans: 5y − 2z = 3

49. Find the equation of the plane containing the line
x
−12

=
y − 1

3
=

z + 1
−10

and parallel to the plane

−2x + 2y + 3z = 7.

Ans: −2x + 2y + 3z = −1

50. Find the equation of the plane containing the line x = 6−28t, y = 4t +4, z = 5−24t and parallel
to the plane −x + 5y + 2z = 16.

Ans: −x + 5y + 2z = 24

51. Find the equation of the plane containing the line l(t) = (3− t, 2t − 1, 3t + 2) and parallel to the
plane x − y + z = −1.
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Ans: x − y + z = 6.

52. Find the equation of the plane perpendicular to the planes x − 2y + 3z = 13 and 6+ 4x − 2z = 0
and containing the point (1, 0,1).
Ans: 4x + 14y + 8z = 12

53. Find the equation of the plane perpendicular to the planes 2y − z = 9 and x + 2y = 14 and con-
taining the point (7,3, 9).
Ans: −2x + y + 2z = 7

54. Find the equation of the plane perpendicular to the planes 2x − 3y + z = 25 and x + y − 4z = 3
and containing the point (0, 6,0).
Ans: 11x + 9y + 5z = 54

55. Find the equation of the plane perpendicular to the planes −3x+5y+4z = 2 and 2x+2y+2z = 14
and containing the point (1, 2,3).
Ans: 2x + 14y − 16z + 18= 0

56. Find the equation of the plane perpendicular to the planes 2x + y − z = 7 and −x + 3y + 2z = 17
and containing the point (1, 0,−1).
Ans: 5x − 3y + 7z + 2= 0

57. Find the equation for the line of intersection of the planes x + 2y − z = 7 and x + y − z = 0.

Ans: Using z = 0 to find a point for the line, l(t) = (−1,0,−1)t + (−7,7, 0)

58. Find the equation for the line of intersection of the planes x + 2y + 2z = 16 and 3x + z = 6.

Ans: Using z = 0 to find a point for the line, l(t) = (2, 5,−6)t + (2,7, 0)

59. Find the equation for the line of intersection of the planes x + y − 3z = 1 and 5x − y + 2z + 1= 0.

Ans: Using z = 0 to find a point for the line, l(t) = (1, 17,−6)t + (0,1, 0)

60. Find the equation for the line of intersection of the planes 3x + 3y + 2z = 0 and 2x + y + 2z = 12.

Ans: Using z = 0 to find a point for the line, l(t) = (4,−2,−3)t + (12,−12,0)

61. Find the equation for the line of intersection of the planes x + 4y − z = 4 and 3x + 2y − z = 2.

Ans: Using z = 0 to find a point for the line, l(t) = (1, 1,5)t + (0, 1,0)

62. Determine if the planes x + y + z = 5 and 2y +2y = 10−2x are the same, parallel, perpendicular,
or neither. If the planes are distinct and nonparallel, find the angle between them.

Ans: The planes are the same.

63. Determine if the planes x+ y−2z+1= 0 and 2x+z = 2y+8 are the same, parallel, perpendicular,
or neither. If the planes are distinct and nonparallel, find the angle between them.

Ans: The planes are skew. The angle is arccos(−
p

2/3/3) = 105.793◦
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64. Determine if the planes 2x + y + 3z + 4= 0 and 4x + 2y + 6z = 10 are the same, parallel, perpen-
dicular, or neither. If the planes are distinct and nonparallel, find the angle between them.

Ans: The planes are parallel.

65. Determine if the planes x − 2y + z + 4 = 0 and 3z − 3x = 0 are the same, parallel, perpendicular,
or neither. If the planes are distinct and nonparallel, find the angle between them.

Ans: The planesl are perpendicular. The angle is 90◦.

66. Determine if the planes 2x + y − z = 13 and 3x + y + 4z = 0 are the same, parallel, perpendicular,
or neither. If the planes are distinct and nonparallel, find the angle between them.

Ans: The planes are skew. The angle is arccos(
p

3/13/2) = 76.1021◦

67. Determine if the planes 2x − 4y + 2z + 8 = 0 and −5x + 10y − 5z = 20 are the same, parallel,
perpendicular, or neither. If the planes are distinct and nonparallel, find the angle between them.

Ans: They are the same.

68. Determine if the planes 2x + y + 3z = 9 and −14x − 8y + 12z + 2 = 0 are the same, parallel,
perpendicular, or neither. If the planes are distinct and nonparallel, find the angle between them.

Ans: They are perpendicular. The angle is 90◦.

69. Determine if the planes 4x +4y+ z = 6 and 5x +3y+ z = 13 are the same, parallel, perpendicular,
or neither. If the planes are distinct and nonparallel, find the angle between them.

Ans: The lines are skew. The angle is arccos
p

33/35= 13.8302◦

70. Determine if the planes 3x− y+2z = 2 and 3y−9x = 6z−15 are the same, parallel, perpendicular,
or neither. If the planes are distinct and nonparallel, find the angle between them.

Ans: The planes are parallel.

71. Determine if the line l(t) = (2,−1, 2)t + (1, 1,1) and the plane 2x − y + 2z = 9 are perpendicular,
parallel, or neither.

Ans: They are perpendicular.

72. Determine if the line l(t) = (t + 2,5− 3t, 5t) and the plane 3x + y + 6z + 7= 0 are perpendicular,
parallel, or neither.

Ans: They are neither.

73. Determine if the line x = 3t +4, y = 7− t, z = t and the plane x +5y +2z = 10 are perpendicular,
parallel, or neither.

Ans: They are parallel.

74. Find the equation of the line perpendicular to the plane 5x − 7y + 4z = 12 containing the point
(−1, 4,8).
Ans: l(t) = (5,−7,4)t + (−1, 4,8)

75. Find the equation of the plane perpendicular to the line x = 4 − t, y = 2t + 1, z = 5t + 6 and
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containing the line l(t) = (3− 8t, 11t + 2,4− 6t).
Ans: −1(x − 3) + 2(y − 2) + 5(z − 4) or −x + 2y + 5z = 21

(Quadratic) Surfaces

76. Use appropriate level curves to sketch the surface given by the equation x + y + z = 7.

Ans: A plane.

77. Use appropriate level curves to sketch the surface given by the equation (x −2)2+ y2+(z+1)2 = 9
and describe the surface.

Ans: Sphere. Level curves in any direction are circles. This is a sphere with center (2, 0,−1) and radius 3.

78. Use appropriate level curves to sketch the surface given by the equation 4 x
2 +(y −1)2+ z2 = 4 and

describe the surface.

Ans: Ellipsoid. Level curves in any direction are ellipses. This is an ellipsoid centered at (0,1, 0), ‘radius’
1 in x , ‘radius’ 2 in y , and ‘radius’ 2 in z.

79. Use appropriate level curves to sketch the surface given by the equation z = 4x2+9y2 and describe
the surface.

Ans: Elliptic paraboloid. Open: z–axis. Vertex: (0,0, 0).

80. Use appropriate level curves to sketch the surface given by the equation y2 = x and describe the
surface.

Ans: Parabolic Cylinder. Base: x = 0. Open: x–axis. Sym: y = 0.

81. Use appropriate level curves to sketch the surface given by the equation z2 − x2 − y2 = 1 and
describe the surface.

Ans: Hyperboloid of Two Sheets. Bottom: (0,0,±1). Sym: z = 0.

82. Use appropriate level curves to sketch the surface given by the equation z2 = 4x2+9y2 and describe
the surface.

Ans: Elliptic Cone. Open: z–axis. Vertex: (0,0, 0).

83. Use appropriate level curves to sketch the surface given by the equation z = 4y2 − x2 and describe
the surface.

Ans: Hyperbolic Paraboloid. Saddle: (0,0, 0). Sit: x–axis.

84. Use appropriate level curves to sketch the surface given by the equation x2 + y2 − z2 = 1 and
describe the surface.

Ans: Hyperboloid of One Sheet. Center: (0,0, 0). Sym: z–axis.

85. Use appropriate level curves to sketch the surface given by the equation 2x + x2 + 36y2 + 4z2 =
144y − 141 and describe the surface.

Ans: Ellipsoid. Level curves in any direction are ellipses. Equation of surface
� x+1

2

�2
+(3(y−2))2+z2 = 1

– an ellipsoid with center (−1, 2,0) and ‘radius’ 2 in the x direction, ‘radius’ 1/3 in the y direction, and
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‘radius’ 1 in the z direction.

86. Use appropriate level curves to sketch the surface given by the equation −y = (x − 1)2 + z2 and
describe the surface.

Ans: Elliptic Paraboloid, open downwards. Open: y–axis. Vertex: (1,0, 0).

87. Use appropriate level curves to sketch the surface given by the equation 2x − 3y − z = 6.

Ans: A plane.

88. Use appropriate level curves to sketch the surface given by the equation y = z2−4z+7 and describe
the surface.

Ans: Parabolic Cylinder. y = (z − 3)2 + 3. Base: y = 3. Open: y–axis. Sym: z = 2.

89. Use appropriate level curves to sketch the surface given by the equation
x2

4
+

z2

9
− 1 = y2 and

describe the surface.

Ans: Hyperboloid of One Sheet. Center: (0,0, 0). Sym: y–axis.

90. Use appropriate level curves to sketch the surface given by the equation x2+(y+5)2+(z+1)2 = 4
and describe the surface.

Ans: Sphere. Level curves in any direction are circles. This is a sphere with center (0,−5,−1) and
radius 2.

91. Use appropriate level curves to sketch the surface given by the equation x2 = z2 + y2 − 2y + 1 and
describe the surface.

Ans: Elliptic Cone. Open: y = 1, z = 0. Vertex: (0, 1,0).

92. Use appropriate level curves to sketch the surface given by the equation x + 3 = z2 − 9y2 and
describe the surface.

Ans: Hyperbolic Paraboloid. Saddle: (−3, 0,0). Sit: y–axis.

93. Use appropriate level curves to sketch the surface given by the equation y2 − 4x2 − 4(z + 1)2 = 4
and describe the surface.

Ans: Hyperboloid of Two Sheets.
y2

4
− x2 − (z + 1)2 = 1. Bottom: (0,±2,−1). Sym: y = 0.

94. Use appropriate level curves to sketch the surface given by the equation y − 2z = 4.

Ans: A plane.

95. Use appropriate level curves to sketch the surface given by the equation x2 − y2 −
z2

9
= 1 and

describe the surface.

Ans: Hyperboloid of Two Sheets. Bottom: (±1, 0,0). Sym: x = 0.

96. Use appropriate level curves to sketch the surface given by the equation x2+36z2+9y2 = 288z−576
and describe the surface.

Ans: Ellipsoid. Level curves in any direction are ellipses. Equation of surface
� x−3

3

�2
+ y2+(2(z−4))2 = 1
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– ellipsoid with center (3,0, 4) and ‘radius’ 3 in the x direction, ‘radius’ 1 in the y direction, and ‘radius’
1/2 in the z direction.

97. Use appropriate level curves to sketch the surface given by the equation x + 1 = y2 + (z − 1)2 and
describe the surface.

Ans: Elliptic Paraboloid. Open: x–axis. Vertex: (−1, 0,1).

98. Use appropriate level curves to sketch the surface given by x2 + y2 + z2 + 2 = 2(x + y + z) and
describe the surface.

Ans: Sphere. Level curves in any direction are circles. This is a sphere with radius 1 and center (1,1,−1).

99. Use appropriate level curves to sketch the surface given by the equation (y+1)2+(z−2)2−
x2

2
= 1

and describe the surface.

Ans: Hyperboloid of One Sheet. Center: (0,−1, 2). Sym: x–axis.

100. Use appropriate level curves to sketch the surface given by the equation y2− x2 = z2−6z−2y+8
and describe the surface.

Ans: Elliptic Cone. (y + 1)2 = x2 + (z − 3)2. Open: x = 0, z = 3. Vertex: (0,−1, 3).

101. Use appropriate level curves to sketch the surface given by the equation y − 2= x2 − z2 + 2x + 3
and describe the surface.

Ans: Hyperbolic Paraboloid. y − 2= (x + 1)2 − z2. Saddle: (−1,2, 0). Sit: z–axis.

102. Use appropriate level curves to sketch the surface given by the equation x = 4− z2 and describe
the surface.

Ans: Parabolic Cylinder. Base: x = 4. Open: −x–axis. Sym: z = 0.

103. Use appropriate level curves to sketch the surface given by the equation 9x2 + 9y2 + z2 =
54x + 36y − 108 and describe the surface.

Ans: Ellipsoid. Level curves in any direction are ellipses. Equation of the surface (x−3)2+(y−2)2+
� z

3

�2

– ellipsoid center (3,2, 0) and ‘radius’ 1 in the x direction, ‘radius’ 1 in y direction, and ‘radius’ 3 in the
z direction.

104. Use appropriate level curves to sketch the surface given by the equation x2− y2− z2 = 4x −4 and
describe the surface.

Ans: Elliptic Cone. (x − 2)2 =
y2

4
+ z2. Open: y = 0= z. Vertex: (2, 0,1).

105. Use appropriate level curves to sketch the surface given by the equation x + 4y = 3y − z + 1.

Ans: A plane.

106. Use appropriate level curves to sketch the surface given by the equation z = x2 + 3 and describe
the surface.

Ans: Parabolic Cylinder. Base: z = 3. Open: z–axis. Sym: y = 0.
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107. Use appropriate level curves to sketch the surface given by 4x2 + 4y2 + 4z2 + 16z = 8z − 19 and
describe the surface.

Ans: Sphere. Level curves in any direction are circles. This is a sphere with radius (−2, 0,1) and radius
1/2.

108. Use appropriate level curves to sketch the surface given by the equation y2−2= x2+z2+2(x+y+z)
and describe the surface.

Ans: Hyperboloid of One Sheet. (x + 1)2 + (z + 1)2 − (z − 1)2 = 1. Center: (−1,1,−1). Sym: y = 1.

109. Use appropriate level curves to sketch the surface given by the equation (z+2)2− y2−(x−3)2 = 9
and describe the surface.

Ans: Hyperboloid of Two Sheets. Bottom: (3,0,±3). Sym: z = 0.

110. Use appropriate level curves to sketch the surface given by the equation x =
y2

4
+ z2.

Ans: Elliptic Paraboloid. Open: x–axis. Vertex: (0,0, 0).

111. Use appropriate level curves to sketch the surface given by the equation x = z2−
y2

9
and describe

the surface.

Ans: Hyperbolic Paraboloid. Saddle: (0,0, 0). Sit: y–axis.

112. Use appropriate level curves to sketch the surface given by x2+ y2+2+8x +16= 16 and describe
the surface.

Ans: Sphere. Level curves in any direction are circles. This is a sphere with center (−4,0, 0) and radius 4.

113. Use appropriate level curves to sketch the surface given by the equation z2− x2− y2 = 2y + 2z −
5x + 25 and describe the surface.

Ans: Elliptic Cone. (z − 1)2 = (y + 1)2 + (x − 5)2. Open: y = −1, x = 5. Vertex: (5,−1, 1).

114. Use appropriate level curves to sketch the surface given by the equation x + 2z = 4.

Ans: A plane.

115. Use appropriate level curves to sketch the surface given by the equation x2 +
� y

3

�2
+
� z+3

2

�2
= 1

and describe the surface.

Ans: Ellipsoid. Level curves in any direction are ellipses. Equation of the surface x2+
� y

3

�2
+
� z+3

2

�2
= 1

– ellipsoid with center (0,0,−3) and ‘radius’ 1 in the x direction, ‘radius’ 3 in the y direction, and ‘ra-
dius’ 2 in the z direction.

116. Use appropriate level curves to sketch the surface given by the equation z2+(y−3)2 = x2+9 and
describe the surface.

Ans: Hyperboloid of One Sheet. Center: (0,3, 0). Sym: x–axis.

117. Use appropriate level curves to sketch the surface given by the equation
y2

4
− 3x2 − z2 = 1 and

describe the surface.
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Ans: Hyperboloid of Two Sheets. Bottom: (0,±2, 0). Sym: y = 0.

118. Use appropriate level curves to sketch the surface given by the equation y = 1 − 6z − z2 and
describe the surface.

Ans: Parabolic Cylinder. y = 10− (z + 3)2. Base: y = 10. Open: −y–axis. Sym: z = −3.

119. Use appropriate level curves to sketch the surface given by the equation z+3= (x−1)2− (y+2)2

and describe the surface.

Ans: Hyperbolic Paraboloid. Saddle: (1,−2,−3). Sit: y–axis.

120. Use appropriate level curves to sketch the surface given by the equation z+1= (y−3)2+(x+1)2

and describe the surface.

Ans: Elliptic Paraboloid. Open: z–axis. Vertex: (−1, 3,−1).
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1.7 Computing Distances

Distance Point–Point: We have already seen and done this before: d =
p

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Distance Point–Line: Find the distance from P(2, 1,3) and l(t) = (2,3− 2) + t(−1,1,−2). There are
two methods:

Method 1. We have v = (−1,1,−2). We need u so take the displacement vector to any point on the
line (there is an easy one): u= (2, 1,3)− (2,3,−2) = (0,−2,5). We have

proju v=
�

v · u
v · v

�

v= (2,−2, 4)

Then the distance is d = |u− proju v|= |(−2, 0,1)|=
p

5.

Method 2. Using right triangle trig, we have sinθ =
d
|u|

. But d = |u| sinθ =
|v|
|v|
|u| sinθ =

|v× u|
|v|

. Now

v× u=

�

�

�

�

�

�

i j k
−1 1 −2

0 −2 5

�

�

�

�

�

�

= i+ 5j+ 2k

so that we must have d =
|i+ 5j+ 2k|
| − i+ j− 2k|

=
p

30
p

6
=
p

5.
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Distance Point–Plane: You have a normal vector for a plane. Find a point on the plane and form the
displacement vector from the given point to the found point. Then simply take the projection to find
the distance.

Distance Line–Line: Find the distance from l1(t) = (0, 5,−1) + t(2,1, 3) and l2(t) = (−1,2, 0) +
t(1,−1, 0). We have two points, form their displacement vector: u= (−1, 2,0)−(0,5,−1) = (−1,−3,1).

The lines must lie in parallel planes. We need to find the common normal:

n=

�

�

�

�

�

�

i j k
2 1 3
1 −1 0

�

�

�

�

�

�

= 3i+ 3j− 3k

Then we have

proju n =
�

n · u
n · n

�

n=
−15
27
(3,3,−3) = −

5
3
(1,1,−1)

so that d = |projn u|= 5
3

p
3.
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Distance Plane–Plane: Find the distance between 2x−2y+z = 5 and 2x−2y+z = 20. (Why are these
parallel?) We immediately have n= (2,−2, 1). Find any point on the each plane (there are easy ones):

(0,0, 5) and (0, 0,20) will do. Form their displacement vector: u = (0,0, 20) − (0, 0,5) = (0,0, 15).
Then

projn u=
�

n · u
n · n

�

n= −
15
9
(2,−2,1) = −

5
3
(2,−2, 1)

so that d = |projn u|= 5.

Distance Surface–Surface: We will need max/min and Lagrange Multipliers to do this. This will come
later.
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1.7 | Exercises

Distance between Points

1. Find the distance between the points (−1,3, 7) and (9,−2,3).
Ans:

p
141

2. Find the distance between the points (0, 4,−10) and (3,1, 3).
Ans:

p
187

3. Find the distance between the points (12, 1,5) and (7,4, 6).
Ans:

p
35

Distance between Point & Line

4. Find the distance from the point (−2, 4,−2) to the line l(t) = (−1, 2,0) + t(4, 5,3).
Ans: 3

5. Find the distance from the point (4,9, 4) to the line l : x = 2− 5t, y = t + 5,z = 6t + 3.

Ans:
p

21

6. Find the distance from the point (−1, 2,−2) to the line l :
x + 2

5
=

y + 2
3
=

z − 2
4

.

Ans: 9

7. Find the distance from the point (2,9, 4) to the line l : x = 2− 5t, y = t + 5, z = 3− 4t.

Ans:
p

17

8. Find the distance from the point (2,7,−3) to the line l(t) = (t + 4,1− 3t − 6t).
Ans: 15

9. Find the distance from the point (−4, 6,−1) to the line l :
x
4
=

y − 4
5
=

z
5

.

Ans:
p

21

10. Find the distance from the point (−3,−1,5) to the line l(t) = (−2,1, 7) + t(4,4,−6).
Ans: 3

11. Find the distance from the point (1, 9,4) to the line l : y = 4, x − 2= 3− z.

Ans: 3
p

3

12. Find the distance from the point (5, 7,3) to the line l(t) = (6t, 4− t,−4t − 3).
Ans: 23

Distance between Points & Plane
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13. Find the distance from the point (1, 1,−3) to the plane x + 2y + 2z + 4= 0.

Ans: 1

14. Find the distance from the point (2, 2,0) to the plane 2x + 5y + 4z = 1.

Ans:
p

5

15. Find the distance from the point (−4,0, 2) to the plane 2x − 4y + 4z = 3.

Ans:
1
2

16. Find the distance from the point (1, 3,1) to the plane 2y − x + z = 0.

Ans:
p

6

17. Find the distance from the point (0, 0,7) to the plane 3x − 4z = 1.

Ans:
27
5

18. Find the distance from the point (3, 0,3) to the plane 4x − 2y + 5z = 3.

Ans: 2
p

5

19. Find the distance from the point (5, 5,3) to the plane 2x + y − 2z + 5= 0.

Ans:
4
3

20. Find the distance from the point (1, 1,−1) to the plane x − 2y + z + 4= 0.

Ans:
p

6

21. Find the distance from the point (−2,1, 2) to the plane 4x + 3z + 2= 0.

Ans:
4
5

Distance between Skew Lines

22. Find the distance between the lines l1(t) = (3, 3,1) + t(0,−1,5) and l2(t) = (−2, 1,6) + t(2, 2,1).
Ans: 3

23. Find the distance between the lines l1: x + 5=
y
2
=

z + 4
−2

and l2: z = 5,
x + 2

4
=

y − 6
3

.

Ans: 3
p

5

24. Find the distance between the lines l1: x = −2t, y = −4t − 1, z = 3 and x = 4t − 2, y = 1− 3t,
z = 1.

Ans: 2

25. Find the distance between the lines l1(t) = (5t + 5,1,−5t − 2) and l2(t) = (2t + 6, 4− 2t,−3).
Ans:

p
3
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26. Find the distance between the lines l1:
x − 2

4
=

y − 1
2
=

z + 2
5

and l2: y = 1,
x + 3
−4

=
z − 2
−4

.

Ans: 6

27. Find the distance between the lines l1: x = 2t, y = −t, z = t + 5 and l2: x = 7− t, y = 3t + 9,
z = 4− 3t.

Ans: 4
p

2

28. Find the distance between the lines l1(t) = (1,−3t − 1,4) and l2(t) = (−4, 3− t, 3− t).
Ans: 5

29. Find the distance between the lines l1: x = 4t −2, y = t +3, z = 5t −1 and l2: x = 8−3t, y = 4t,
z = t − 3.

Ans: 3
p

3

30. Find the distance between the lines l1(t) = (1, 1,2) + t(4,0,−4) and l2(t) = (3,0, 4) + t(1,0, 2).
Ans: 1

Distance between Parallel Planes

31. Find the distance between the planes −7x − 6y + 6z = 4 and 7x + 6y = 6z + 7.

Ans: 1

32. Find the distance between the planes 9x + 4y + z = 12 and 9x + 4y + z = −2.

Ans:
p

2

33. Find the distance between the planes 8x + 4y + z = −11 and 8x + 4y + z = 7.

Ans: 2

34. Find the distance between the planes 11x + 5y − z = 9 and 11x + 5y − z = −12.

Ans:
p

3

35. Find the distance between the planes 2x + y + 2z + 25= 0 and 2x + y + 2z + 16= 0.

Ans: 3

36. Find the distance between the planes x + y + z + 11= 0 and x + y + z + 23= 0.

Ans: 4
p

3

37. Find the distance between the planes −6x + 2y − 3z = 12 and −6x + 2y − 3z = 5.

Ans: 1

38. Find the distance between the planes 5x + 4y + 2z + 10= 0 and 5x + 4y + 2z + 25= 0.

Ans:
p

5

39. Find the distance between the planes x + 2y + 2z + 13= 0 and x + 2y + 2z + 25= 0.
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Ans: 4

Distance Formulas

40. Show that the distance from a point p and a line l with direction vector u containing a point q is
given by

d =
‖ ~pq× u‖
‖u‖

41. Show that the distance from a point (x0, y0, z0) to a plane Ax + B y + Cz + D = 0 is given by

d =
|Ax0 + B y0 + Cz0 + D |
p

A2 + B2 + C2

42. If l1(t) = b1 + ta and l2(t) = b2 + ta are parallel lines in R3, show the distance between them is
given by

d =
‖a× (b2 − b1)‖

‖a‖

43. If l1(t) = b1 + ta1 and l2(t) = b2 + ta1 are skew lines in R3, show that the distance between them
is given by

d =
| (a1 × a2) · (b2 − b1) |

‖a1 × a2‖
44. Show that the distance between parallel planes with normal vector n is given by

d =
|n · (x2 − x1) |

‖n‖

where xi is the position vector on the ith plane.

45. Show that the distance between parallel planes Ax+B y+Cz+D1 = 0 and Ax+B y+Cz+D2 = 0 is

d =
|D1 − D2 |p
A2 + B2 + C2
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1.8: Cylindrical & Spherical Coordinates

1.8 Cylindrical & Spherical Coordinates

Polar Coordinates: Gives coordinates in terms of an angle and a distance from the origin. We have
special plots for these:

0 1 2 3
0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

¨

x = r cosθ

y = r sinθ
(

r2 = x2 + y2

tanθ =
y
x
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1.8: Cylindrical & Spherical Coordinates

x

y

z

r = r1 surface

z = z1 plane

φ = φ1 plane

P1(r1,φ1, z1)

ar

aφ

az

φ1

r1

z1

Cylindrical Coordinates: Simply ‘three–dimensional polar coordinates.’ Find a coordinate by an angle,
radius, and a height.











x = r cosθ

y = r sinθ

z = z










r2 = x2 + y2

tanθ =
y
x

z = z

Observe even by the formulas, there is little difference between the two.
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Spherical Coordinates: Find a point by a angle horizontally, an angle vertically, and a distance.










x = ρ sinφ cosθ

y = ρ sinφ sinθ

z = ρ cosφ



















ρ2 = x2 + y2 + z2

tanφ =

p

x2 + y2

z
tanθ =

y
x











r = ρ sinφ

θ = θ
z = ρ cosφ











ρ2 = x2 + y2

tanφ =
r
z

θ = θ

Note the difference between the angle φ in Mathematics and in the ‘hard’ Sciences.

x

y

z

P

θ

φ
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1.8: Cylindrical & Spherical Coordinates

1.8 | Exercises

1. Convert the following Cartesian coordinates to polar coordinates. Plot these points in both Cartesian
and polar coordinates.

(a) (−
p

2,−
p

2) Ans: (2,5π/4)

(b) (−2, 2
p

3) Ans: (4, 2π/3)

(c) (3,3
p

3) Ans: (6,π/3)

2. Convert the following polar coordinates to Cartesian coordinates. Plot these points in both Cartesian
and polar coordinates.

(a) (4
p

2, 7π/4) Ans: (4,−4)

(b) (4,4π/3) Ans: (−2,−2
p

3)

(c) (2
p

2, 3π/4) Ans: (−2,2)

3. Convert the following Cartesian coordinates to cylindrical coordinates. Plot these points in both
Cartesian and cylindrical coordinates.

(a) (−1,
p

3, 2) Ans: (2,2π/3, 2)

(b) (
p

3,−3, 1) Ans: (2
p

3, 5π/3,1)

(c) (−5,−5,−4) Ans: (5
p

2,5π/4,−4)

4. Convert the following cylindrical coordinates to Cartesian coordinates. Plot these points in both
cylindrical coordinates and Cartesian coordinates.

(a) (4,5π/6,−2) Ans: (−2
p

3,2,−2)

(b) (10,−π/4,−6) Ans: (5
p

2,−5
p

2,−6)

(c) (1,4π/3, 3) Ans: (−1/2,−
p

3/2, 3)

5. Convert the following Cartesian coordinates to spherical coordinates. Plot these points in both
spherical and Cartesian space.

(a) (1,−1,
p

6) Ans: (2
p

2, 7π/4,π/6)

(b) (0,
p

3,1) Ans: (2,π/2,π/3)

(c) (
p

2,−
p

2,2) Ans: (2
p

2,7π/4,π/4)

6. Convert the following spherical coordinates to Cartesian coordinates. Plot these points both in
spherical and Cartesian space.

(a) (4,π/3,π/6) Ans: (1,
p

3, 2
p

3)
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(b) (16,4π/3, 3π/4) Ans: (−4
p

2,−4
p

6,−8
p

2)

(c) (20,−π/3,π/4) Ans: (5
p

2,−5
p

6,10
p

2)

7. Convert the following spherical coordinates to cylindrical coordinates. Plot these points both in
spherical and cylindrical coordinates.

(a) (2,π/3,π/6) Ans: (1,π/3,
p

3)

(b) (1,4π/3,π/2) Ans: (1, 7π/6,0)

(c) (4,π/2,5π/6) Ans: (2,π/2,−2
p

3)

8. Convert the following cylindrical coordinates to spherical coordinates. Plot these points in both
cylindrical coordinates and spherical coordinates.

(a) (4,π/2,0) Ans: (4,π/2,π/2)

(b) (5
p

3, 5π/6,5) Ans: (10, 5π/6,π/3)

(c) (1,−π/4,−
p

3) Ans: (2,7π/4, 5π/6)

9. Describe the curve given by r = 3 in polar coordinates. Sketch this.

Ans: Circle of radius 3 centered at the origin.

10. Describe the curve given by θ = 3π/4 in polar coordinates. Sketch this.

Ans: Ray from the origin at 45◦ ‘above’ negative x–axis.

11. Describe the curve given by |θ |= π/4 in polar coordinates. Sketch this.

Ans: Ray from the origin at 45◦ above and below ‘positive’ x–axis.

12. Describe the surface given by r = 2 in cylindrical coordinates. Sketch this.

Ans: Cylinder of radius 2 centered at the origin.

13. Describe the surface given by θ = π/3 in cylindrical coordinates. Sketch this.

Ans: Plane ‘emanating’ from the z–axis at angle θ = π/3.

14. Describe the surface given by ρ = 5 in spherical coordinates. Sketch this.

Ans: Sphere of radius 5 centered at the origin.

15. Describe the surface given by φ = π/4 in spherical coordinates. Sketch this.

Ans: Cone making an angle of 45◦ with the positive z–axis.

16. Describe the surface given by θ = π in spherical coordinates. Sketch this.

Ans: Plane ‘emanating’ from the z–axis at angle π, i.e. along the ‘negative’ x–axis.

57 of 153



1.8: Cylindrical & Spherical Coordinates

17. Describe the curve given by r2 = 6r cosθ in polar coordinates. Sketch this. What if this were in
cylindrical coordinates?

Ans: Substitute and complete square. Circle of radius 3 centered at (3,0).

18. Describe the surface given by z = 2r in cylindrical coordinates. Sketch this.

Ans: Substitute in. A cone about the ‘positive’ z–axis making an angle of 26.5651◦ with the positive
z–axis.

19. Describe the surface given by ρ cosφ = 2ρ sinφ in spherical coordinates. Sketch this.

Ans: Divide and obtain tanφ = 1/2. So φ = arctan(1/2), or a cone making an angle of 26.5651◦ with
the ‘positive’ z–axis (see the previous problem).

20. Describe the surface given by ρ = 2a cosφ in spherical coordinates. Sketch this.

Ans: Substitute in and complete square. Sphere with radius a and center (0, 0, a).
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Chapter 2

Partial Derivatives & their Applications



2.1: Limits

2.1 Limits

Limit: We say that f (x) has limit L at a if for ε > 0, there is δ > 0 such that for all |x − a|< δ, we have
| f (x)− L| < ε. Overall, limits in multivariable Calculus are more complicated because there are more
directions to ‘worry’ about. Moreover, it can become increasingly difficult to picture what is going on.

Take for example the following lim(x ,y,z)→(1,−1,2)(3x − 5y + 2z) = 12. Given ε > 0, we want δ so that
if 0 < ‖(x , y, z) − (1,−1, 2)‖ < δ, we have |3x − 5y + 2z − 12| < ε. Now ‖(x , y, z) − (1,−1, 2)‖ =
p

(x − 1)2 + (y + 1)2 + (z − 2)2 so we merely need find the radius of some sphere. We have

Æ

(x − 1)2 = |x − 1|
Æ

(y + 1)2 = |y + 1|
Æ

(z − 2)2 = |z − 2|

Now if
p

(x − 1)2 + (y + 1)2 + (z − 2)2 < δ, so too are each of the above. But. . .

|3x − 5y + 2z − 12|= |(3(x − 1)− 5(y + 1) + 2(z − 2)|
≤ 3|x − 1|+ 5|y − 1|+ 2|z − 2|
< 3δ+ 5δ+ 2δ = 10δ < ε

so that if we choose δ = ε/10, then ε= 10δ so that we have the necessary inequality – seen above.
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Squeeze Theorem: If limx→a f (x) = limx→a h(x) = L and f (x)≤ g(x)≤ h(x), then limx→a g(x) = L.

‘Scholastic Approach’: If you can plug it in, then you’re done because we hand you continuous func-
tions. Otherwise, try the limit from a few different directions, i.e. using a few different curves (hori-
zontal line, vertical line, slanted line, and possible a polynomial path). Note, the curves should end at
the point you want to end up at! If the limit is different at any stage, then you pontificate the limit may
exist and will be that number. Now you need to prove it is. Try factoring or some ‘algebraic trick’ first.
If this does not work, it ‘must’ be Squeeze Theorem by academic prestidigitation.
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2.1 | Exercises

For Exercises 1–18, find the limit or explain why the limit does not exist.

1. lim
(x ,y,z)→(0,0,0)

x2 + 4x y − yz4 + y2 − 3z2 + 4

Ans: The limit is 0.

2. lim
(x ,y,z)→(1,0,1)

x2 + 4x y − z2 + 3sin(x yz) + 5

Ans: The limit is 5.

3. lim
(x ,y,z)→(1,1,1)

ex−z

x + y + 1
Ans: The limit is 1/3.

4. lim
(x ,y,z)→(3,2,6)

ln
�

2x − 3y + ez−x
�

Ans: The limits is 3.

5. lim
(x ,y)→(0,0)

x 6=−y

2x + 2y
x + y

Ans: The limit is 2.

6. lim
(x ,y)→(0,0)

x 6=−y

x2 + 2x y + y2

x + y

Ans: The limit is 0.

7. lim
(x ,y)→(0,0)

y2 sin2 x
y2 + 2x2

Ans: Observe that y2 ≤ y2 + 2x2 so that y2

y2+2x2 ≤ 1. But then we have 0 ≤
�

�

�

y2 sin2 x
y2+2x2

�

�

� ≤ | sin2 x | → 0 so

that the limit is 0 by Squeeze Theorem.

8. lim
(x ,y)→(0,0)

x2

x2 + y2

Ans: Along x = 0, the limit is 0. Along y = 0, the limit is 1. Therefore, the limit does not exist.

9. lim
(x ,y)→(1,0)

x − 1
(x − 1)2 + y2

Ans: Along x = 1, the limit is 0. Along y = 0, the limit does not exist. Therefore, the limit does not exist.

10. lim
(x ,y)→(0,0)

x y
x2 + y2

Ans: Along both x = 0 and y = 0, the limit is 0. However, along x = y , the limit is 1/2. Therefore, the
limit does not exist.

11. lim
(x ,y)→(0,0)

x 6=y

x3 − y3

x − y
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Ans: As x3 − y2 = (x − y)(x2 + x y + y2), the limit is 0.

12. lim
(x ,y)→(0,0)

x 6=−y

x2 − y2

x + y

Ans: As x2 − y2 = (x − y)(x + y), the limit is 0.

13. lim
(x ,y)→(2,0)

x2 − y2 − 4x + 4
x2 + y2 − 4x + 4

Ans: Along x = 2, the limit is−1. Along the path y = 0, the limit is 1. Therefore, the limit does not exist.

14. lim
(x ,y)→(0,0)

y2 sin2 x
x4 + y4

Ans: Along y = 0, the limit is 0. Along the line x = y , the limit is 1/2. Therefore, the limit does not exist.

15. lim
(x ,y)→(0,0)

x 6=y

x − y
p

x −py

Ans: As x − y = (
p

x −py)(
p

x +py), the limit is 0.

16. lim
(x ,y)→(0,0)

x 6=y

x2 − x y
p

x −py

Ans: As x − y = (
p

x −py)(
p

x +py), the limit is 0.

17. lim
(x ,y,z)→(0,0,0)

3x2 + 4y2 + 5z2

x2 + y2 + z2

Ans: Taking x → 0, y → 0, z→ 0, we get 5 while taking z→ 0, y → 0, x → 0, we obtain 3. Therefore,
the limit does not exist.

18. lim
(x ,y,z)→(0,0,0)

x y − xz − yz
x2 + y2 + z2

Ans: Along the line l(t) = (t, t, t), the limit is 1/3 while along the path (0,0, t)→ (0, 0,0) the limit is
1. Therefore, the limit does not exist.

19. Show that lim
(x ,y)→(0,0)

x4 y4

(x2 + y4)3
exists along every straight line through the origin but that the limit

does not exist. [Hint: For the second part, you may want to try a polynomial path.]
Ans: Any straight line path through the origin is of the form y = mx (except x = 0 where the limit is

clearly 0). Then we have x4 y4

(x2+y4)3 =
m4 x8

(x2+m4 x4)3 =
m4 x8

x6(1+m4 x2) =
m4 x2

(1+m4 x2)3 → 0. However, the limit does

not exist as along the path x = y2, the limit is 1/8. Therefore, the limit does not exist.

20. Evaluate the following limits:

(a) lim
x→0

sin x
x

(b) lim
(x ,y)→(0,0)

x 6=−y

sin(x + y)
x + y
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(c) lim
(x ,y)→(0,0)

sin(x y)
x y

Ans:

(a) By l‘Hôpital?s rule or a geometric argument, we know lim
x→0

sin x
x
= 1.

(b) Let h= x + y . Then lim
(x ,y)→(0,0)

x 6=−y

sin(x + y)
x + y

= lim
h→0

sin h
h
= 1.

(c) Again, let h= x y . Then lim
(x ,y)→(0,0)

sin(x y)
x y

= lim
h→0

sin h
h
= 1.

Evaluate the following limits. [Note: It in some cases it may be easier to change coordinates]

21. lim
(x ,y)→(0,0)

x2 y
x2 + y2

Ans: lim
(x ,y)→(0,0)

x2 y
x2 + y2

= lim
r→0

r3 sinθ cosθ
r2

= lim
r→0

r
sin 2θ

2
= 0

22. lim
(x ,y)→(0,0)

(x2 + y2) ln(x2 + y2)

Ans: lim
(x ,y)→(0,0)

(x2 + y2) ln(x2 + y2) = lim
r→0

r2 ln r2 = lim
r→0

2 ln r
1/r2

L.H.
= lim

r→0

2/r
−2/r3

= lim
r→0
−r2 = 0

23. lim
(x ,y)→(0,0)

x2 + x y + y2

x2 + y2

Ans: lim
(x ,y)→(0,0)

x2 + x y + y2

x2 + y2
= lim

r→0

r2 + r2 sinθ cosθ
r2

= lim
r→0

�

1+
sin 2θ

2

�

. But then the limit depends

on the angle and thus does not exist.

24. lim
(x ,y)→(0,0)

x2

x2 + y2

Ans: lim
(x ,y)→(0,0)

x2

x2 + y2
= lim

r→0

r2 cos2 θ

r2
= cos2 θ . Thus, the limit depends on θ and hence does not exist.

25. lim
(x ,y,z)→(0,0,0)

x2 + y2

p

x2 + y2 + z2

Ans: lim
(x ,y,z)→(0,0,0)

x2 + y2

p

x2 + y2 + z2
= lim
ρ→0

ρ2 sin2φ cos2 θ +ρ2 sin2φ sin2 θ

ρ
= lim
ρ→0

ρ sin2φ = 0.

26. lim
(x ,y,z)→(0,0,0)

x yz
x2 + y2 + z2

Ans: lim
(x ,y,z)→(0,0,0)

x yz
x2 + y2 + z2

= lim
ρ→0

ρ sinφ cosθ ·ρ sinφ sinθ ·ρ cosφ
ρ2

= lim
ρ→0

ρ sin2φ cosφ cosθ sinθ =

0.

27. lim
(x ,y,z)→(0,0,0)

xz
x2 + y2 + z2

Ans: lim
(x ,y,z)→(0,0,0)

xz
x2 + y2 + z2

= lim
ρ2 sinφ cosφ cosθ

ρ2 = lim
ρ→0

sinφ cosφ cosθ = cosθ
sin 2φ

2
. Therefore,

the limit depends on the angles and hence does not exist.
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28. Use the definition of the limit to show that lim
(x ,y,z)→(2,−1,3)

(2x + 5y − z) = −4.

Ans: A simple proof.

29. Use the definition of the limit to show that lim
(x ,y,z)→(1,1,2)

(x − y + 3z) = 6.

Ans: A simple proof.

30. Use the definition of the limit to show that lim
(x ,y,z)→(0,−1,3)

(7x − 4y − z) = 1.

Ans: A simple proof.

31. Use the definition of the limit to show that lim
(x ,y,z)→(3,−2,5)

(x + y + z) = 0.

Ans: A simple proof.

32. Show that lim
(x ,y,)→(0,0

x3 + y3

x2 + y2
= 0 by completing the following steps:

(a) Show |x | ≤ ‖(x , y)− (0,0)‖ and |y| ≤ ‖(x , y)− (0, 0)‖.

(b) Show that |x3 + y3| ≤ 2(x2 + y2)1/3. [Hint: The Triangle Inequality.]

(c) Show that

�

�

�

�

x3 + y3

x2 + y2

�

�

�

�

< 2δ if ‖(x , y)− (0, 0)‖< δ.

(d) Use the proceeding parts to show that the limit is 0.

Ans:

(a) We have ‖(x , y) − (0,0)‖ = ‖(x , y)‖ =
p

x2 + y2 ≥
p

x2 = |x |. The second part follows mutatis
mutandis.

(b) Using the Triangle Inequality and the previous part, we have |x3+ y3| ≤ |x3|+ |y3|= |x |3+ |y|3 ≤
2(
p

x2 + y2)3 = 2(x2 + y2)3/2.

(c) If 0< ‖(x , y)‖< δ, then by the previous part, we have
�

�

�

�

x3 + y3

x2 + y2

�

�

�

�

≤
�

�

�

�

2(x2 + y2)3/2

x2 + y2

�

�

�

�

= 2
Æ

x2 + y2 = 2‖(x , y)‖< 2δ

(d) Choose δ = ε/2 then | f (x , y)|< ε and then the limit is as stated.

65 of 153



2.2: Partial Derivatives

2.2 Partial Derivatives

Ordinary Derivative: We want a good notion of differentiation. Recall the ordinary derivative:

f ′(x) := lim
h→0

f (x + h)− f (x)
h

We want the local rate of change of a function about some point. However, the situation is more com-
plicated because we have many more directions we can approach from leaving us open to many more
possible rates of change. This makes it harder for the limit to exist. Before defining a notion of deriva-
tive, we can look at the simpler partial derivative.

Partial Derivative: Literally, the derivative of a partial function. For example, taking f (x , y) and cre-
ating a partial function by holding y fixed, we obtain

∂ f
∂ x
(x , y) := fx(x , y) := lim

h→0

f (x + h, y)− f (x)
h

We can do the same thing for y . Note this is also denoted D1 f – but much less often. These partial
derivatives give us the slopes in the x and y directions. Image cutting the surface z = f (x , y) by planes
in the x and y direction. Then fx , f y give us the slopes of the curves in these partial directions, respec-
tively. One might wonder if we cut in other directions but this will need to the more general notion of
directional derivatives later.

Of course, then there is nothing stopping us from doing this process again and again to form higher

order partial derivatives. Note that f y x :=
∂ 2 f
∂ x∂ y

:=
∂

∂ x
∂

∂ y
f . Be careful of the order. Of course, this

immediately begs the question, is it the case that fx y = f y x? The general answer is no, but there is a
special case.
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Clairaut’s Theorem: If f is defined on a disk containing (a, b) and fx y , f y x are continuous, then
fx y = f y x . That is, if there is some ‘room’ about the point which you are looking at and the par-
tials are continuous, then one needn’t be concerned about the order.

Higher Derivatives: The general notion of multivariable derivatives is more complicated than the sim-
pler notion of partial derivatives. First, consider a function f (x1, x2, . . . , xn). Define a matrix of partial
derivatives

D f (x1, x2, . . . , xn) =





















∂ f1
∂ x1

∂ f1
∂ x2

· · ·
∂ f
∂ xn

∂ f2
∂ x1

∂ f2
∂ x2

· · ·
∂ f2
∂ x2

...
...

. . .
...

∂ fm

∂ x1

∂ fm

∂ x2
· · ·

∂ fm

∂ xn




















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Chain Rule: Recall the chain rule in one variable: (g ◦ f )′(x) = g ′( f (x)) = f ′(x). The same idea works
in higher dimension. You can also think of this as changes at lower levels inducing change at higher
levels and also change at higher levels resulting from changes at lower levels. So if f : X ⊆ R2 → R

is differentiable and x(t) ∈ X , then
d f
d t
(t0) =

∂ f
∂ x
(x0)

d x
d t
(t0) +

∂ f
∂ y
(x0)

d y
d t
(t0). Overall, think of z =

f (x , y), where x , y depend on t. Then if we change t, we most likely change z. So we have

‘∆z′ = ∆z
︸︷︷︸

From x

+ ∆z
︸︷︷︸

From y

= zx ·∆x + zy ·∆y = zx x ′(t0) + zy y ′(t0)

which replacing the pieces properly gives the exact formula. This type of logic will always work – no
need for ‘fancy’ Theorems.
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2.2 | Exercises

Partial Derivatives

In Exercises 1–10, given the function f , find as many of
∂ f
∂ x

,
∂ f
∂ y

,
∂ 2 f
∂ x2

,
∂ 2 f
∂ y2

,
∂ 2 f
∂ x∂ y

,
∂ 2 f
∂ y∂ x

as possible.

1. f (x , y) = x2 y3 + x − y + 1

Ans:

(a)
∂ f
∂ x
= 2x y3 + 1

(b)
∂ f
∂ y
= 3x2 y2 − 1

(c)
∂ 2 f
∂ x2

= 2y3

(d)
∂ 2 f
∂ y2

= 6x2 y

(e)
∂ 2 f
∂ x∂ y

= 6x y2

(f)
∂ 2 f
∂ y∂ x

= 6x y2

2. f (x , y) = x
p

y − y
p

x

Ans:

(a)
∂ f
∂ x
=py −

y
2
p

x

(b)
∂ f
∂ y
=

x
2
p

y
−
p

x

(c)
∂ 2 f
∂ x2

=
y

4x3/2

(d)
∂ 2 f
∂ y2

= −
x

4y3/2

(e)
∂ 2 f
∂ x∂ y

=
1

2
p

y
−

1
2
p

x

(f)
∂ 2 f
∂ y∂ x

=
1

2
p

y
−

1
2
p

x

3. f (x , y) =
x
y

Ans:

(a)
∂ f
∂ x
=

2x
y3

(b)
∂ f
∂ y
= −

3x2

y4

(c)
∂ 2 f
∂ x2

=
2
y3

(d)
∂ 2 f
∂ y2

=
12x2

y5

(e)
∂ 2 f
∂ x∂ y

= −
6x
y4

(f)
∂ 2 f
∂ y∂ x

= −
6x
y4

4. f (x , y) = x ln y

Ans:

(a)
∂ f
∂ x
= ln y

(b)
∂ f
∂ y
=

x
y

(c)
∂ 2 f
∂ x2

= 0

(d)
∂ 2 f
∂ y2

= −
x
y2
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(e)
∂ 2 f
∂ x∂ y

=
1
y

(f)
∂ 2 f
∂ y∂ x

=
1
y

5. f (x , y) = x ln(x y)
Ans:

(a)
∂ f
∂ x
= ln(x y) + 1

(b)
∂ f
∂ y
=

x
y

(c)
∂ 2 f
∂ x2

=
1
x

(d)
∂ 2 f
∂ y2

= −
x
y2

(e)
∂ 2 f
∂ x∂ y

=
1
y

(f)
∂ 2 f
∂ y∂ x

=
1
y

6. f (x , y) = arctan(x y)
Ans:

(a)
∂ f
∂ x
=

y
1+ x2 y2

(b)
∂ f
∂ y
=

x
1+ x2 y2

(c)
∂ 2 f
∂ x2

=
−2x y3

(1+ x2 y2)2

(d)
∂ 2 f
∂ y2

=
−2x3 y

(1+ x2 y2)2

(e)
∂ 2 f
∂ x∂ y

=
1− x2 y2

(1+ x2 y2)2

(f)
∂ 2 f
∂ y∂ x

=
1− x2 y2

(1+ x2 y2)2

7. f (x , y) = yex y

Ans:

(a)
∂

∂ x
= y2ex y

(b)
∂

∂ y
= ex y(1+ x y)

(c)
∂ 2

∂ x2
= y3ex y

(d)
∂ 2

∂ y2
= xex y(2+ x y)

(e)
∂ 2

∂ x∂ y
= yex y(2+ x y)

(f)
∂ 2

∂ y∂ x
= yex y(2+ x y)

8. f (x , y) = x y

Ans:

(a)
∂ f
∂ x
= y x y−1

(b)
∂ f
∂ y
= x y ln(x)

(c)
∂ 2 f
∂ x2

= y x y−2(1− y)

(d)
∂ 2 f
∂ y2

= x y ln(x)2

(e)
∂ 2 f
∂ x∂ y

= x y−1(1+ y ln x)

(f)
∂ 2 f
∂ y∂ x

= x y−1(1+ y ln x)
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9. f (x , y) =
y

1− x y
Ans:

(a)
∂ f
∂ x
=

y2

(1− x y)2

(b)
∂ f
∂ y
=

1
(1− x y)2

(c)
∂ 2 f
∂ x2

=
−2y3

(1− x y)3

(d)
∂ 2 f
∂ y2

=
−2x

(1− x y)3

(e)
∂ 2 f
∂ x∂ y

=
2y

(1− x y)3

(f)
∂ 2 f
∂ y∂ x

=
2y

(1− x y)3

10. f (x , y) = e2y sin(πx)
Ans:

(a)
∂ f
∂ x
= πe2y cos(πx)

(b)
∂ f
∂ y
= 2e2y sin(πx)

(c)
∂ 2 f
∂ x2

= −π2e2y sin(πx)

(d)
∂ 2 f
∂ y2

= 4e2y sin(πx)

(e)
∂ 2 f
∂ x∂ y

= 2πe2y cos(πx)

(f)
∂ 2 f
∂ y∂ x

= 2πe2y cos(πx)

In Exercises 11–20, given the function f , find as many of
∂ f
∂ x

,
∂ f
∂ y

,
∂ f
∂ z

,
∂ 2 f
∂ x2

,
∂ 2 f
∂ y2

,
∂ 2 f
∂ z2

,
∂ 2 f
∂ x∂ y

,

∂ 2 f
∂ y∂ z

,
∂ 2 f
∂ x∂ z

as possible.

11. f (x , y, z) = x4 yz2 − x3z + y x2 + 4

Ans:

(a)
∂ f
∂ x
= x(−3xz + y(2+ 4x2z2))

(b)
∂ f
∂ y
= x2 + x4z2

(c)
∂ f
∂ z
= x3(2x yz − 1)

(d)
∂ 2 f
∂ x2

= 2(y − 3xz + 6x2 yz2)

(e)
∂ 2 f
∂ y2

= 0

(f)
∂ 2 f
∂ z2

= 2x4 y

(g)
∂ 2 f
∂ y∂ x

= 2(x + 2x3z2)

(h)
∂ 2 f
∂ z∂ y

= 2x4z

(i)
∂ 2 f
∂ z∂ x

= x2(8x yz − 3)

12. f (x , y, z) =
x
p

y
z

Ans:

(a)
∂ f
∂ x
=
p

y
z

(b)
∂ f
∂ y
=

x
2z
p

y

(c)
∂ f
∂ z
= −

x
p

y
z2

(d)
∂ 2 f
∂ x2

= 0

(e)
∂ 2 f
∂ y2

= −
x

4z y3/2

(f)
∂ 2 f
∂ z2

=
2x
p

y
z3
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(g)
∂ 2 f
∂ y∂ x

=
1

2z
p

y
(h)

∂ 2 f
∂ z∂ y

= −
x

2z2py
(i)

∂ 2 f
∂ z∂ x

= −
p

y
z2

13. f (x , y, z) =
xz

y
Ans:

(a)
∂ f
∂ x
=

zxz−1

y

(b)
∂ f
∂ y
= −

xz

y2

(c)
∂ f
∂ z
=

xz ln x
y

(d)
∂ 2 f
∂ x2

=
z(z − 1)xz−2

y

(e)
∂ 2 f
∂ y2

=
2xz

y3

(f)
∂ 2 f
∂ z2

=
xz ln(x)2

y

(g)
∂ 2 f
∂ y∂ x

= −
zxz−1

y2

(h)
∂ 2 f
∂ z∂ y

= −
xz ln x

y2

(i)
∂ 2 f
∂ z∂ x

=
xz−1(1+ z ln x)

y

14. f (x , y, z) =
cos x ln y
p

z
Ans:

(a)
∂ f
∂ x
= −

ln y sin x
p

z

(b)
∂ f
∂ y
=

cos x
y
p

z

(c)
∂ f
∂ z
= −

cos x ln y
2z3/2

(d)
∂ 2 f
∂ x2

= −
cos x ln y
p

z

(e)
∂ 2 f
∂ y2

= −
cos x
y2
p

z

(f)
∂ 2 f
∂ z2

=
3 cos x ln y

4z5/2

(g)
∂ 2 f
∂ y∂ x

= −
sin x
y
p

z

(h)
∂ 2 f
∂ z∂ y

= −
cos x

2yz3/2

(i)
∂ 2 f
∂ z∂ x

=
ln y sin x

2z3/2

15. f (x , y, z) = ex yz

Ans:

(a)
∂ f
∂ x
= yzex yz

(b)
∂ f
∂ y
= xzex yz

(c)
∂ f
∂ z
= x yex yz

(d)
∂ 2 f
∂ x2

= y2z2ex yz

(e)
∂ 2 f
∂ y2

= x2z2ex yz

(f)
∂ 2 f
∂ z2

= x2 y2ex yz

(g)
∂ 2 f
∂ y∂ x

= z(1+ x yz)ex yz

(h)
∂ 2 f
∂ z∂ y

= x(1+ x yz)ex yz

(i)
∂ 2 f
∂ z∂ x

= y(1+ x yz)ex yz

16. f (x , y, z) = z y/x

Ans:

(a)
∂ f
∂ x
= −

yze y/x

x2

(b)
∂ f
∂ y
=

ze y/x

x

(c)
∂ f
∂ z
= e y/x

(d)
∂ 2 f
∂ x2

=
yz(2x + y)e y/x

x4

(e)
∂ 2 f
∂ y2

=
ze y/x

x2

(f)
∂ 2 f
∂ z2

= 0

(g)
∂ 2 f
∂ y∂ x

= −
z(x + y)e y/x

x3

(h)
∂ 2 f
∂ z∂ y

=
e y/x

x

(i)
∂ 2 f
∂ z∂ x

= −
ye y/x

x2
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17. f (x , y, z) =
x + y
y + z

Ans:

(a)
∂ f
∂ x
=

1
y + z

(b)
∂ f
∂ y
=

z − x
(y + z)2

(c)
∂ f
∂ z
= −

x + y
(y + z)2

(d)
∂ 2 f
∂ x2

= 0

(e)
∂ 2 f
∂ y2

=
2(x − z)
(y + z)3

(f)
∂ 2 f
∂ z2

=
2(x + y)
(y + z)3

(g)
∂ 2 f
∂ y∂ x

=
−1

(y + z)2

(h)
∂ 2 f
∂ z∂ y

=
2x + y − z
(y + z)3

(i)
∂ 2 f
∂ z∂ x

=
−1

(y + z)2

18. f (x , y, z) =
x + e2y − z

x y
Ans:

(a)
∂ f
∂ x
=

z − e2y

x2 y

(b)
∂ f
∂ y
=

z − x + e2y(2y − 1)
x y2

(c)
∂ f
∂ z
=
−1
x y

(d)
∂ 2 f
∂ x2

=
2(e2y − z)

x3 y

(e)
∂ 2 f
∂ y2

=
2(x + e2y(1+ 2(y − 1)y)− z)

x y3

(f)
∂ 2 f
∂ z2

= 0

(g)
∂ 2 f
∂ y∂ x

=
e2y(1− 2y)− z

x2 y2

(h)
∂ 2 f
∂ z∂ y

=
1

x y2

(i)
∂ 2 f
∂ z∂ x

=
1

x2 y

19. f (x , y, z) = y arctan(x yz)
Ans:

(a)
∂ f
∂ x
=

z y2

1+ x2 y2z2

(b)
∂ f
∂ y

=
x yz

1+ x2 y2z2
+

arctan(x yz)

(c)
∂ f
∂ z
=

x y2

1+ x2 y2z2

(d)
∂ 2 f
∂ x2

= −
2x y4z3

)1+ x2 y2z2)2

(e)
∂ 2 f
∂ y2

=
2xz

(1+ x2 y2z2)2

(f)
∂ 2 f
∂ z2

= −
2x3 y4z

(1+ x2 y2z2)2

(g)
∂ 2 f
∂ y∂ x

=
2yz

(1+ x2 y2z2)2

(h)
∂ 2 f
∂ z∂ y

=
2x y

(1+ x2 y2z2)2

(i)
∂ 2 f
∂ z∂ x

=
y − x2 y4z2

(1+ x2 y2z2)2

20. f (x , y, z) = ln y4eπx sin(3z)
Ans:

(a)
∂ f
∂ x
= πeπx ln(y4) sin(3z)

(b)
∂ f
∂ y
=

4eπx sin(3z)
y

(c)
∂ f
∂ z
= 3eπx ln(y4) cos(3z)

(d)
∂ 2 f
∂ x2

= π2eπx ln(y4) sin(3z)

(e)
∂ 2 f
∂ y2

= −
4eπx sin(3z)

y2

(f)
∂ 2 f
∂ z2

= −9eπx ln(y4) sin(3z)

(g)
∂ 2 f
∂ y∂ x

=
4πeπx sin(3z)

y

(h)
∂ 2 f
∂ z∂ y

=
12eπx cos(3z)

y

(i)
∂ 2 f
∂ z∂ x

= 3πeπx ln(y4) cos(3z)
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Chain Rule

21. If T (x , y) = x2e y − x y3 and x = cos t and y = sin t, find
dT
d t

.

Ans: −2cos t sin tesin t + cos3 tesin t + sin4 t − 3 cos2 t sin2 t

22. If u(x , y, z) = xe yz , where x(t) = et , y(t) = t, and z(t) = sin t, find
du
d t

.

Ans: et(1+sin t)(1+ sin t + t cos t)

23. If z = f (x , y), where x = g(t) and y = h(t), find a formula for
dz
d t

using g(t) and h(t).

Ans:
dz
d t
=
∂ f
∂ x

d x
d t
+
∂ f
∂ y

d y
d t

24. If z = x2 y3 + y cos x , where x = ln t2 and y = sin(4t), find
dz
d t

.

Ans:
4 sin3(4t) ln t2 − 2sin 4t sin ln t2

t
+ 4 cos(4t)(3sin2(4t)(ln t2)2 + cos ln t2)

25. If z = e2t sin(3θ ), where r(s, t) = st − t2 and θ (s, t) =
p

s2 + t2, find
∂ z
∂ s

and
∂ z
∂ t

.

Ans:
∂ z
∂ s
= t(2e2(st−t2) sin(3

p
s2 + t2))+

3se2(st−t2) cos(3
p

s2 + t2)
p

s2 + t2
and

∂ z
∂ t
= (s−2t)(2e2(st−t2) sin(3

p
s2 + t2))+

3te2(st−t2) cos(3
p

s2 + t2)
p

s2 + t2

26. If z(x , y) = x2 y − y2 and x(t) = t2 and y(t) = 2t, then find
dz
d t

.

Ans: 10t4 − 8t

27. If z = yex2
, where x(u, v) =

p
uv and y(u, v) =

1
v

, find
∂ z
∂ u

and
∂ z
∂ v

.

Ans: zu = eu and zv = 0.

28. If a curve is given by F(x , y) = 0, show that the slope of the tangent line is given by

d y
d x
= −

Fx

Fy

Ans: Simple use of chain rule.

29. If a curve is given by F(x , y) = 0 and g(x , y) is defined along the curve, find
d g
d x

.

Ans:
∂ g
∂ x
−
∂ g
∂ y

Fx

Fy

30. If a ship is traveling along a path given by x(t) = (t, cos t, sin t), describe the path and find the
temperature of the ship, H(x , y, z), as a function of time.

Ans: Helix about the x–axis.
dH
dt
= Hx − sin tH y + cos tHz
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2.3 Arclength, Tangent Planes, & Differential Geometry

Arclength: Imagine a curve being traced out in time. We measure where the curve is at in small
increments of time. Then we can form the line segments connecting each point to the next, find the
length of each segment, and add these up to find an approximation for the length of the curve. Note
that

∑

∆s =
∑

q

∆x2
i +∆y2

i +∆z2
i . Using a bit of work – MVT – we obtain

L(x(t)) =

∫ b

a

Æ

x ′(t)2 + y ′(t)2 + z′(t)2 d t =

∫ b

a
‖x ′(t)‖ d t

Reduce down to the 2–dimensional case via (x(t), y(t), 0) and factor out the d x so that it reduces down
to ordinary Calculus II formula.
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Unit Tangent: The unit tangent is T =
x′(t)
‖x′(t)‖

. It gives the direction a curve is moving. Give a simple

diagram example.

Curvature: The curvature κ in R3 is the angular rate of change of the direction of T per unit change in
distance along the path. Since this is per unit time, the curvature is an intrinsic quantity.

κ(t) =













dT
ds













=













dT
d t













ds
d t

κ(t) =
|T′(t)|
|x′(t)|

The curvature of the curve given by x(t) is

κ(t) =
|x′(t)× x′′(t)|
|x′(t)|3

(Principal) Unit Normal Vector: The principal normal vector measures the change in the unit tangent
vector.

N=
T′(t)
|T′)(t)|

It gives the direction in which the curve is ‘turning’.

Binormal Vector: The binormal vector is B = T×N. This creates a moving coordinate system for the
curve.
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Tangent Plane: Simply a plane but we need to match the slope in the x , y , and z directions. Once
again, we can reduce to the 2–dimensional case if need be.

z = z0 + fx(x − x0) + f y(y − y0)

We can use this to approximate function values as in the Calculus I case (this should remind the reader
of Taylor Series. Also mention the idea of Chain Rule. Do you see the idea of approximation to function
(change in z) and how we have defined it?

Total Differential: Same idea as approximation with the tangent plane. The change in f due to change
in x times the change in x , f due to change in y times the change in y , f due to change in z times the
change in z, then add to get total change.

d f = fx∆x + f y∆y + fz∆z
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2.3 | Exercises

Derivatives & Tangents

1. If x(t) = 2t + 1 and y(t) = 3− t, what is
d y
d x

?

Ans: −1/2

2. If x(t) = t2 − t + 1 and y(t) = 4− t2, what is
d y
d x

?

Ans:
2t

1− 2t

3. If x(t) = cos t and y(t) = t sin t, what is
d y
d x

?

Ans: − csc t(t cos t + sin t)

4. If x(t) = ln t and y(t) = tan t, what is
d y
d x

?

Ans: t sec2 t

5. If x(t) =
p

t3 and y(t) =
et

t
, what is

d y
d x

?

Ans:
2
p

t3et(t − 1)
3t4

6. Find
d2 y
d x2

if x(t) = 4t2 + 3 and y(t) = 1− t.

Ans: 0

7. Find
d2 y
d x2

if x(t) = sec t and y(t) = tan t.

Ans: 2 sec t

8. Find
d2 y
d x2

if x(t) = ln t and y(t) = t3/2.

Ans:
3
p

t
4

9. Find
d2 y
d t2

if x(t) = et and y(t) = t cos2 t.

Ans: e−t(−2t cos2 t − 4cos t sin t + 2t sin2 t) = −2e−t(t cos 2t + sin2t)

10. Find
d2 y
d t2

if x(t) = t −
1
t

and y(t) = arctan t.

Ans:
−2t

(1+ 1/t2)(1+ t2)2
=
−2t3

(1+ t2)3

11. Find the tangent line to the curve x(t) = t2 + 3t + 1, y(t) = 4t + 7 when t = 2.

Ans: y =
4x + 17

7

12. Find the tangent line to the curve x(t) = cos t, y(t) = sin t when t =
π

4
.
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Ans: y =
p

2− x

13. Find the tangent line to the curve C(t) = (ln(t + 1), arctan(t − 1)) when t = 0.

Ans: y =
4x +π

8

14. Find the tangent line to the curve x(t) =
3t

1+ t3
, y(t) =

3t2

1+ t3
when t = 1.

Ans: y = 3− x

15. Find the tangent line to the curve x(t) = sec t, y(t) = tan t when t =
π

3
.

Ans: y =
2x
p

3

Arclength

16. Find the length of the curve l(t) = (1,2), where 0≤ t ≤
p
π.

Ans: 0

17. Find the length of the curve x(t) = 4t − 1, y(t) = 5− 3t, where 1≤ t ≤ 3.

Ans: 10

18. Find the length of the curve x(t) =
2t3/2

3
, y(t) = 1− t, where 0≤ t ≤ 1.

Ans:
2(2
p

2− 1)
3

19. Find the length of the curve x(t) = sin t, y(t) = cos t, where 0≤ t ≤ π.

Ans: 2π

20. Find the length of the curve x(t) = arctan t, y(t) = t2, where −1≤ t ≤ 3.

Ans: 10.7583

21. Find the length of the curve x(t) =
p

2t, y(t) =
t2

2
, z(t) = ln t, where 1≤ t ≤ 4.

Ans:
15+ 4 ln 2

2

22. Find the length of the curve x(t) = (r cos t, r sin t, st), where 0≤ t ≤ 2π.

Ans: 2π
p

r2 + s2

23. Find the length of the curve x(t) = i+
t2

2
j+ tk, where 0≤ t ≤ 1.

Ans:

p
2+ ln(1+

p
2)

2

24. Find the length of the straight line path connecting (x0, x1) and (y0, y1) two different ways.

Ans: One use the distance formula. The other parametrize a straight line segment connecting the points

79 of 153



2.3: Arclength, Tangent Planes, & Differential Geometry

and find its length.

25. For a curve y = f (x) such that f ′(x) exists and is continuous for x ∈ [a, b], show that the length
of the curve between (a, f (a)) and (b, f (b)) is exactly

L =

∫ b

a

Æ

1+ ( f ′(x))2 d x

Ans: The standard proof or simply use the parametrization x = t, y = f (t).

Tangent Plane

26. Find the tangent plane for the function f (x , y) = x2 y + x + y + 1 at the point (1,−2,0).
Ans: 0− 3(x − 1) + 2(y + 2) = 7− 3x + 2y

27. Find the tangent plane for the function f (x , y) =
x
y

at the point (−2, 3,−
2
3
).

Ans: −
2
3
+

1
3
(x + 2) +

2
9
(y − 3) =

3x + 2y − 6
9

28. Find the tangent plane for the function f (x , y) = sin x cos y at the point (π/2,π/2,0).

Ans: 0− (y −π/2) =
π− 2y

2

29. Find the tangent plane for the function f (x , y) =
x + y
x + 2

at the point (1, 0,1).

Ans:
1
3
+

2
9
(x − 1) +

1
3
(y − 0) =

1+ 2x + 3y
9

30. Find the tangent plane for the function f (x , y) = x arctan(x y) at the point (1, 0,0).
Ans: y

31. Find the tangent plane for the function f (x , y) = x
p

y −
1
p

x3
at the point (1, 1,0).

Ans: 0+
5
2
(x − 1) +

1
2
(y − 1) =

5x + y − 6
2

32. Find the tangent plane for the function f (x , y) = ex−1 ln(x y + 2) at the point (1,−1, 3).
Ans: 3− (x − 1) + (y + 1) = 5− x + y

33. Find the tangent plane for the function f (x , y) = y sin(πx y) +
1
2

at the point (1, 1/2,1).

Ans: 1+ 0(x − 1) + (y − 1/2) = 1
2 + y

34. Find the tangent plane for the function f (x , y) =px y at the point (2,18, 6).

Ans: 6+
3
2
(x − 2) +

1
6
(y − 18) =

9x + y
6

35. Find the tangent plane for the function f (x , y) = y2x y − 2 at the point (0,1,−1).
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Ans: −1+ ln2(x − 0) + 1(y − 1) = y + ln2x − 2

Total Differentials

36. Find the total differential for the function f (x , y) = x y .

Ans: d f = y d x + x d y

37. Find the total differential for the function f (x , y) = x3 y2 + 2.

Ans: d f = 3x3 y2 d x + 2x3 y d y

38. Find the total differential for the function f (x , y) = x + y +
x
y

.

Ans: d f =
�

1+
1
y

�

d x +
�

1−
x
y2

�

d y

39. Find the total differential for the function f (x , y) = x arctan y .

Ans: d f = arctan y d x +
x

1+ y2
d y

40. Find the total differential for the function f (x , y) = yex y .

Ans: d f = y2ex y d x + ex y(1+ x y) d y

41. Find the total differential for the function f (x , y, z) = x2 y + y2z + 4.

Ans: d f = 2x y d x + (x2 + 2yz) d y + y2 dz

42. Find the total differential for the function f (x , y, z) =
x y2

p
z3

.

Ans: d f =
y2

z3/2
d x +

2x y
z3/2

d y −
3x y2

2z5/2
dz

43. Find the total differential for the function f (x , y, z) = ex sin y + cos z.

Ans: d f = ex sin y d x + ex cos y d y − sin z dz

44. Find the total differential for the function f (x , y, z) = x arctan(yz2).

Ans: d f = arctan(yz2) d x +
xz2

1+ y2z4
d y +

2x yz
1+ y2z4

dz

45. Find the total differential for the function f (x , y, z) =
2+ ln xz

y
.

Ans: d f =
1

x y
d x −

2+ ln xz
y2

d y +
1
yz

dz

Approximations

46. Approximate (10.2)3(7.9)2.

Ans: 103 · 82 = 64000. d f = 2240. Approximation: 66240. Actual: 66230. Error: 10.0087

47. Approximate
3.23

p
4.1 · 8.8

.
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Ans:
33

p
4 · 9

= 9/2. d f = 0.89375. Approximation: 5.39375. Actual: 5.45528. Error: −0.0615253

48. Approximate sin(π− 0.2) cos(0.1).
Ans: sin(π) cos(0) = 0. d f = 0.2. Approximation: 0.2. Actual: 0.197677. Error: 0.00232319

49. Approximate 7.9 cos(2.2(π− 0.1)).
Ans: 8 cos(2π) = 8. d f = −0.1. Approximation: 7.9. Actual: 7.25054. Error: 0.649461.

Differential Geometry

50. Compute T, N, B, and κ for the curve x(t) = 5 cos3t i+ 6t j+ 5sin 3t k.

Ans: T =
1
p

261
〈−15sin 3t, 6, 15cos 3t〉, N = 〈− cos3t, 0,− sin 3t〉, B =

1
p

29
〈−2sin 3t,−52cos 3t〉,

κ= 5/29.

51. Compute T, N, B, and κ for the curve x(t) =

�

t,
(t + 1)3/2

3
,
(1− t)3/2

3

�

, −1< t < 1.

Ans: T =
s

2
3
(1, 1

2

p
t + 1,

−1
2

p
1− t), N =

1
p

2
(0,
p

1− t,
p

t + 1), B =
1
p

3
(1,−

p
t + 1,

p
1− t), κ =

1

3
p

2(1− t2)
.

52. Compute T, N, B, and κ for the curve x(t) = (e2t sin t, e2t cos t, 1).

Ans: T =
1
p

5
(2 sin t + cos t, 2 cos t − sin t, 0), N =

1
p

5
(2cos t − sin t,−2 sin t − cos t, 0), B = (0,0,−1),

κ=
1

e2t
p

5
.

53. Show that a circle has constant curvature.

Ans: Simple application of the formula. κ= 1/R.

54. Show that a helix has constant curvature.

Ans: Simple application of the formula. κ= 1/R.
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2.4: Gradients & Directional Derivatives

2.4 Gradients & Directional Derivatives

Vector Field: A map which assigns to each point of the space a vector. It gives direction of a force or
the like.

Del Operator: ∇=
­

∂

∂ x
,
∂

∂ y
,
∂

∂ z

·

Gradient: We want something that computes all the change of f at once – taking x̂ , ŷ , and ẑ into
account at once. The gradient turns a scalar field into a vector field. Taking f (x , y, z), we have

∇ f =
­

∂ f
∂ x

,
∂ f
∂ y

,
∂ f
∂ z

·

This easily generalizes to higher dimensions.
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Divergence: Turns a vector field into a scalar field.

∇ · F =
∂ f
∂ x
+
∂ f
∂ y
+
∂ f
∂ z

It gives the ‘net mass flow’ at a point or the ‘flux density’ at a point, i.e. flow in/out. Positive means
more flow out while negative means more flow in than out. If ∇·F= 0, we say that F is incompressible
or solenoidal.

Curl: Curl measures the ‘circulation’ of a vector field. Imagine a twig moving in the current on a lake or
in a stream. Imagine the current keeps the twig in a closed loop path. The curl does not see this. The
curl measures how quickly and in what direction the twig rotates about itself as it moves in its path. A
vector field is said to be irrotational if ∇× F= 0.

∇× F=

�

�

�

�

�

�

�

i j k
∂

∂ x
∂

∂ y
∂

∂ z
F1 F2 F3

�

�

�

�

�

�

�

Note that ∇ × ∇ f = 0 for all f of class C2. That is, gradient fields are irrotational. Furthermore,
∇ · (∇× F) = 0; that is, curl’s are always incompressible vector fields.

Normal Line: Perpendicular line.
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2.4 | Exercises

Vector Fields

1. Plot the vector field 〈x , y〉. Find the curl of this vector field.

Ans: 0

2. Plot the vector field yi+ x j. Find the curl of this vector field.

Ans: 0

3. Plot the vector field 〈x ,−y〉. Find the curl of this vector field.
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Ans: 0

4. Plot the vector field 〈−y, x〉. Find the curl of this vector field.

Ans: 2

5. Plot the vector field (y − x)i+ (x − y)j. Find the curl of this vector field.

Ans: 0
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6. Plot the vector field 〈x + y, y − x〉. Find the curl of this vector field.

Ans: −2

7. Plot the vector field x i+ j. Find the curl of this vector field.

Ans: 0
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8. Plot the vector field 〈y, y + 1〉. Find the curl of this vector field.

Ans: −1

9. Plot the vector field 〈x , y, z〉. Find the curl of this vector field.

Ans: 0
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10. Plot the vector field 〈x , 1, z〉. Find the curl of this vector field.

Ans: 0

Directional Derivatives

Find the directional derivative of the function f at the given point in the direction given by the angle
indicated by the angle θ .
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11. f (x , y) = x2 y , (1,1), θ = 0

Ans: 2

12. f (x , y) =
x + 1
2− y

, (2,−2), θ = π
2

Ans: 3/16

13. f (x , y) = x arctan y , (1,
p

3), θ =
2π
3

Ans:

p
3

8
−
π

6

14. f (x , y) = ln(x y), (1,2), θ =
5π
4

Ans:
−3

2
p

2

15. f (x , y) = x ye y , (−1,0), θ =
11π

6
Ans: 1/2

In Exercises 16–25, find the directional derivative of the given function f at the point x in a direction
parallel to the vector u.

16. f (x , y) = x2 + x y + y2, x= (1,−1), u=
2i− j
p

5
Ans: ‖u‖= 1, 3/

p
5

17. f (x , y) = x sin y , x= (1, π2 ), u= 2i+ 3j

Ans: ‖u‖=
p

13, 2/
p

13

18. f (x , y) =
x y sin x

y
, x= (π, 10), u= 〈−1, 1〉

Ans: ‖u‖=
p

2, π/
p

2

19. f (x , y) = ex +
x
y

, x= (1,2), u= 3i− 2j

Ans: ‖u‖=
p

13,
3e+ 2
p

13

20. f (x , y) = arctan(x y), x= (1
2 , 2), u= 〈1, 0〉

Ans: ‖u‖= 1, −1

21. f (x , y, z) = xe y + x2ez + y3ez , x= (0, 1,0), u=
k− i
p

2

Ans:
1− e
p

2

22. f (x , y, z) = x yz sin(yz), x= (1, π2 , 2), u= 〈−1, 0,−1〉.

Ans: ‖u‖=
p

2,
π2

2
p

2
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23. f (x , y, z) = xz2 +
p

x2 + y2, x= (3, 4,1), u= 3u+ 4j− k

Ans: ‖u‖=
p

14, −
s

2
175

=
−1
5

s

2
7

24. f (x , y, z) = ex2+y2+z2
, x= (1,−1,1), u= 〈1,−1, 1〉

Ans: ‖u‖=
p

3, 2
p

3e3

25. f (x , y, z) =
p

2 x e y

z + 1
, x= (2,0, 1), u= 3i+ 5j+ 4k

Ans: ‖u‖= 5
p

2, 9/10

Tangent Planes

In Exercises 26–35, find the tangent plane to the given function at the given point.

26. f (x , y) = x2 y + x + y − 2, x= (2,3)
Ans: 13(x − 2) + 5(y − 3) = 0 or 13x + 5y = 41

27. f (x , y) = xe y , x= (5,0)
Ans: x + 5y = 5
28. f (x , y0= tan−1(x y), x= (1,−1)

Ans:
x − 1

2
+

y + 1
2
= 0 or

1
2
(2− x + y) = 0 or x − y = 2

29. f (x , y) =
x2

y3
, x= (3,−1)

Ans: −6(x − 3)− 27(y + 1) = 0 or −3(3+ 2x + 9y) = 0 or 2x + 9y = −3

30. f (x , y) =
x sin y
x + 1

, x= (1, π4 )

Ans:
y − π

4p
2
= 0

31. f (x , y, z) = x y + xz + yz, x= (1,2, 3)
Ans: 5(x − 1) + 4(y − 2) + 3(z − 3) = 0 or 5x + 4y + 3z = 22

32. f (x , y, z) =
3x + y
x + 2z

, x= (1,−1, 1)

Ans:
7
9
(x − 1) +

1
3
(y + 1)−

4
9
(z − 1) = 0 or

1
9
(7x + 3y − 4z) = 0 or 7x + 3y − 4z = 0

33. f (x , y, z) =
xez

y + 2
, x= (−3, 1,0)

Ans:
1
3
(x + 3) +

1
3
(y − 1)− z = 0 or

1
3
(x + y − 3z + 2) = 0 or x + y − 3z = −2

34. f (x , y, z) =
s

x y
z3

, x= (4,1, 1)
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Ans:
1
4
(x − 4) + (y − 3)− 3(z − 1)− 1= 0 or

x
4
+ y − 3z + 1= 0 or x + 4y − 12z = −4

35. f (x , y, z) =
ln(xz)

y
, x= (1,1, 1)

Ans: x + z = 2

Normal Lines

36. Find the normal line to the curve given by y = 2x − 3 at the point (−1, 2).
Ans: (−2t − 1, t + 2)

37. Find the normal line to the curve given by x2 − y3 = 1 at the point (3,2).
Ans: (6t + 3,2− 12t)

38. Find the normal line to the curve given by x3 − x2 − x + 2= y2 at the point (2,2).
Ans: (7t + 2,2− 4t)

39. Find the normal line to the curve given by x2 − x y2 + y3 = 1 at the point (2,−1).
Ans: (3t + 2,7t − 1)

40. Find the normal line to the curve given by x2 y = y2 x + 6 at the point (2,−1).
Ans: (2− 5t, 8t − 1)

41. Find the normal line to the surface given by x − 3y + z = 4 at the point (1,0, 3).
Ans: (t + 1,−3t, t + 3)

42. Find the normal line to the surface given by x2 + y2 + z2 = 9 at the point (3,0, 0).
Ans: (6t + 3,0, 0)

43. Find the normal line to the surface given by z = x2 + y2 at the point (−1,3, 10).
Ans: (2t − 1,3− 6t, t + 10)

44. Find the normal line to the surface given by x2 + y2 = z2 + 1 at the point (1,1, 1).
Ans: (2t + 1,2t + 1,1− 2t)

45. Find the normal line to the surface given by z = y2 − x2 at the point (4, 1,−15).
Ans: (8t + 4,1− 2t, t − 15)

Gradients

46. Find the maximum rate of change of the function f (x , y) = ex cos y at the point (0, π6 ) and the
direction which it occurs.

Ans: 〈
p

3/2,−1/2〉, 1
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47. Find the maximum rate of change of the function f (x , y) = sin(x + y) at the point (1,−1) and the
direction which it occurs.

Ans: 〈1,1〉,
p

2

48. Find the minimum rate of change of the function f (x , y) =
x2 y − y2 x

3
at the point (2,−2) and the

direction which it occurs,

Ans: 〈−2, 2〉, −4
p

2

49. Find the maximum rate of change of the function f (x , y) =
ln(x y)

x
at the point (1,1) and the

direction which it occurs.

Ans: 〈1,1〉,
p

2

50. Find the maximum rate of change of the function f (x , y) =
x + y
y − x

at the point (2,1) and the direc-

tion which it occurs.

Ans: 〈2,−4〉 or 〈1,−2〉, 2
p

5

51. Find the minimum rate of change of the function f (x , y, z) = x y sin(xz) at the point (2,1,π) and
the direction which it occurs.

Ans: 〈−2π, 0,−4〉, −
p

4π2 + 16

52. Find the minimum rate of change of the function f (x , y, z) = xz ln(yz) at the point (2,1, 1) and
the direction which it occurs.

Ans: 〈0,−2,−2, 〉 or 〈0,−1,−1〉, −2
p

2

53. Find the maximum rate of change of the function f (x , y, z) =
x2 yz3 + 1

z + 2
at the point (−1,−1,−1)

and the direction which it occurs.

Ans: 〈−2,−1,−5〉,
p

30

54. Find the maximum rate of change of the function f (x , y, z) = x2 y− yz2+xz3 at the point (−1,−1, 2)
and the direction which it occurs.

Ans: 〈10,−3, 8〉,
p

173

55. Find the minimum rate of change of the function f (x , y, z) =
x y

ln(xz)
at the point (−e, 1,−1) and

the direction which it occurs.

Ans: 〈0, e, e〉 or 〈0, 1,1〉, −e
p

2

‘Applied’ Gradients

56. Find the points on the surface f (x , y) = x3+2x y+ y+5 that are parallel to the plane 5x+3y−z = 0.

Ans: The plane is g(x , y) = 5x+3y . The gradient of this is 〈5,3〉. The gradient of f is 〈3x2+2y, 2x+1〉.
Solving gives (1,1).
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57. Find the points on the hyperboloid 9x2−45y2+5z2−45 where the tangent plane to the surface is
parallel to the plane x + 5y − 2z = 7.

Ans: (5/4,−5/4,−9/2)

58. Find the points on the paraboloid z = x2 + y2 where the tangent plane to the surface is parallel to
the plane x + y + z = 1. Find the equation of the tangent planes at these points.

Ans: (−1/2,−1/2, 1/4), x + y + z = −1/2.

59. Find the point(s) where the tangent plane to the surface z = x2 − 6x + y3 is parallel to the plane
4x − 12y + z = 7.

Ans: (1,2,−3), (1,−2, 5)

60. Find the points where the tangent plane to x2+ y2+ z2 = 9 is parallel to the plane 2x +2y+ z = 1.

Ans: ±(2, 2,1).

61. Describe the set of points on x2+3y2+z2+ xz = 6 where the tangent plane is parallel to the z–axis.

Ans: Vertical tangents (x , y, 0). Get ∂ f /∂ z = 0. So x +2z = 0 so x = −2z. This gives y2+ z2 = 2. This
is a cylinder. Intersecting with plane x = −2z gives an ellipse.

Other

62. Show that the sum of the x , y , and z intercepts of any tangent plane to the surface
p

x+py+
p

z =p
c is constant.

Ans: Tangent plane at (x0, y0, z0) is

x − x0

2
p

x0
+

y − y0

2
p

y
+

z − z0

2
p

z0

Set any two coordinates to 0 and solve to find the intercepts. For instance, z intercept x = y = 0 and
z =pz0(

p
x0 +

p
y0 +

p
z0) =

p
c
p

z0. Adding the three gives
p

c(px0 +
p

y0 +
p

z0) = c.

63. Let a, b be constants and f , g be functions. Use the definition of the gradient to show that it has
the following properties:

(a) ∇(a f + bg) = a∇ f + b∇g

(b) ∇( f g) = f∇g + g∇ f

(c) ∇
�

f
g

�

=
g∇ f − f∇g

g2

(d) ∇ f n = nf n−1∇ f

Ans: These are straightforward application of ordinary derivative rules.

64. Let f (x , y) be the function given by

f (x , y) =







x |y|
p

x2 + y2
, (x , y) 6= (0, 0)

0, otherwise
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(a) Use a computer system to graph f (x , y).
Ans:

(b) Use the definition of the derivative to calculate fx(0, 0) and f y(0,0).
Ans:

fx(0, 0) = lim
h→0

f (h, 0)− f (0, 0)
h

= lim
h→0

0= 0

f y(0, 0) = lim
h→0

f (0, h)− f (0, 0)
h

= lim
h→0

0= 0

(c) Use the definition of the directional derivative to determine for which unit vectors u = 〈a, b〉
Du f (0,0) exists.

Ans:

Du f (0,0) = lim
h→0

f ((0,0) + h(a, b))− f (0,0)
h

= lim
h→0

f (ha, hb)
h

= lim
h→0

ha|hb|
h
p

h2a2 + h2 b2
= lim

h→0

h|h|a|b|
h|h|

= a|b|

(d) Is f (x , y) differentiable at the origin? Put your result in the context of the previous parts.

Ans: One can use polar coordinates to see that this is not differentiable at the origin. So the partials
exist and every directional derivative exist at (0,0), but f (x , y) is not differentiable there.

65. Show that the equation of the tangent plane to the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1 at the point (x0, y0, z0)

can be expressed as

x
x0

a2
+ y

y0

b2
+ z

z0

c2
= 1

Ans: Define f (x , y, z) =
x2

a2
+

y2

b2
+

z2

c2
−1 so that ∇ f (x0, y0, z0) =

­

2x0

a2
,
2y0

b2
,
2z0

c2

·

. Then the tangent

plane is given by 0=∇ f (x0, y0, z0) · 〈x − x0, y − y0, z − z0〉. Distributing and using the equation of the
surface gives the solution.
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2.5 Max/Min & Lagrange Multipliers

Max/Mins: A max/min is the largest/smallest point in a sufficiently small neighborhood of the point.
However, the situation in three and higher dimensions is more complicated; we can have points which
are critical points but are neither max nor mins – called saddle points (why we shall see soon). Now
if X is open in Rn and f : X ⊆ Rn → R be differentiable, then if f has a local extremum at x ∈ X ,
then D f (x) = 0. So for ‘most’ functions, to find critical points, we look for derivative 0 – as usual. For
D f = 0, we want both partials to vanish. But how can we tell what it is? We use the Hessian: a critical
points a of a function of class C2, the Hessian is

H f (a) =









fx1 x1
fx1 x2

· · · fx1 xn

fx2 x1
fx2 x2

· · · fx2 xn
...

...
. . .

...
fxn x1

fxn x2
· · · fxn xn









each entry evaluated at a. Let dn be the determinant of the n×n matrix with upper left corner the entry
fx1 x1

. If dk > 0 for k = 1,2, . . . , n, then f has a local min at a. If dk < 0 for k odd and dk > 0 for k even,
then f has a local max at a. Otherwise, a is a saddle point. In the simple 2–dimensional case, this is
just looking at fx x f y y − f 2

x y – as in the textbook. For bounded regions, we need to look at the boundary
of the region as well. But often, we will need Lagrange Multipliers for this.
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Lagrange Multipliers: Often, we search for max/mins with respect to some constraint equation. Let X
be open in Rn and f , g : X → R be functions of class C1. Let S = {x ∈ X : g(x) = c} denote the level set
of g at heigh c. Then f

�

�

S has an extremum at a point x0 ∈ S such that ∇g(x0) 6= 0, there must be some
scalar λ such that ∇ f (x0) = λ∇g(x0).

The proof is rather technical and requires the Implicit Function Theorem. In more than one constraint,
we have

∇ f (x0) =
n
∑

i=1

λi∇gi(x0)

the ∇gi being linearly independent.
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Compact Regions: Extreme Value Theorem: If X ⊆ Rn is compact and f : X → R is continuous, then f
must have a global maximum and minimum on X .

1. Find the critical points.

2. Find which are in the region, classify them, and evaluate the function at these points.

3. Check the boundary.

4. Compare all the points.
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2.5 | Exercises

Critical Points

1. Find and classify the critical points for the function f (x , y) = x2 + x y + y2.

Ans: Min: (0, 0), f (0, 0) = 0

2. Find and classify the critical points for the function f (x , y) = x2 + x y + y2 + 2x − 2y + 5.

Ans: Min: (−2,2), f (−2, 2) = 1

3. Find and classify the critical points for the function f (x , y) = ln(x2 + y2 +π).
Ans: Min: (0, 0), f (0,0) = ln(π)

4. Find and classify the critical points for the function f (x , y) = x2 − x y2 + y3.

Ans: Saddle: (0, 0), f (0,0) = 0. Saddle: (9/2,3), f (9/2, 3) = 27/4

5. Find and classify the critical points for the function f (x , y) = (x + y)(1− x y).
Ans: 2 complex solutions. Saddle: (1/

p
3,1/

p
3), f (1/

p
3,1/

p
3) = 4/(3

p
3). Saddle: (−1/

p
3,−1/

p
3),

f (−1/
p

3,−1/
p

3) = −4/(3
p

3)

6. Find and classify the critical points for the function f (x , y) = ex sin y .

Ans: There are none.

7. Find and classify the critical points for the function f (x , y) = cos x sin y .

Ans: Saddle: (π/2+ nπ, mπ), f = 0. Max/Min: (nπ,π/2+mπ), | f |= 1

8. Find and classify the critical points for the function f (x , y) = x + y + ln(x y).
Ans: Max: (−1,−1), f (−1,−1) = −2

9. Find and classify the critical points for the function f (x , y) = (x2 − y2)e−x .

Ans: Saddle: (0, 0), f (0,0) = 0. Max: (2, 0), f (2,0) = 4/e2

10. Find and classify the critical points for the function f (x , y) =
x2 y2 − 8x + y

x y
.

Ans: Max: (−1/2,4), f (−1/2,4) = −6

11. Find and classify the critical points of the function f (x , y) = 3x2 y + y3 − 3x2 − 3y2 + 1.

Ans: Max: (0,0), f (0,0) = 1. Min: (0, 2), f (0, 2) = −3. Saddle: (±1,1), f (±1, 1) = −1

12. Find and classify the critical points for the function f (x , y, z) = x3 + x y2 + x2 + y2 + 3z2.

Ans: Min: (0, 0,0), f (0, 0,0) = 0. Saddle: (−2/3,0, 0), f (−2/3, 0,0) = 4/27

13. Find and classify the critical points for the function f (x , y, z) = x2 + y2 + 2z2 + xz.

Ans: Min: (0, 0,0), f (0, 0,0) = 0

14. Find and classify the critical points for the function f (x , y, z) = x3 + x y + yz + y2.
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Ans: Saddle: (0, 0,0), f (0, 0,0) = 0

15. Find and classify the critical points for the function f (x , y, z) = x2 + y2 − z2.

Ans: Saddle: (0, 0,0), f (0, 0,0) = 0

16. Find and classify the critical points for the function f (x , y, z) = x2 + y2 + 7z2 − x y − 3yz + 4.

Ans: Min: (0, 0,0), f (0, 0,0) = 4

17. Find and classify the critical points for the function f (x , y, z) = x y + xz + 2yz +
1
x

.

Ans: Saddle: (−1,1/2, 1/2), f (−1, 1/2,1/2) = −3/2

18. Find and classify the critical points for the function f (x , y, z) = ez(z2 − y2 − 2x2).
Ans: Saddle: (0, 0,0), f (0,0, 0) = 0. Max: (−2, 0,0), f (−2,0, 0) = −8

19. Show that the function f (x , y) = x3 y3 has a critical point at the origin. Show that the Hessian fails
to give any information about f (x , y) at the point (0, 0). Use other methods to determine the behavior
of the function f (x , y) at (0, 0).
Ans: Saddle.

20. Show that the function f (x , y) = x2 y2 has a critical point at the origin. Show that the Hessian fails
to give any information about the behavior f (x , y) at the point (0,0). Use other methods to determine
the behavior of the function f (x , y) at (0, 0).
Ans: Min.

21. Show that the function f (x , y) = e−(x
2+y2) has a critical point at the origin. Show that the Hessian

fails to give any information about the function f (x , y) at the point (0,0). Use other methods to deter-
mine the behavior of the function f (x , y) at (0,0).
Ans: Max.

22. Show that the function f (x , y, z) = x2 y4z3 has a critical point at the origin. Show that the Hessian
fails to give any information about the function f (x , y) at the point (0,0, 0). Use other methods to
determine the behavior of the function f (x , y) at (0,0, 0).
Ans: Saddle.

Lagrange Multipliers

23. If x and y are such that x + 2y = 4, find the maximum and minimum values of f (x , y) =
x2 + y2 − 2x − 2y .

Ans: Min: (6/5, 7/5), f = −9/5

24. Find the maximum and minimum values of f (x , y) = x y along the curve 3x2 + y2 = 6.

Ans: Max: (±1,±
p

3), f =
p

3. Min : (±1,∓
p

3), f = −
p

3

25. Find the critical values of f (x , y) = x2 + y2 − 2x − 2y along a circle of radius 2 centered at the
origin.
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Ans: Min: (
p

2,
p

2), f = 4− 4
p

2. Max: (−
p

2,−
p

2), f = 4+ 4
p

2

26. A electrons orbit about a nucleus is given by x2 + y2 = 1. The energy of the particle is given by
f (x , y) = 3x y + 2. Find the maximum and minimum energy states of the electron.

Ans: Max: (1/
p

2,1/
p

2), (−1/
p

2,−1/
p

2), f = 7/2. Min: (−1/
p

2,1/
p

2), (1/
p

2,−1/
p

2), f = 1/2

27. Find the point(s) on the curve x2 + x y = 1 to the origin.

Ans: λ= −2± 2
p

2. (±1/ 4p2, (−1+
p

2)/ 4p2)

28. Find the point(s) on the curve x2 + 4x y − 5x + 2y2 − 3y = 0 closest to the point (2,1).
Ans: (1.96881134711,0.89528903068)

29. Find the points on z2 = x y + 1 closest to the origin.

Ans: (0,0, 1) and (0,0,−1), last coordinate distance.

30. An observatory is being constructed. The base will consist of a right circular cylinder of height h
with a half sphere of radius r sitting atop it. If the material for the half sphere top costs $20/m2, the
siding costs $8/m2, and the bottom costs $5/m2, what ratio of height to diameter minimizes costs if the
total volume of the structure must be 200π cubic meters.

Ans: h/(2r) =
58π/3λ

2 · 16π/3λ
= 29/16

31. Find the maximum volume of a rectangular box that is contained in the ellipsoid x2+9y2+4z2 = 9,
assuming the edges of the box are parallel to the coordinate axes.

Ans: (x , y, z) octant 1 corner. Volume 2x ·2y ·2z. Point max is (
p

3,1/
p

3,
p

3/2) and max volume 4
p

3.

32. A rectangular box with the top of the box removed is made from 12 square ft of cardboard. What
is the maximum possible the box can be constructed to have?

Ans: (2,2, 1), maximum volume 4.

33. Find the critical points of f (x , y, z) = x + y + 2z if x2 + y2 + z2 = 3.

Ans: Max: (1/
p

2,1/
p

2,
p

2), f = 3
p

2. Min: (−1/
p

2,−1/
p

2,−
p

2), f = −3
p

2

34. On the surface x2+2y2+3z2 = 1, find the maximum and minimum values of f (x , y, z) = x2− y2.

Ans: Max: (±1, 0,0), f = 1. Min: (0,±1/
p

2,0), f = −1/2. Saddle: (0, 0,±1/
p

3), f = 0

35. Let S be the surface created by intersecting z2 = x2 + y2 and z = x + y + 2. Find the points on S
nearest and farthest from the origin.

Ans: Two constraint. Nearest: (−2 +
p

2,−2 +
p

2,−2 + 2
p

2) with distance 24 − 16
p

2 and Farthest
(−2−

p
2,−2−

p
2,−2− 2

p
2) with distance 24+ 16

p
2.

Compact Regions

36. Find the absolute maximum and minimum of the function f (x , y) = x2 + 4y2 − 2x2 y + 4 over the
region D = {(x , y): − 1≤ x ≤ 1,−1≤ y ≤ 1}.
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Ans: Min: (0, 0,4). Max: (±1,−1,11)

37. Find the absolute maximum and minimum of the function f (x , y) = 2x2 − y2 + 6y over D =
{(x , y): x2 + y2 ≤ 16}.
Ans: Min: (0,−4,−40). Max: (±

p
15, 1,35)

38. Find the absolute maximum and minimum of the function f (x , y) = 5− 3x + 4y on the triangular
region with vertices (0, 0), (4, 0), and (4,5).
Ans: Min: (4, 0,−7). Max: (4,5, 13)

39. Find the absolute maximum and minimum of the function f (x , y) = x3 − x y + y2 − x on D =
{(x , y): x , y ≥ 0, x + y ≤ 2}.
Ans: Min: (2/3, 1/3,−13/27). Max: (2,0, 6)

40. Find the absolute maximum and minimum of the function f (x , y) = x2 + y2 − x over the square
with vertices (±1,±1).
Ans: Min: (1/2, 0,−1/4). Max: (−1, 1,3)

41. Find the absolute maximum and minimum of the function f (x , y) = ex y over D = {(x , y): 2x2 +
y2 ≤ 1}.
Ans: Min: (±1/2,∓1/

p
2, e−1/(2

p
2)). Max: (±1,±1/

p
2, e1/(2

p
2))

42. Find the absolute maximum and minimum of the function f (x , y) = x y3 over D = {(x , y): x , y ≥
0, x2 + y2 ≤ 1}.
Ans: For circle piece, change to polar. f (t) = sin2 t(4 cos2 t − 1). sin2 t = 0 when t = 0 so (1,0). But
y = 0 already gave that. 4 cos2 t − 1= 0 so t = π/3 giving (1/

p
2, 3/

p
2). Min: All (x , 0), (0, y), value

0. Max: (1/
p

2, 3/
p

2, 27/4).
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Multiple Integration



3.1: Double Integrals

3.1 Double Integrals

Double Integral: Recall the idea of the ordinary Riemann integral was to break up an interval into pieces
which would serve as widths of rectangles. Then a point is chosen from each interval to serve as the
height for that rectangle. One then adds the areas. As these widths get smaller, the sum converges to a
single value (for ‘nice’ functions) that we define as the Riemann integral. We do the same thing for the

double integral. We split a region into small ‘rectangles’ by splitting the x–interval and y–interval into
pieces. This gives lots of regions from which we choose a point to serve as the height of the rectangle.
We take the sum of these rectangular prisms. These converge (for ‘nice’ functions) to what we define as
the double integral. Note that

∫∫

R f (x , y) dA calculates the ‘directed’ volume ‘under’ f (x , y) over the
region R. Though the idea is the same, double integrals are more tedious. Before the interval was given
to us. Here, we have to break up the region. Furthermore, sometimes we will have to switch the order
of integration. In both cases, it is all about drawing a picture and choosing ‘slices.’ Note by notation
prestidigitation

∫∫

R dA= Area of R.
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3.1 | Exercises

Rectangular Regions

1. Sketch the region of integration and evaluate the integral

∫ 2

0

∫ 3

0

x + y d x d y .

Ans: 15

2. Sketch the region of integration and evaluate the integral

∫ 3

−1

∫ 5

2

x − y d y d x .

Ans: −30

3. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 1

−1

3x2 − 2y d y d x .

Ans: 2

4. Sketch the region of integration and evaluate the integral

∫ 2

1

∫ 6

3

x2 + y2 d x d y .

Ans: 198

5. Sketch the region of integration and evaluate the integral

∫ 1

−1

∫ 1

0

∫ π

0

x sin y d y d x .

Ans: 1

6. Sketch the region of integration and evaluate the integral

∫ π/2

π/4

∫ π

0

cos x sin y d y d x .

Ans: 2−
p

2

7. Sketch the region of integral and evaluate the integral

∫ 3

0

∫ 1

0

x2e y d y d x .

Ans: 9(e− 1)

8. Sketch the region of integration and evaluate the integral

∫ 1

−1

∫ π

−π
y + y2 cos x d x d y .

Ans: 0

9. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 1

0

3px y d x d y .

Ans: 9/16

10. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 1

0

15
p

x + y d x d y .

Ans: 8(2
p

2− 1)

11. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 1

0

x ex y d y d x .

Ans: e− 2

12. Sketch the region of integration and evaluate the integral

∫ 2

1

∫ e

1

ln y
x y

d y d x .

Ans: ln
p

2

13. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 1

0

x y
Æ

x2 + y2 d y d x .

Ans:
2

15
(2
p

2− 1)
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14. Sketch the region of integration and evaluate the integral

∫ 2

1

∫ 2

1

x
y
+

y
x

d y d x .

Ans: ln8

‘Irregular’ Regions

15. Sketch the region of integration and evaluate the integral

∫ 2

0

∫ x2

0

y d y d x .

Ans: 16/5

16. Sketch the region of integration and evaluate the integral

∫ 0

−2

∫ 4

x2

y d y d x .

Ans: 64/5

17. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 8x

2x
y + 1 d y d x .

Ans: 13

18. Sketch the region of integration and evaluate the integral

∫ 3

−1

∫ x

0

3y d y d x .

Ans: 14

19. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 2x

x
x y d y d x .

Ans: 3/8

20. Sketch the region of integration and evaluate the integral

∫ 3

0

∫ 3+2x−x2

0

2x − 2y + 1 d y d x .

Ans: 9/10

21. Sketch the region of integration and evaluate the integral

∫ 3

−3

∫ x2

x2−9

1
9

d y d x .

Ans: 6

22. Sketch the region of integration and evaluate the integral

∫ 7

−2

∫ (y+2)/3

0

3− x d x d y .

Ans: 27

23. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 3py

y
x2 + 1 d x d y .

Ans: 1/3

24. Sketch the region of integration and evaluate the integral

∫ 2

0

∫ (15−x)/5

(4x−10)/5

y + 5
7

d y d x .

Ans: 33/5
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25. Sketch the region of integration and evaluate the integral

∫ 2

0

∫ ex

−ex

3y2 d y d x .

Ans:
2
3
(e6 − 1)

26. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 3x

2x

2
y

d y d x .

Ans: ln(3/2)

27. Sketch the region of integration and evaluate the integral

∫ 0

−4

∫

p
4−x2

0

2y d y d x .

Ans: −16/3

28. Sketch the region of integration and evaluate the integral

∫ 3

−3

∫ 0

−
p

9−y2

5x3 d x d y .

Ans: −324

29. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 1

0

x y
Æ

x2 + y2 d y d x .

Ans:
2(2
p

2− 1)
15

30. Sketch the region of integration and evaluate the integral

∫ 5π/4

π/4

∫ sin x

cos x
d y d x .

Ans: 2
p

2

31. Sketch the region of integration and evaluate the integral

∫ 2

0

∫ 4

y2

d x d y .

Ans: 16/3

32. Sketch the region of integration and evaluate the integral

∫ π/2

0

∫ 2cosθ

0

r dr dθ .

Ans: π/2

33. Sketch the region of integration and evaluate the integral

∫ π

0

∫ sin x

0

(1+ cos x) d y d x .

Ans: 2

34. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ x

0

p

1− x2 d y d x .

Ans: 1/3

35. Sketch the region of integration and evaluate the integral

∫ 2

0

∫ 2

x
x
Æ

1+ y3 d y d x .

Ans: 26/9
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36. Sketch the region of integration and evaluate the integral

∫ 4

0

∫ 2

p
x

3
2+ y3

d y d x .

Ans: ln5

37. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 2

2x
4e y2

d y d x .

Ans: e4 − 1

38. Sketch the region of integration and evaluate the integral

∫ 1

0

∫ 1

y
sin x2 d x d y .

Ans: sin2(1/2)

39. Sketch the region of integration and evaluate the integral

∫ 4

0

∫ 2

p
x

x
1+ y5

d y d x .

Ans:
ln 33
10

40. Sketch the region of integration and evaluate the integral

∫ π/2

0

∫ π/2

x

sin y
y

d y d x .

Ans: 1

41. Sketch the region of integration and evaluate the integral

∫ ln2

0

∫ 1

−1

tan x
p

e y + 1 d x d y .

Ans: Separate and note tan x odd. 0

42. Change the order of integration in

∫ 1

0

∫ e y

1

f (x , y) d x d y .

Ans:

∫ e

1

∫ 1

ln x
f (x , y) d y d x

43. Evaluate
∫∫

R x y dA, where R is the region enclosed by y =
x
2

, y =
p

x , x = 2, and x = 4.

Ans:
∫ 4

2

∫

p
x

x/2 x y d y d x = 11/6

44. Evaluate
∫∫

R(2x − y2) dA, where R is the region enclosed by x + y = 1, y = x + 1, and y =.

Ans:
∫ 3

1

∫ y−1
1−y (2x − y2) d x d y = −68/3.

45. Evaluate
∫∫

R(4− y) dA, where R is the region enclosed by the circle x2 + y2 = 4.

Ans:
∫ 2
−2

∫

p
4−x2

−
p

4−x2
(4− y) d y d x = 16π.

Areas

46. Use a double integral to show that the area between the functions f (x), g(x) between x = a and
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x = b, where f (x)≥ g(x) on [a, b], is given by

∫ b

a
f (x)− g(x) d x

Ans: A simple derivation.

47. Use a double integral to find the area of the rectangle with vertices (3,3), (7,3), (7,−4), and (3,−4).

Ans:

∫ 3

−4

∫ 7

3

d x d y = 28

48. Use a double integral to find the area of the region bound by x = 0, y = 0, and y = 9− x2.

Ans:

∫ 3

0

∫ 9−x2

0

d y d x = 18

49. Use a double integral to find the area bound by y =
p

x , x = 0, and y = 2.

Ans:

∫ 4

0

∫ 2

p
x

d y d x = 8/3

50. Use a double integral to find the area bound by y = x3 and y =
p

x .

Ans:

∫ 1

0

∫

p
x

x3

d y d x = 5/12

51. Use a double integral to find the area between y = x3 and y = x2 in Quadrant 1.

Ans:

∫ 1

0

∫ x2

x3

d y d x = 8/3

52. Use a double integral to find the area below the parabola y = 4x − x2 and above both the line
y = 6− 3x and the x–axis.

Ans:

∫ 2

1

∫ 4x−x2

6−3x
d y d x +

∫ 4

2

∫ 4x−x2

0

d y d x = 15/2

53. Use a double integral to find the area bound by x = 0, y = 4, y = −4, and x = y2.

Ans: 128/3

Volumes

54. Find the volume of the solid region formed by the region above the plane z = 4− x − y and below
the rectangle {(x , y): 0≤ x ≤ 1,0≤ y ≤ 2}.

Ans:

∫ 2

0

∫ 1

0

(4− x − y) d x d y

55. Find the volume of the region bound by z = 2− x − 2y and the coordinate axes.

Ans:

∫ 2

0

∫ (2−x)/2

0

2− x − 2y d y d x = 2/3

56. Find the volume of the region bound above by z = x y2 and below by the region in the plane formed
by y = x3, y = −x2, x = 0, and x = 1.
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Ans:

∫ 1

0

∫ x3

−x2

x y2 d y d x = 19/264

57. Find the volume of the solid bound by z = 0, x = 0, y = 0, x = 3py , x = 2 but below the function
f (x , y) = ex4

.

Ans:

∫ 2

0

∫ x3

0

ex4
d y d x =

e16 − 1
4

58. Find the volume of the region bound by x2 + y2 = 1 and y2 + z2 = 1 in the first octant.

Ans: Note z = 0 and z =
p

1− y2 then

∫ 1

0

∫

p
1−y2

0

Æ

1− y2 d x d y = 2/3

59. Find the volume of the sphere x2 + y2 + z2 = a2.

Ans: 8

∫ a

0

∫

p
a2−y2

0

Æ

a2 − x2 − y2 d x d y =
4
3
πa3

60. Find the volume of the region below z = 4− x2 − 2y2 and above z = 0.

Ans:

∫ 2

−2

∫

p
(4−x2)/2

−
p
(4−x2)/2

(4− x2 − 2y2) d y d x = 4
p

2π

61. Find the volume of the region above the plane z = 1− y and below the paraboloid z = 1− x2− y2.

Ans:

∫ 1

0

∫

p
y−y2

−
p

y−y2

(1− x2 − y2) d x d y −
∫ 1

0

∫

p
y−y2

−
p

y−y2

(1− y) d x d y =
π

32

Other Double Integral Problems

62. Evaluate the improper integral

∫ ∞

1

∫ 1/x

0

y d y d x .

Ans: 1/2

63. Evaluate the improper integral

∫ 3

0

∫ ∞

0

x2

1+ y2
d y d x .

Ans: 9π/2

64. Evaluate the improper integral

∫ ∞

0

∫ ∞

0

x ye−(x
2+y2) d x d y .

Ans:
1
4
(1− e−9)

65. Is the following true or false, if it is true explain why and if it is false give an example to show it.

∫ b

a

∫ d

c
f (x , y) d y d x =

∫ d

c

∫ b

a
f (x , y) d x d y

Ans: False
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66. Is the following true or false, if it is true explain why and if it is false give an example to show it.

∫ 1

0

∫ 2x

0

f (x , y) d y d x =

∫ 2

0

∫ 1

y/2
f (x , y) d x d y

Ans: True

67. Is the following true or false, if it is true explain why and if it is false give an example to show it.

∫ 1

0

∫ x

0

f (x , y) d y d x =

∫ 1

0

∫ y

0

f (x , y) d x d y

Ans: False
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3.2 Triple Integrals

Triple Integrals: Same idea, higher dimension. The hardest part is setting up the integral. Work hard
to get the three–dimensional picture, eliminate one variable, and then it’s just a double integral!

3.2 | Exercises

Rectangular Prism Regions

1. Evaluate the integral

∫ 3

1

∫ 1

−1

∫ 1

0

3 d x d y dz.

Ans: 12

2. Evaluate the integral

∫ 2

−1

∫ 4

3

∫ 5

2

d y dz d x .

Ans: 9

3. Evaluate the integral

∫∫∫

R
dV , where R= [−1,3]× [0, 1]× [0, 5].

Ans: 20

4. Evaluate the integral

∫∫∫

R
x yz dV over the region R given by [0, 1]× [1,2]× [2,3].

Ans: 15/8

5. Evaluate the integral

∫ 1

0

∫ 1

0

∫ 1

0

(y2 + z2) dz d y d x .

Ans: 2/3

6. Evaluate the integral

∫ 1

0

∫ x

x2

∫ x y

0

6 dz d y d x .

Ans: 1/4

7. Evaluate
∫∫∫

R(x
2e y + x yz) dV , where R is the region [−2,3]× [0, 1]× [0,5].

Ans:
!75
3
(e− 1) +

125
8

Irregular Regions

8. Evaluate the integral

∫∫∫

R
x dV , where R is the region bound by the coordinate axes and x+ y+z =

4.

Ans:

∫ 4

0

∫ 4−x

0

∫ 4−x−y

0

x dz d y d x = 32/3
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9. Evaluate the integral

∫∫

R
x y dV , where R is the region enclosed by z = x + y , z = 0, y = x2, and

x = y2.

Ans:

∫ 1

0

∫

p
x

x2

∫ x+y

0

x y dz d y d x = 3/28

10. Evaluate the integral

∫∫∫

R
2x dV , where R is the region lying under 2x + 3y + z = 6 and in the

first octant.

Ans:

∫ 3

0

∫ −2/3x+2

0

∫ 6−2x−3y

0

2x dz d y d x = 9

11. Evaluate

∫∫∫

R
(1+ x y) dV , where R is the bound by the coordinate planes ant x + y + z = 1.

Ans:

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

(1+ x y) dz d y d x = 7/40

12. Evaluate

∫∫∫

R
(2x − y + z) dV , where R is the region bound by the cylinder z = y2, x = 0, x = 1,

y = −2, y = 2, and z = 0.

Ans:

∫ 1

0

∫ 2

−2

∫ y2

0

(2x − y + z) dz d y d x = 176/15

13. Evaluate

∫∫∫

R
y dV , where R is the region bounded by x + y + z = 2, x2 + z2 = 1, and y = 0.

Ans:

∫ 1

−1

∫

p
1−x2

−
p

1−x2

∫ 2−x−z

0

y d y dz d x =
9π
4

14. Evaluate

∫∫∫

R
8x yz dV , where R is the region bounded by y = x2, y + z = 9, and the x y–plane.

Ans:

∫ 3

−3

∫ 9

x2

∫ 9−y

0

8x yz dz d y d x = 0 integrating odd x over interval symmetric in x .

15. Evaluate

∫∫∫

R
z dV , where R is the region in the first octant bounded by y2+z2 = 9, y = x , x = 0,

and z = 0.

Ans:

∫ 3

0

∫ 3

x

∫

p
9−y2

0

z dz d y d x = 81/8

16. Evaluate

∫∫∫

R
(1− z2) dV , where R is the tetrahedron with vertices (0, 0,0), (1,0, 0), (0, 2,0), and

(0,0, 3).

Ans:

∫ 1

0

∫ 2−2x

0

∫ 3−3x−3y/2

0

(1− z2) dz d y d x = 1/10

17. Evaluate

∫∫∫

R
3x dV , where R is the region in the first octant bounded by z = x2 + y2, x = 0,

y = 0, and z = 4.
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Ans:

∫ 2

0

∫

p
4−x2

0

∫ 4

x2+y2

3x dz d y d x = 64/5

18. Evaluate

∫∫∫

R
(x + y) dV , where R is the region bounded by z = x2+ y2, x = 0, y = 0, and z = 4.

Ans:

∫ 3

0

∫ 3−x

0

∫

p
3−x2/3

−
p

3−x2/3

(x + y) dz d y d x =
81
p

3π
16

19. Evaluate

∫∫∫

R
z dV , where R is the region bounded by z = 0, x2 + 4y2 = 4, and z = x + 2.

Ans:

∫ 2

−2

∫

p
1−x2/4

−
p

1−x2/4

∫ x+2

0

z dz d y d x = 5π

Volume Integrals

20. Show that a circular cylinder with base x2 + y2 = r2 and height h has volume πr2h.

Ans:

∫ r

−r

∫

p
r2−x2

−
p

r2−x2

∫ h

0

1 dz d y d x = πr2h or

∫ 2π

0

∫ r

0

∫ h

0

r dz dr dθ

21. Find the volume of a cone of height h with base radius r.

Ans: Use r2z2 = h2 x2+h2 y2 so when z = h, radius is r. Just cone upside down. Then h
a

p

x2 + y2 ≤ z ≤

h. Then

∫ r

−r

∫

p
r2−x2

−
p

r2−x2

∫ h

(h/r)
p

x2+y2

dz d y d x = 1/3πhr2 or if radius a, then

∫ 2π

0

∫ a

0

∫

hr/a
r dz dr dθ

or

∫ arctan(r/h)

0

∫ 2π

0

∫ h secφ

0

ρ2 sinφ dρ dθ dφ

22. Find the volume of the tetrahedron with vertices (0,0, 0), (2,0, 0), (0, 1,0), and (0,0, 3).

Ans: Plane 3x + 6y + 2z = 6.

∫ 2

0

∫ 1−x/2

0

∫ 3−3x/2−3y

0

dz d y d x = 1

23. Find

∫∫∫

R

24x y
13

dV , where R is the region where 0 ≤ z ≤ 1+ x + y and above the region in the

plane bound by y =
p

x , y = 0, and x = 1.

Ans:

∫ 1

0

∫

p
x

0

∫ 1+x+y

0

24x y
13

dz d y d x = 5/7

24. Find

∫∫∫

R
f (x , y, z) dV , where f (x , y, z) = 3x−2y and R is the region bounded by the coordinate

planes and the plane 2x + 3y + z = 6 in the first octant.

Ans:

∫ 3

0

∫ 2−2x/3

0

∫ 6−2x−3y

0

3x − 2y dz d y d x = 15/2

25. Compute the integral

∫∫∫

D
f (x , y, z) dV , where f (x , y, z) = 2x + z and D is the region bound by

the surfaces z = x2 and z = 2− x2 from 0≤ y ≤ 3.

Ans:

∫ 3

0

∫ 1

−1

∫ 2−x2

x2

(2x + z)dz d x d y = 8
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26. Evaluate the integral

∫∫∫

R
(x2 + y2 + z2) dV , where R is the region bounded by x + y + z = 1,

x = 0, y = 0, and z = 0.

Ans:

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

(x2 + y2 + z2) dz d y d x = 1/20

27. Find the volume of the region bound by the surfaces z = x2+ y2, z = 0, x = 0, y = 0, and x+ y = 1.

Ans:

∫ 1

0

∫ 1−x

0

∫ x2+y2

0

1 dz d y d x = 1/6

28. Find the volume of the region bound by the planes z = x + y , z = 10, x = 0, and y = 0.

Ans:

∫ 10

0

∫ 10−x

0

∫ 10

x+y
1 dz d y d x = 500/3

29. Find the volume of the region beneath z2 = x y but above the region in the plane bound by x = y ,
y = 0, and x = 4.

Ans:

∫ 4

0

∫ x

0

∫

p
x y

0

dz d y d x = 128/9

30. Find the volume of the solid sitting in the first octant bound by the coordinate planes and z =
x2 + y2 + 9 and y = 4− x2.

Ans:

∫ 2

0

∫ 4−x2

0

∫ x2+y2+9

0

dz d y d x = 2512/35

31. Find the volume of the solid bounded by z = 4x2 + y2 and the cylinder y2 + z = 2.

Ans:

∫ 1

−1

∫

p
(1−y2)/2

−
p
(1−y2)/2

∫ 2−y2

4x2+y2

dz d x d y =
π
p

2
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3.3 Change of Variables

Change of Variables: Often times the nature of the region or of the integrand calls for a change of
variables. Such transformations stretch/shrink and twist the region of integration. Note if A is a 2× 2
matrix with det A 6= 0 and T = A, then T is one-to-one and takes parallelograms to parallelograms and
their vertices to vertices.Furthermore, area D = |det A| area D∗.

But generally, these transformations will not be so nice. Meaning the ‘scaling’ factor will depend on the
location – enter the Jacobian.

J =
∂ (x , y)
∂ (u, v)

= det

�

xu xv
yu yv

�

The weird partial notation is simply a historical convenience.

If D and D∗ are two elementary regions in the x y–plane and uv–plane and T : R2→ R2 is a coordinate
transformation of class C1 taking D∗ to D injectively, use T to make substitution x = x(u, v) and y =
y(u, v), then

∫∫

D
f (x , y) d x d y =

∫∫

D∗
f (x(u, v), y(u, v))

�

�

�

�

∂ (x , y)
∂ (u, v)

�

�

�

�

du dv

The same idea works in higher dimensions.
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‘Standard Transformations’:
Polar: d x d y = r dr dθ

Cylindrical: d x d y dz = r dr dθ dz

Spherical: d x d y dz = ρ2 sinφ dρ dθ dφ
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3.3 | Exercises

General Change of Variable Integrals

1. Describe the image of [0,1]× [0,1] under the transformation T (u, v) = (3u,−v).
Ans: [0, 3]× [−1, 0]

2. What is the image of [0, 1]× [0,1] under the transformation T (u, v) =
�

u− v
p

2
,
u+ v
p

2

�

.

Ans: This is a rotation of 45◦ counterclockwise.

3. If

T (u, v) =

�

2 3
−1 1

��

u
v

�

and D∗ is the parallelogram with vertices (0,0), (1,3), (−1, 2), and (0,5). What is D = T (D∗)?
Ans: Non-zero determinant. So takes parallelograms to parallelograms. So parallelogram with vertices
(0,0), (11,2), (4,3), and (15,5).

4. Find

∫∫

R
y2 dA, where R is the region bounded by x y = 1, x y = 2, x y2 = 1, and x y2 = 2.

Ans: u= x y , v = x y2, 1≤ u≤ 2, 1≤ v ≤ 2. J = 1/v. Integral 3/4

5. Evaluate

∫∫

R

�

x − y
x + y + 2

�2

d x d y , where R is the square with vertices (−1, 0), (0,−1), (1,0), and

(0,1).

Ans: u= x + y , v = x − y . x =
u+ v

2
, y =

u− v
2

. |J |= 1/2. Integral 2/9

6. Evaluate

∫∫

R
(x + y) d x d y , where R is the region y = x , y = x + 1, x y = 1, and x y = 2.

Ans: u= y − x , v = x y . |J |=
1

x + y
.

∫ 2

1

∫ 1

0

du dv = 1

7. Evaluate

∫∫

R

√

√ x + y
x − 2y

dA, where R is the region enclosed by y = x/2, y = 0, and x + y = 1.

Ans: x =
2u+ v

3
, y =

u− v
3

, u= x + y , v = x − 2y . |J |= 1/3.

∫ 1

0

∫ u

0

1
3

u1/2

v1/2
dv du= 1/3.

8. Evaluate

∫∫

R
cos(x + 2y) sin(x − y) d x d y , where R is the region bounded by y = 0, y = x , and

x + 2y = 8.

Ans: u = x + 2y , v = x − y , x =
u+ 2v

3
, y =

u− v
3

. |J | = 1/3.

∫ 8

0

∫ u

0

1
3

cos u sin v dv du =

sin8− 5− 1
4 sin16

3

9. Evaluate

∫∫

R
e

y − x
y + x dA, where R is the triangle with vertices (0,0), (2,0), and (0, 2).
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Ans: u= y − x , v = y + x .|J |= 1/2.
1
2

∫ 2

0

∫ v

−v
eu/v du dv = e−

1
e

10. Evaluate

∫∫

R
(x − y)2 dA, where R is the parallelogram (0,0), (1,1), (2,0), and (1,−1).

Ans: Sides x − y = 0, x − y = 2, x + y = 0, and x + y = 2. So u = x − y , v = x + y . J = 1/2.
∫ 2

0

∫ 2

0

u2

2
du dv = 8/3

11. Evaluate

∫∫

R
x2 dA, where R is the ellipse 9x2 + 4y2 = 36.

Ans: u= x/2, v = v/3. J = 6. Integral 6π

12. Evaluate

∫∫

R

y
x

d x d y , where R is the region bounded by x2 − y2 = 1, x2 − y2 = 4, y = 0, and

y =
x
2

.

Ans: u= x2 − y2, v =
y
x

. J =
1

2(1− v2)
.

∫ 1/2

0

∫ 4

1

v
2(1− v2)

du dv = −
3
4

ln
3
4

13. Use a change of variables on the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1 to show that its volume is

4
3
π.

Ans: x = au, y = bv, z = cw, Jacobian J = abc. Integral is
∫∫∫

V dV =
∫∫∫

V ′ |J | dV = |J | vol V ′ =
4π
3

abc

14. Find

∫∫

R
cos

�

x − y
x + y

�

d x d y , where R is the triangular region with vertices (0,0), (1, 0), and (0,1).

Ans: u= x − y , v = x + y , |J |= 1/2.
1
2

∫ 1

0

∫ v

−v
cos(u/v) du dv =

sin 1
2

15. Evaluate

∫∫∫

R
x − y dV , where R is the parallelepiped with vertices (0,0, 0), (2,0, 0), (3,1, 0),

(1,1, 0), (0, 1,2), (2, 1,2), (3,2, 2), and (1,2, 2).
Ans: Front 2y − z = 0, Back 2y − z = 2, Left 2x − 2y + z = 0, Right 2x − 2y + z = 4. u = 2x − 2y + z,

v = 2y − z, w= z. u ∈ [0,4], v ∈ [0,2], w ∈ [0,2]. x =
u+ v

2
, y =

v +w
2

, z = w. J = 1/4. Integral 2

16. Use the substitution u= x2− y2 and v =
y
x

to evaluate

∫∫

R

dA
x2

, where R is the region under y =
1
x

in Quadrant 1 and to the right of x2 − y2 = 1.

Ans: J =
1

2(1− v2)
,

∫ a

0

∫ 1/v−v

1

du dv
2u

, where a is intersection of x y = 1 and x2− y2 = 1. Use y = ax ,

get ax2 = 1 and x2(1− a2) = 1 so a = 1− a2 and then a =
−1+

p
5

2
. Integral

1
4
(1−

p
5+ 2arcsinh(2)

17. Show that for a polar change of coordinates, d x d y = dA= r dr dθ .

Ans: Use the Jacobian.

18. Show that for a cylindrical change of coordinates, d x d y d x = dV = r dr dθ dz.
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Ans: Use the Jacobian.

19. Show that for a spherical change of coordinates, d x d y dz = ρ2 sinφ dρ dθ dφ.

Ans: Use the Jacobian.

Polar Integrals

20. Evaluate

∫

R
dA, where R is any circle of radius R.

Ans: Translate to origin – the integral is simply its area. Then change coordinates and πR2

21. Evaluate

∫∫

R
x2 + y2 dA, where R is the circle of radius 2 centered at the origin.

Ans: 8π

22. Evaluate

∫∫

R
x dA, where R= {(r,θ ): 1≤ r ≤ 2,0≤ θ ≤

π

4
}.

Ans:

∫ 2

1

∫ π/4

0

r cosθ · r dr dθ =
7
p

2
6

23. Evaluate
intR

Æ

1+ x2 + y2 dA, where R is the part of the interior of x2 + y2 = 4 in Quadrant I.

Ans:

∫ π/2

0

∫ 2

0

r
p

r2 + 1 dr dθ =
π

6
(53/2 − 1)

24. Evaluate

∫∫

R
(x2 + y2)3/2 dA, where R is the circle of radius 3 centered at the origin.

Ans:

∫ 2π

0

∫ 3

0

r4 dr dθ =
486π

5

25. Evaluate

∫ a

−a

∫

p
a2−y2

0

ex2+y2
d x d y .

Ans:

∫ π/2

−π/2

∫ a

0

rer2
dr dθ =

π(ea2
− 1

2

26. Evaluate

∫ 3

0

∫ x

0

d y d x
p

x2 + y2
.

Ans:

∫ π/4

0

∫ 3 secθ

0

dr dθ = ln(1+
p

2)

27. Evaluate

∫∫

R

dA
p

4− x2 − y2
, where R is the disk of radius 1 centered at (0, 1).

Ans: x2 + (y − 1)2 = 1. Then r2 cos2 θ + (r sinθ − 1)2 if and only if r2 = 2r sinθ so r = 2sinθ .
∫ π

0

∫ 2 sinθ

0

dr dθ
p

4− r2
= 2π− 4
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28. Evaluate

∫∫

R
y2 dA, where R is the region between the circle of radius 1 and the square with side

length 2 centered at the origin.

Ans:

∫∫

Square

y2 dA−
∫∫

disk

y2 dA=
π

4

29. Evaluate

∫∫

R
cos(x2 + y2) dA, where R is the region below.

Ans:

∫ π

π/3

∫ 1

0

r cos r2 dr dθ =
π

3
sin1

30. Find

∫∫

R

x
p

x2 + y2
dA, where R is the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1).

Ans: Sides x = 1 (or r = 1/ cosθ) and y = 1 (or r = 1/ sinθ). Break up over θ = π/4.

∫ π/4

0

∫ 1/ cosθ

0

r cosθ
r
·

r dr dθ +

∫ π/2

π/4

∫ 1/ sinθ

0

r cosθ dr dθ =
1
2
(ln(1+

p
2) +

p
2− 1)

31. Evaluate

∫∫

R

Æ

x2 + y2 dA, where R is the region give by 0≤ r ≤ 1+ cosθ for 0≤ θ ≤ 2π.

Ans:

∫ 2π

0

∫ 1+cosθ

0

r2 dr dθ

32. Evaluate

∫∫

R
sin(x2 + y2) dA, where R is the circle centered at the origin with radius 2.

Ans:
∫ 2π

0

∫ 2
0 r sin r2 dr dθ = π(1− cos4)

Cylindrical Integrals

33. Evaluate

∫∫∫

R
(x2+ y2+z2) dV , where R is the region inside x2+ y2 ≤ 4, bounded above by z = 5

and below by z = −3.
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Ans: 800π/3

34. Evaluate

∫∫∫

R
(x2+ y2+2z2) dV , where R is the solid cylinder defined by x2+ y2 ≤ 4, −1≤ z ≤ 2.

Ans:

∫ 2

−1

∫ 2π

0

∫ 2

0

r(r2 + 2z2) dr dθ dz = 48π

35. Evaluate

∫∫∫

R
z2
Æ

x2 + y2 dV , where R is the solid cylinder formed by x2 + y2 ≤ 4, z = −1, and

z = 3.

Ans:

∫ 2π

0

∫ 3

−1

∫ 2

0

z2r2 dr dz dθ =
448π

9

36. Evaluate

∫ 1

0

∫

p
1−x2

0

∫ 2x y

0

x2 + y2 dz d y d x .

Ans:

∫ π/2

0

∫ 1

0

2r cosθ sinθ r3 dr dθ = 1/6

37. Find the volume of the solid bounded above by the sphere x2 + y2 + z2 = 9 and below by the
x y–plane and laterally by x2 + y2 = 4.

Ans:

∫ 2π|

0

∫ 2

0

∫

p
9−r2

0

r dz dr dθ =
2π
3
(27− 53/2)

38. Find

∫∫∫

R
y dV , where R is the region below z = x + 2, above z = 0, and between x2 + y2 = 1

and x2 + y2 = 4.

Ans:

∫ 2π

0

∫ 2

1

∫ r cosθ+2

0

r2 sinθ dz dr dθ = 0

39. Evaluate

∫ 1

−1

∫

p
1−y2

0

∫

p
x2+y2

x2+y2

x yz dz d x d y .

Ans:

∫ π/2

−π/2

∫ 1

0

∫ r

r2

r3 sinθ cosθz dz dr dθ = 0

40. Find the volume under the plane y = z, above z = 0, and within x2 + y2 = 1.

Ans:

∫ π

0

∫ 1

0

∫ r sinθ

0

r dz dr dθ = 2/3

Spherical Integrals

41. Evaluate

∫∫∫

R
z dV , where R is the upper half of the unit sphere.

Ans: π/4

42. Find the volume of the region bounded above by x2 + y2 + z2 = 8 and below by z2 = x2 + y2.

Ans:

∫ 2π

0

∫ π/4

0

∫

p
8

0

ρ2 sinφ dρ dφ dθ =
32π

3
(
p

2− 1)
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43. Evaluate

∫∫∫

R

dV
p

x2 + y2 + z2 + 3
, where R is the sphere of radius 2 centered at the origin.

Ans:

∫ 2π

0

∫ π

0

∫ 2

0

ρ2 sinφ
p

ρ2 + 3
dρ dφ dφ = π(4

p
7− 6 ln(2+

p
7) + 3 ln3)

44. Evaluate

∫∫∫

R
4z dV , where R is the upper half unit sphere.

Ans:

∫ π/2

0

∫ 2π

0

∫ 1

0

ρ2 sinφ(4ρ cosφ) dρ dθ dφ = π

45. Evaluate

∫ 3

0

∫

p
9−y2

0

∫

p
18−x2−y2

p
x2+y2

x2 + y2 + z2 dz d x d y .

Ans:

∫ π/4

0

∫ π/2

0

∫ 3
p

2

0

ρ4 sinφ dρ dθ dφ =
486π

5
(
p

2− 1)

46. Find the volume of the solid above the cone z2 = x2 + y2 and below z = 1.

Ans:

∫ 2π

0

∫ π/4

0

∫ secφ

0

ρ2 sinφ dρ dφ dθ = π/3

47. Evaluate

∫∫∫

R
e(x

2+y2+z2)3/2 dV , where R= {(x , y, z): x2 + y2 + z2 ≤ 1, x , y, z ≥ 0}.

Ans:
∫ π/2

0

∫ π/2
0

∫ 1
0 ρ

2eρ
3
sinφ dρ dφ dθ =

π

6
(e− 1)

48. Evaluate

∫ 2

−2

∫

p
4−x2

0

∫

p
4−x2−y2

0

y
Æ

x2 + y2 + z2 dz d y d x .

Ans:

∫ π

0

∫ π/2

0

∫ 2

0

ρ2 sinφ sinθρ2 sinφ dρ dφ dθ =
16π

5
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4.1: Line Integrals

4.1 Line Integrals

Line Integral: We want to build a new type of integral. Imagine a giant electric field (vector field) and
a charged particle moving haphazardly through it. Because the particle has a charge, the field pushes
the particle in different directions depending on the charge of the particle and the field strength at that
point. If the field was constant and the path straight, we could find the work easily with W = F ·D. If the
field changes, we could find the work via W =

∫

F d x . However, if the path and field vary in time, the
situation is more complicated (and realistic). Imagine keeping track of where the particle is at any given
moment. If we plot where the particle is every 3 seconds, we can form line segments approximating the
path – like connect the dots. If we choose a field strength sometime over that 3 second interval, we can
estimate the work by assuming the field strength is constant over that line segment and use W = F · D,
then add all these up, i.e.

∑n
k=1 f (x(t∗k))∆sk, where ∆sk =

∫ tk

tk−1
‖x′(t)‖ d t. The smaller we make these

intervals, the tighter we hug the curve (meaning a better approximation to the path) and the closer we
are to the field value there. Hence, we should actually calculate the total work. Formally: : [a,b]→ R3

a path of C1 and f : X ⊆ R3 → R a continuous function whose domain X contains the image of x.
Partition [a, b] into a = t0 < t1 < · · · < tk < · · · < tn = b. Let t∗k be a point in the kth subinterval

[tk−1, tk]. Consider the sum
∑n

k=1 f (x(t∗k))∆sk, where ∆sk =
∫ tk

tk−1
‖x′(t)‖ d t. Then we have

W = lim
all ∆sk→0

n
∑

k=1

f (x(t∗k))∆sk = lim
all ∆tk→0

n
∑

k=1

f (x(t∗k))∆sk

since x is of class C1. The Mean Value Theorem gives a number t∗∗k in [tk−1, tk such that

∆sk =

∫ tk

tk−1

‖x′(t)‖ d t = (tk − tk−1)‖x′(t∗∗k )‖= ‖x
′(t∗∗k )‖∆tk

Since t∗k is arbitrary, take it to be t∗∗k . Then we have

W = lim
all ∆tk→0

n
∑

k=1

f (x(t∗∗k ))‖x
′(t∗∗k )‖∆tk =

∫ b

a
f (x(t))‖x′(t)‖ d t

and we obtain the scalar line integral. We will often denote this
∫

C F ds or
∫

C F dr. Note that we have
f (x(t)) because the particle isn’t just anywhere, it’s on the path. So the only forces acting on it, are
precisely the forces at that point.

To obtain the vector line integral, continue the work interpretation. Work along the kth segment is

F(x(t∗k)) ·∆xk. We have x′(t∗k) =
∆xk

∆tk
so that

W = lim
∆tk→0

n
∑

k=1

F(x(t)) · x′(t∗k)∆tk =

∫ b

a
F(x(t)) · x′(t) d t =

∫

C
F · ds

A common special case (commonly referred to as the differential form of the integral) is
∫

C
F · ds=

∫

C
M(x , y, z) d x + N(x , y, z) d y + P(x , y, z) dz
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4.1: Line Integrals

4.1 | Exercises

1. Evaluate

∫

C
cosπy d x , where C is the line segment from (0, 0) to (1,1).

Ans: 0

2. Evaluate

∫

C
ex d y , where C is the curve (t2, t2) for 0≤ t ≤ 1.

Ans: e− 1

3. Evaluate

∫

C
x2 y3 d x , where C is the curve (t2, t) for 0≤ t ≤ 1.

Ans: 2/9

4. Evaluate

∫

C
2x y d x , where C is the curve y = x2 + 9 from (0, 9) to (3, 18).

Ans: 243/2

5. Calculate

∫

C
f ds, where f (x , y) = 2x + y and C is the line segment from (−1, 1) to (2,−3).

Ans: 0

6. Calculate

∫

C
f ds, where f (x , y) = x y − x + y and C is the line segment from (3, 3) to (3, 1).

Ans: 10

7. Calculate

∫

C
f ds, where f (x , y) = x

p
y and C is the line segment from (−1,0) to (2,3).

Ans:
8
p

6
5

8. Calculate

∫

C
f ds, where f (x , y) = x y4 and C is the upper half of the circle x2 + y2 = 9.

Ans: 0

9. Evaluate

∫

C
f ds, where f (x , y, z) = x yz and C is the path x(t) = (t, 2t, 3t), 0≤ t ≤ 2.

Ans: 24
p

14

10. Evaluate

∫

C
f ds, where f (x , y, z) =

x + z
y + z

and C is the curve x(t) = (t, t, t3/2), where 1≤ t ≤ 3.

Ans:
35
p

35− 17
p

17
27

11. Evaluate

∫

C
f ds, where f (x , y, z) = x + y + z and C is the straight line segments from (−1, 5,0) to

(1,6, 4) then to (0, 1,1).
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Ans:
15
p

21+ 13
p

35
2

12. Evaluate

∫

C
(2x + 9z) ds, where x(t) = t, y(t) = t2, z(t) = t3 for 0≤ t ≤ 1.

Ans:
1
6
(143/2 − 1)

13. Evaluate

∫

C
f ds, where x(t) = (cos t, sin t, t), x : [0,2π]→ R3, and f (x , y, z) = x y + z.

Ans: 2
p

2π2

14. Evaluate

∫

C
f ds, where

x(t) =

¨

(2t, t), 0≤ t ≤ 1

(t + 1, 5− 4t), 1< t ≤ 3

Ans: −
p

5
2
− 12

p
17

15. Evaluate the integral

∫

C
F · ds, where F= 〈z, y,−x〉 and C is the path (t, sin t, cos t), 0≤ t ≤ π.

Ans: π

16. Evaluate

∫

C
F · ds, where C is the curve x(t, 3t2, 2t3) and F= x i+ y j+ z k.

Ans: 7

17. Find

∫

C
F · ds, where F= 〈x , y, z〉 and C is the path x(t) = (2t + 1, t, 3t − 1), 0≤ t ≤ 1.

Ans: 6

18. Evaluate

∫

C
F · ds, where F= (y + 2) i+ x j and C is the path x(t) = (sin t,− cos t), 0≤ t ≤ π/2.

Ans: 2

19. Evaluate

∫

C
F·ds, where F= 〈y cos z, x sin z, x y sin z2〉 and C is the path x(t) = (t, t2, t3), 0≤ t ≤ 1.

Ans:
7− 7cos 1+ 2 sin1

6

20. Evaluate

∫

C
x d y − y d x , where C is the curve x(t) = (cos3t, sin 3t), 0≤ t ≤ π.

Ans: 3π

21. Evaluate

∫

C

x d x + y d y
(x2 + y2)3/2

, where C is curve x(t) = (e2t , cos3t, e2t sin 3t), 0≤ t ≤ 2π.

Ans: 1− e−4π
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22. Evaluate

∫

C
(x2 − y) d x + (x − y2) d y , where C is the line segment from (1, 1) to (3, 5).

Ans: −92/3

23. Evaluate

∫

C
x2 y d x − (x + y) d y , where C is the trapezoid with vertices (0,0), (3, 0), (3,1), and

(1,1), oriented counterclockwise.

Ans: 0− 7/2− 26/3+ 3/4= −137/12

24. Evaluate

∫

C
x2 y d x − x y d y , where C is the curve with y2 = x3 from (1,−1) to (1, 1).

Ans: 4/9

25. Evaluate

∫

C
yz d x − xz d y + x y dz, where C is the line segment from (1, 1,2) to (5,3, 1).

Ans: −11/3

26. Evaluate

∫

C
z d x+x d y+ y dz, where C is the curve obtained by intersecting z = x2 and x2+ y2 = 4

and oriented counterclockwise around the z–axis.

Ans: x = 2 cos t, y = 2sin t, then z = 4 cos2 t, 0≤ t ≤ 2π. Integral 4π.

27. Find the work done by the force F= x i− y j+(x + y+ z)k on a particle moving along the parabola
y = 3x2, z = 0 from the origin to the point (2,12, 0).
Ans: −70
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4.2 The Fundamental Theorem for Line Integrals

Fundamental Theorem of Calculus: If f is continuous on [a, b] and F is the indefinite integral of f
on [a, b] (that is, F ′ = f on [a, b]), then

∫ b

a
f (x) d x = F(b)− F(a)

We want a similar theorem for line integrals. Notice the situation is we have the integral of a function
f (x) which is the derivative of some ‘unknown’ function F(x). The integral depends only on the value
of the function F(x) at the ends of the interval, x = b and x = a.

Fundamental Theorem for Line Integrals: If C is a smooth curve given by r(t) for t ∈ [a, b] and F is
such that ∇F is continuous on C , then

∫

C
∇F · dr= F(r(b))− F(r(a))

Notice how this exactly parallels the ordinary Fundamental Theorem of Calculus. Moreover, this means
the integral depends only on the value the field F takes at the start/end points and not on the path
taken – no matter how wild (or ordinary). This is path dependence. However, how can we tell when
the integral of a function f is such that f =∇F for some F? This will have great relation to the geom-
etry of the space.
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4.2: The Fundamental Theorem for Line Integrals

Open Set: A set is open if given any point in the set, there is a small ball around the point that is entirely
contained in the set. [Give the students a few pictures in R2 and R3.]

Closed Set: A set is closed if for any point that has the property that any open ball intersects the set,
then this point is in the set. [Give the students a few pictures in R2 and R3.]

(Path) Connected: A set is path connected if any two points in the set can be connected by a path in
the set. [Give the students a few pictures in R2 and R3.]

Domain: A domain is an open (path) connected subset of a space.

Simple Curve: A curve is simple if has no self intersections. [Give the students a few pictures in R2 and
R3.]

Closed Curve: A curve is closed if the start/end points of the curve are the same. [Give the students a
few pictures in R2 and R3.]
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4.2: The Fundamental Theorem for Line Integrals

Simply Connected: A simply connected region is a domain which can be continuously deformed to a
point. That is, any simple closed curve in the domain encloses only points in D. [Give the students a
few pictures in R2 and R3.]

Path Independence: The integral

∫

C
F · dr is independent of the path if

∫

C1

F · dr =

∫

C2

F · dr for any

two paths in a domain with the same initial and terminal points. Note that these curves can be used to
form a closed loop. But then we obtain that

∫

C F · dr is independent of the path in the domain D if and

only if

∫

C
F · dr for every closed path in D.

Conservative: A vector field f is conservative if there is a vector field F such that f = ∇F . [We also
say that f is a gradient field. Mention the connection to Physics, especially in terminology.] By the

Fundamental Theorem of Line Integrals, this means that

∫

C
f · dr is path independent. So we know

conservative vector fields have the path independence property. But what about the other way around?
If a vector field has the path independence property, is the vector field conservative?

This does not work both ways unless the geometry of the space is ‘nice’. If f is a vector field that is

continuous on a domain D and

∫

C
f · dr is independent of path in D, then f is conservative; that is,

there is a function F so that f =∇F . But this is nearly impossible to check – we would have to compute
the line integrals for any path between any two points. We need something better.

If F = 〈M , N〉 is a conservative vector field and M and N have continuous first–order partials on a
domain D, then

∂M
∂ y
=
∂ N
∂ x

We have a partial converse to this. If the domain is simply connected and M , N have continuous first–
order partials on the simply connected domain D with

∂M
∂ y
=
∂ N
∂ x

on D, then F is conservative. This is a condition we can check!

This has several important uses. We can check when a field is conservative. This will also give us a
possible way to compute integrals quickly, especially when they are complicated, in the case where the
field is conservative. The only barrier will be to find the potential field.
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4.2: The Fundamental Theorem for Line Integrals

4.2 | Exercises

Curves & Regions

1. Is the curve below closed? Is the curve simple?

Ans: Closed, not simple.

2. Is the curve below closed? Is the curve simple?

Ans: Not closed or simple.

3. Is the curve below closed? Is the curve simple?

Ans: Simple but not closed.

4. Is the curve below closed? Is the curve simple?

Ans: Closed and simple.

5. Is the region below simply connected? Is it open? Is it path connected? Explain why or why not.
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4.2: The Fundamental Theorem for Line Integrals

Ans: Simply connected. Open? Path connected.

6. Is the region below simply connected? Is it open? Is it path connected? Explain why or why not.

Ans: Not simply connected. Open? Path connected.

7. Is the region below simply connected? Is it open? Is it path connected? Explain why or why not.

Ans: Simply connected. Open? Path connected.

8. Is the region below simply connected? Is it open? Is it path connected? Explain why or why not.
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4.2: The Fundamental Theorem for Line Integrals

Ans: Not simply connected. Open? Not path connected.

Conservative Vector Fields

9. Determine if the vector field F= i+ j is conservative. If it is, find a potential function for F.

Ans: f (x , y) = x + y + C

10. Determine if the vector field F = 〈2x y − 1, x2 + 1〉 is conservative. If it is, find a potential function
for F.

Ans: f (x , y) = x2 y + y − x + C

11. Determine if the vector field F =
i

y + 1
+
�

1
y
−

x + y
y2

�

j is conservative. If it is, find a potential

function for F.

Ans: The field is not conservative.

12. Determine if the vector field F= 〈y − cos x , x +
1
y
〉 is conservative. If it is, find a potential function

for F.

Ans: f (x , y) = ln y − sin x + x y + C

13. Determine if the vector field F= (cos x y− x y sin x y)i− (x2 sin x y+1)j is conservative. If it is, find
a potential function for F.

Ans: The field is not conservative.

14. Determine if the vector field F = (y cos x y cos yzi + (x cos x y cos yz − z sin x y sin yz + y2)j −
y sin x y sin yzk is conservative, if it is, find a potential function for F.

Ans: The field is not conservative.

15. Determine if the vector field 〈2xz, z, 1+ x2+ y〉 is conservative. If it is, find a potential function for
F.

Ans: f (x , y, z) = x2z + yz + z + C

16. Determine if the vector field 〈3x2 + sin y,
1
z
+ x cos y,−

y
z2
〉 is conservative. If it is, find a potential

function for F.

Ans: f (x , y, z) = x3 +
y
z
+ x sin y + C

17. Determine if the vector field F= log y sin zi+ x cos y ln zj+
x sin y

z
k. If it is, find a potential function

for F.

Ans: The field is not conservative.

18. Determine if the vector field F=
z

2
p

x
i+(e y −πz sec2(πyz))j+(

p
x −πy sec2(πyz))k. If it is, find

a potential function for F.

Ans: f (x , y, z)− z
p

x − tan(πyz) + e y + C
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4.2: The Fundamental Theorem for Line Integrals

Evaluating Integrals

19. Show that the line integral

∫

C
(3x−5y) d x+(7y−5x) d y , where C is the line segment from (1, 3)

to (5, 2) is path independent and evaluate the integral.

Ans: f (x , y) =
3x2

2
− 5x y +

7y2

2
. Integral −33/2

20. Show that the line integral

∫

C

x d x + y d y
p

x2 + y2
, where C is the semicircular arc of x2 + y2 = 4 from

(2,0) to (−2,0) is path independent and evaluate the integral.

Ans: f (x , y) =
p

x2 + y2. Integral 0

21. Show that the line integral

∫

C
(2y − 3z) d x + (2x + z) d y + (y − 3x) dz, where C is the line seg-

ment from (0, 0,0) to (0, 1,1) then the line segment to (1,2, 3) is independent of path and evaluate the
integral.

Ans: f (x , y, z) = 2x y − 3xz + yz. Integral 1

22. Let F = 〈2x
3
2
p

y〉. Compute the integral

∫

C
F · ds, where C : [0,1] → R2 is the upper quarter of

the ellipse, oriented counterclockwise, centered at the origin with semimajor axis (along the x-axis) of
length 4 and semiminor axis (the y-axis) of length 3.

Ans: f (x , y) = x2 + y3/2 + C . x(0) = (4, 0), x(1) = (0,3). The integral is 18− (2+ 3
p

3) = 16− 3
p

3.

23. Let F = x i − y2j. Compute the integral

∫

C
F · ds, where C : [0, 1] → R2 is the curve given by

x(t) = (t, et4
), where 0≤ t ≤ 1.

Ans: f (x , y) =
x2

2
−

y3

3
+ C . x(0) = (0,1), x(1) = (1, e). The integral is

�

1
2
−

e3

3

�

−
−1
3
=

5
6
−

e3

4
.

24. Let F = (2x y + 1)i+ (x2 − 1)j. Compute the integral

∫

C
F · ds, where C is the path C : [0,1]→ R2

given by

x(t) =
�

et2−t + sin
�

π cos
�π

2
t
��

− 2,
1

t2 + 2t − 4
− sin(πt)

�

Ans: f (x , y) = x2 y − y + x + C . x(0) = (−1,−1/4), x(1) = (−1,−1). The integral is 1− 1= 0.

25. Let F=
1− 2x y
y2 − 1

i+
x2 − 2x y + x2 y2

(y2 − 1)2
j. Compute the integral

∫

C
F · ds, where C : [0,1]→ R2 is the

curve given by

x(t) =

 

2t + t4 +

√

√2t2 + t
3

, (t + 1)t +
1

t + 1
+

t
2

!

Ans: f (x , y) =
x2 y − x
1− y2

+ C . x(0) = (1,2), x(1) = (4, 3). The integral is
−11

2
−

1
3
=
−31

6
.
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4.2: The Fundamental Theorem for Line Integrals

26. Let F =

�

3py −
y

3 3px
,

x

3 3
p

y2
− 3px

�

. Compute the integral

∫

C
F · ds, where C : [0,1]→ R2 is the

curve given by

x(t) =
�

(t + 1)(t+1)t + t2 + arctan2(t2 − t) + 1,
1

t2 + 1
ln(t2 − t + 1) + sin4(πt cos3(πt)) +

t
2

�

Ans: f (x , y) = x y1/3 − x1/3 y . x(0) = (2,1), x(1) = (6,1). The integral is (6 − 61/3) − (2 − 21/3) =
4+ 3p2− 3p6.

27. Let F = 2x i+ cos y cos zj− sin y sin zk. Compute the integral

∫

C
F · ds, where C is the path from

(0,0, 0) to (1, 3,1), (1, 3,1) to (−4, 5,6), and finally (−4,5, 6) to (0,0).
Ans: f (x , y, z) = x2 + sin y cos z + C . The integral is 0.
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4.3: Green’s Theorem

4.3 Green’s Theorem

Green’s Theorem: Let D be a closed, bounded region in R2 whose boundary C = ∂ D consist of finitely
many simple, closed curves. Orient the curves of C so that D is on the left as one traverses C . Let
F(x , y) = M(x , y) i+ N(x , y) j be a vector field of class C1 throughout D. Then

∮

C
M d x + N d y =

∫∫

D

�

∂ N
∂ x
−
∂M
∂ y

�

d x d y

∮

∂ D
F · ds =

∫∫

D
∇× F · k dA

Note that if we consider F as a three–dimensional vector space via F = 〈M , N , P〉, then the integrand
is ∇× F · k. This theorem is especially nice when there are many paths one would have to integrate
over for the line integral but the region itself is ‘nice’. Be sure to point out how to handle regions with
holes (to which Green’s Theorem still applies). That is, form a line from the ‘boundary’ to the hole and
back – negating each other. Give physical interpretation, can either measure curl everywhere (but all
microscopic curls cancel along their boundaries) or just along the boundary of the surface (the only
region where cancelation does not occur).
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4.3: Green’s Theorem

4.3 | Exercises

1. Let F = x y i+ y2 j and D be the region bound by the curves y = x and y = x2 in the plane. Verify

Green’s Theorem for the integral

∮

∂ D
F · ds.

Ans: −1/12

2. Evaluate the integral
∮

C −y d x + x d y , where C is a circle of radius a, oriented counterclockwise.

Ans: 2πa2

3. Calculate
∮

C
x y d x + x2 y3 d y

where C is the triangle with vertices (0,0), (1,0), and (1,1), oriented counterclockwise.

Ans: 2/3

4. Show that if D is any region to which Green’s Theorem applies that then we have

area D =
1
2

∮

∂ D
−y d x + x d y

Ans: Simple application of Green’s Theorem.

5. Use the previous exercise to find the area of an ellipse with semimajor and semiminor axes of length
a, b, respectively.

Ans: πab

6. Verify Green’s Theorem for D = {(x , y): x2 + y2 ≤ 4} and F= −x2 y i+ x y2 j.

Ans: 8π

7. Verify Green’s Theorem for D the square centered at the origin with side length 2 and F= y i+ x2 j.

Ans: −4

8. Calculate
∮

C
y2 d x + x2 d y

where C is the square with vertices (0, 0), (1, 0), (0, 1), and (1,1), oriented counterclockwise.

Ans: −14
p

2π

9. Find the work done by the vector field F= (4y−3x) i+(x−4y) j on a particle moving counterclock-
wise twice around the ellipse x2 + 4y2 = 4.

Ans: 2 · −6π= −12π

10. Evaluate
∮

C
y2 d x + x2 d y
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where C is the boundary of the triangle with vertices (0, 0), (1, 1) and (1, 0), oriented clockwise.

Ans: −1/3

11. Calculate
∮

C

�

2y + tan(ln(x2 + 1))
�

d x +
�

5x − e−y2
+ sin2 y4

�

d y

where C is the circle of radius 3 centered at the origin.

Ans: Use Green’s Theorem. 3 · area circle= 3 · (32π) = 27π

12. Calculate
∮

C
F · ds

where F= 〈e y ,− sinπx〉 and C is the triangle with vertices (1,0), (0,1), and (−1,0), oriented clockwise.

Ans: 2e+
4
π
− 4

13. Calculate
∮

C
y4 d x + 2x y3 d y

where C is the ellipse x2 + 2y2 = 2.

Ans: Use Green’s Theorem to reduce to
∫∫

D−2y3 dA, note that the region is symmetric about x and
−2y3 is odd with respect to y so the integral is 0.

14. If D is a region to which Green’s Theorem applies and ∂ D is oriented properly, show that

area D =

∮

∂ D
x d y = −

∮

∂ D
y d x

Ans: Simply apply Green’s Theorem to the given line integrals.

15. Show that if C is the boundary of any rectangular region in R2, then

∮

C
(x2 y3 − 3y) d x + x3 y2 d y

depends only on the area of the rectangle, not on the placement of the rectangle in R2.

Ans: −8area D. Simple application of Green’s Theorem.

16. Show that if C is a simple closed curve forming a region D to which Green’s Theorem applies, C
being oriented properly, then

∮

C
−y3 d x + (x3 + 2x + y) d y

is strictly positive.

Ans: Green’s Theorem gives

∫∫

D
(3(x2 + y2) + 2) dA
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17. Let D be a region to which Green’s Theorem applies and suppose u(x , y) and v(x , y) are two
functions of class C2 whose domain include D. Show that

∫∫

D

∂ (u, v)
∂ (x , y)

dA=

∮

C
(u∇v) · ds

where C = ∂ D is oriented as in Green’s Theorem.

Ans: u∇= (uvx , uvy) then
∮

C
(u∇v) · ds =

∮

C
u
∂ v
∂ x

d x + u
∂ v
∂ y

d y

=

∫∫

D

�

∂

∂ x

�

u
∂ v
∂ y

�

−
∂

∂ y

�

u
∂ v
∂ x

��

dA

=

∫∫

D

�

∂ u
∂ x
∂ v
∂ y
+ u

∂ 2v
∂ x∂ y

−
∂ u
∂ y
∂ v
∂ x
− u

∂ 2v
∂ v∂ x

�

dA

=

∫∫

D

�

∂ u
∂ x
∂ v
∂ y
−
∂ u
∂ y
∂ v
∂ x

�

dA

=

∫∫

D

∂ (u, v)
∂ (x , y)

dA

18. Let f (x , y) be a function of class C2 such that

∂ 2 f
∂ x2

+
∂ 2 f
∂ y2

= 0

, i.e. f is harmonic. Show that if C is any closed curve to which Green’s Theorem applies, then
∮

C

∂ f
∂ y

d x −
∂ f
∂ x

d y = 0

Ans: If D is the area bound by the curve C , by Green’s Theorem
∮

C

∂ f
∂ y

d x −
∂ f
∂ x

d x = −
∫∫

D

�

∂ 2 f
∂ y2

+
∂ 2 f
∂ x2

�

dA= −
∫∫

D
0 dA= 0

19. Let D be a region to which Green’s Theorem applies and n the outward unit normal vector to D. S
tuppose f (x , y) is a function of class C2. Show that

∫∫

D
∇2 f dA=

∮

∂ D

∂ f
∂ n

ds

where ∇2 f denotes the Laplacian of f and ∂ f /∂ n denotes ∇ f · n.

Ans: We have

∮

∂ D

∂ f
∂ n

ds =

∮

∂ D
∇ f · n ds =

∮

∂ D

�

∂ f
∂ x

i+
∂ f
∂ y

j
�

· n ds. Continue the calculation or

note that this is the same computation as in the proof of the Divergence Theorem with F = M i+ N j =
∂ f
∂ x

i+
∂ f
∂ y

j. Therefore, applying Green’s Theorem

∮

∂ D

∂ f
∂ n

ds =

∮

∂ D

∂ f
∂ y

d x +
∂ f
∂ x

d y =

∫∫

D

�

∂ 2 f
∂ x2

+
∂ 2 f
∂ y2

�

dA=

∫∫

D
∇2 f dA
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4.4 Surface Integrals

Parametrization: A parametrization of a surface in R3 is a continuous function X : D ⊆ R2 → R3 that
is one-to-one on D, except possible along ∂ D. We refer to X (D) as the underlying surface of X (or the
surface parametrized by X ) and denote it S.

Sphere: D = [0, 2π)× [0,π]. X (s, t) = (a cos s sin t, a sin s sin t, a cos t)

Cylinder: 0≤ s ≤ 2π. (a cos s, a sin s, t)

Cone: 0≤ t ≤ 2π. (s cos t, s sin t, s)

z = f (x , y): x = s, y = t, z = f (s, t), (s, t) ∈ D

Torus: 0≤ s, t ≤ 2π, a, b > 0 with a > b. ((a+ b cos t) cos s, (a+ b cos t) sin s, b sin t)

Standard Normal Vector: The parametrized surface S = X(D) is smooth at X(s0, t0) if the map X is of
class C1 in a neighborhood of (s0, t0) and if the vector

N(s0, t0) = Ts(s0, t0)× Tt(s0, t0) 6= 0

If S is smooth at every point X(s0, t0) ∈ S, then we refer to S as a smooth parametrized surface. If
S is a smooth parametrized surface, we call N = Ts × Tt the standard normal vector arising from the
parametrization X.
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Surface Area:

S =

∫∫

R
‖Ts × Tt‖ ds d t

or in scalar form

S =

∫∫

R

√

√

√

�

∂ (x , y)
∂ (s, t)

�2

+
�

∂ (x , z)
∂ (s, t)

�2

+
�

∂ (y, z)
∂ (s, t)

�2

ds d t

In the case where z = f (x , y), taking the standard parametrization, we have

S =

∫∫

R
‖Ts × Tt‖ ds d t =

∫∫

R

q

f 2
s + f 2

t + 1 ds d t

Surface Integral Let X : D→ R3 be a smooth parametrized surface, where D ⊂ R2 is a bounded region.
Let f be a continuous function whose domain includes S = X(D), then the scalar surface integral of f

along X, denoted

∫∫

X
f dS is

∫∫

X
f dS =

∫∫

D
f (X (s, t))‖Ts × Tt‖ ds d t =

∫∫

D
f (X (s, t))‖N(s, t)‖ ds d t

or in another form

S =

∫∫

R
f (x(s, t), y(s, t), z(s, t))

√

√

√

�

∂ (x , y)
∂ (s, t)

�2

+
�

∂ (x , z)
∂ (s, t)

�2

+
�

∂ (y, z)
∂ (s, t)

�2

ds d t

The vector form of surface integrals, denoted

∫∫

X
F · dS is

∫∫

X
F · dS =

∫∫

D
F(X (s, t)) · N(s, t) ds d t

where N(s, t) = Ts × Tt .

143 of 153



4.4: Surface Integrals

Orientability: A smooth, connected surface S is orientable (or two–sided) if it is possible to define a
single unit normal vector at each point of S so that the collection of these normal vectors varies contin-
uously over S. Otherwise, S is said to be nonorientable or one–sided.

An example of a nonorientable surface is the Möbius Strip: 0≤ s ≤ 2π,−1/2≤ t ≤ 1/2


































x =
�

1+ t cos
s
2

�

cos s

y =
�

1+ t cos
s
2

�

sin s

z = t sin
s
2
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4.4 | Exercises

1. Let X : R2→ R3 be the parametrized surface given by X (s, t) = (s2 − t2, s+ t, s2 + 3t). Determine a
normal vector to this surface at the point X (2,−1) = (3, 1,1). Find the equation of the tangent plane to
the surface at this point. Give an equation for the surface of the form z = f (x , y).
Ans: TS(2,−1) = (4, 1,4), Tt(2,−1) = (2, 1,3). Normal (−1,−4, 2). Plane −x − 4y + 2z + 1 = 0. Note
x = s2 − t2, y = s + t so x = (s + t)(s − t) = y(s − t) then x/y = s − t. Solve for s, t and obtain
2s = y + x/y and 2t = y − x/y so z = s2 + 3t so z = (y + x/y)2/4+ 3(y − x/y).

2. Evaluate

∫∫

S
z3 dS, where S is the sphere parametrized by X : [0,2π] × [0,π] → R3 where

X (s, t) = (a cos s sin t, a sin s sin t, a cos t).

Ans: |N(s, t)|= a2 sin t.

∫ π

0

∫ 2π

0

(a cos t)3a2 sin t ds d t = 0.

3. Let S be the closed cylinder of radius 3 with axis along the z–axis, the top face at z = 15 and bottom

at z = 0. Find

∫∫

S
z dS.

Ans: Lateral: x = 3cos s, y = 3sin s, z = t, 0 ≤ t ≤ 15, 0 ≤ s ≤ 2π. Bottom: x = s cos t, y = s sin t,
z = 0, 0 ≤ s ≤ 3, 0 ≤ t ≤ 2π Top x = s cos t, y = s sin t, z = 15, 0 ≤ s ≤ 3, 0 ≤ t ≤ 2π. Total Integral
810π

4. Find

∫∫

S
(4− z) dS, where S is the surface given by X (x , y) = (x , y, 4− x2 − y2).

Ans:
391
p

17+ 1
60

π

5. Find

∫∫

X
F · dS, where F= 〈x , y, z − 2y〉 and X (s, t) = (s cos t, s sin t, t), 0≤ s ≤ 1 and 0≤ t ≤ 2π.

Ans: N(s, t) = 〈sin t,− cos t, s〉. Integral π2

6. Evaluate

∫∫

S
(x3 i+ y3 j) · dS, where S is the closed cylinder bound by x2+ y2 = 4, z = 0, and z = 5.

Ans: 120π

7. Find

∫∫

X
(x2 + y2 + z2) dS, where X (s, t) = (s, s+ t, t), 0≤ s ≤ 1, 0≤ t ≤ 2.

Ans: |N |=
p

3,
26
p

3

8. Find

∫∫

S
x2 dS, wehre S is the surface of the cube [−2,2]× [−2,2]× [−2, 2].

Ans: Total: 640/3

9. Find

∫∫

S
y2 dS. [Hint:

∫∫

S
(x2 + y2 + z2) dS and use symmetry.]

Ans:

∫∫

S
(x2 + y2 + z2) dS = a2 surface area= 4πa4. Each is the same so 4πa4/3
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10. Find

∫∫

S
(z− x2− y2) dS, where S is the surface of the cylinder bound by x2+ y2 = 4, z = −2, and

z = 2.

Ans: |N |= 2. Total: −64π. Or

∫∫

S
(z− x2− y2) dS =

∫∫

S
z dS−

∫∫

S
(x2+ y2) dS. S symmetric about

z = 0 and x2+ y2 = 4 on S. So

∫∫

S
z dS = 0 and −

∫∫

S
(x2+ y2) dS = −4 · surface area= −4(4π ·4) =

−64π
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4.5 Divergence Theorem & Stokes’ Theorem

Divergence Theorem: Divergence Theorem/Gauss’ Theorem allows use to turn Surface Integrals into
Triple Integrals.

Gauss’ Theorem: Let D be a bounded solid region in R3 whose boundary ∂ D consists of finitely many
piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals pointing out-
wardly from D. Then if F is a vector field of class C1 whose domain includes D, then�

∂ D

F · dS=

∫∫∫

D
∇ · F dV

That is, the “total divergence” of a vector field in a bounded region in space is equal to the flux of the
vector field away from the region, i.e. the flux across the boundary surface. Think of F as a three–
dimensional flow. We can think of ÷F as the source rate at (x , y, z) (negative rate means fluid is being
removed). In this way, we have flux across S is the source rate for D, i.e. the net flux outward across S
is the same as the rate at which fluid is being produced (or added to the flow) inside S.
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Stokes’ Theorem: Stokes’ Theorem allows us to turn surface integrals into line integrals.

Stokes’ Theorem: Let S be a bounded, piecewise smooth, oriented surface in R3. Suppose that ∂ S
consists of finitely many piecewise C1, simple, closed curves each of which is oriented consistently with
S. Let F be a vector field of class C1 whose domain includes S. Then

∫∫

S
∇× F · dS=

∮

∂ S
F · dS
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4.5 | Exercises

Divergence/Gauss’ Theorem

1. Verify the Divergence Theorem for R the portion of the paraboloid z = 9−x2− y2 above the x y–plane
and F= x i+ y j+ z k.

Ans: 243π/2

2. Verify the Divergence Theorem for R the unit cube and F= (y − x) i+ (y − z) j+ (x − y)k.

Ans: 0

3. Verify the Divergence Theorem for R the standard unit cube and F= y2 i+ (2x y + z2) j+ 2yz k.

Ans: 2

4. Let S be the solid cylinder of radius a and height b centered along the z-axis with bottom at z = 0.
Let F= 〈x , y, z〉. Verify Gauss’ Theorem for S and F.

Ans: 3πa2 b

5. Find the flux of F= x3 i+ y3 j+ z3 k across the sphere given by x2 + y2 + z2 = a2.

Ans:
12πa5

5

6. Let S be the sphere (x − 2)2 + (y + 5)2 + (z − 1)2 = 4 along with its interior and F = 5x i− 3 j− k.

Calculate

∫∫

∂ S
F · dS.

Ans:
32π

3

7. Find the flux of F= x3 i+ y3 j+ z3 k across the sphere given by x2 + y2 + z2 = a2.

Ans:
12πa5

5

8. Let F = e y cos z i+
p

x3 + 1 sin z j+ (x2 + y2 + 3)k and S be z = (1− x2 − y2)e1−x2−3y3
for z ≥ 0,

oriented outwards. Find

�
∂ D

F · dS.

Ans: 7π/2

9. Let S be the region formed by z = x2+ y2 and z = 2. Let F= y2/3 i+ sin3 x j+ z2 k. Find

∫∫

∂ S
F · dS.

Ans: 8π

10. Let S1 = 〈(x , y, z): z = 1 − x2 − y2, z ≥ 0}, S2 = {(x , y, z): z = 0, x2 + y2 ≤ 1}, and define
S to be the surface created by putting S1 and S2 together, appropriately outwardly oriented. Define

F = yz i+ xz j+ x y k. Find

∫∫

∂ D
F · dS,

∫∫

S1

F · dS, and

∫∫

S2

F · dS. Show without direct calculation

of the surface integrals that

∫∫

S1

F · dS=

∫∫

S2

F · dS.
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Ans: The total integral is 0. Since

∫∫

S1+S2

F · dS is the difference of the two. Finally,

∫∫

S2

F · dS =
∫∫

S2

x y d x d y = 0.

11. Let S be the boundary of the cube defined by −2 ≤ x ≤ 2, −1 ≤ y ≤ 1, and −1 ≤ z ≤ 5 and

F= x3 y3 i+ 4yz j− 3x2 y3z k. Calculate

∫∫

S
F · dS.

Ans: Ans: 384

12. Let R be the region formed by x2 + y2 + z2 ≤ 1. Find

∫∫∫

R
z2 dV .

Ans:
4π
15

13. Find
∫∫

S
F · dS

where S is the box with vertices (±1,±2,±3) with outward normal and F= x2 y3 i+ y2z3 j+ z2 x3 k.

Ans: 0

14. Let S be the surface given by z2 = x2 + y2 and 0 ≤ z ≤ 1. Define F = 〈x , 2y, 3z〉. Calculate
∫∫

∂ S
F · dS.

Ans: 16π

15. Consider a fluid having density ρ(r) and velocity v(r). Let V be a volume with no fluid sources or

sinks bounded by a closed surface S. The mass flux is given by

∫

S
ρ v · dS so that

∫

S
ρv · dS :=

∫

S
J · dS

where J= ρ v is the mass current. Argue why
∫

S
J · dS= −

∂M
∂ t

Find any integral representation for the mass M in V . Use this and the Divergence Theorem to derive
the Continuity Equation

∂ ρ

∂ t
+∇ · J= 0

Interpret the equation. How general is the result?

Ans: We have M =

∫

V
ρ dV . Then we have

∂

∂ t

∫

V
ρdV +

∫

S
J · dS= 0
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Then the Divergence transforms the second integral so that we have
∫

V

�

∂ ρ

∂ t
+∇ · J

�

dV = 0

and as this holds for any V , we arrive at the continuity equation. This holds for any conserved quantity.

If ∇ · J(r)> 0, then
∂ ρ

∂ t
< 0 and the mass density at r decreases and vice versa.

16. Let F= F1(x , y, z) i+ F2(x , y, z) j+ F3(x , y, z)k. Show that

div F(P) = lim
V→0

1
V

�
S

F · dS

where S is a piecewise smooth, orientable, closed surface S enclosing a region D of volume V oriented
outwardly and the limit is taken to shrink D down to the point P.

Ans: Shrink D down to P. The volume decreases monotonically downwards. Let DV be the shrunken
version of D which is the solid of volume V and let SV = ∂ DV for 0 ≤ V ≤ the volume of D. Then by
Gauss’ Theorem, �

SV

F · dS =

∫∫∫

DV

∇ · F dV

By the MVT, there is a QV ∈ DV so that
∫∫∫

DV

∇ · F dV =

∫∫∫

DV

∇ · F(QV ) dV =∇ · F(QV )(volume of D)

so that

lim
V→0

1
V

�
SV

F · dS = lim
V→0
∇ · F(QV ) =∇ · F(P) = div F(P)

Stokes’ Theorem

17. Verify Stokes’ Theorem for R= {(x , y, z): z =
p

1− x2 − y2, z ≥ 0} and F= 〈x , y, z〉.
Ans: ∇× F= 0 and tangent at (x , y, 0) is (−y, x , 0) – perpendicular to F. So both integrals 0.

18. Verify Stokes’ Theorem for R= {(x , y, z): x = 0,−1≤ y, z ≤ 1} and F= (2xz + 3y2) j+ 4yz2 k.

Ans: 4/3

19. Verify Stokes’ Theorem for F = x2 i+ 2x j+ z2 k and S the surface given by {(x , y, z): 4x2 + y2 ≤
4, z = 0}.
Ans: 4π

20. Let C be the boundary of 2x+ y+2z = 2 in the first octant, oriented counterclockwise viewed from

above. Let F= 〈x + y2, y + z2, z + x2〉. Find

∫

C
F · ds.

Ans: X (s, t) = (s, t, 1/2(2− 2s− t)). Ts = (1, 0,−1), Tt = (0,1,−1/2), Ts × Tt = (1,1/2, 1). −4/3
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21. Let S = {(x , y, z): z ≤ 9 − x2 − y2, z ≥ 5} with normal vector pointing outwards. Let F = yz i +
x2z j+ x y k. Find

∫∫

S
∇× F · dS

Ans: Use x(t) = (2cos t, 2 sin t, 5) and Stokes’ Theorem. Reduce to
∫ 2π

0 −20 sin2 t+40cos3 t d t. −20π.

22. Verify Stokes’ Theorem for R the portion of the paraboloid above the x y–plane and F= (2z− y) i+
(x + z) j+ (3x − 2y)k.

Ans: 18π

23. Find
∫∫

S
∇× F · dS

where S is the surface S = {(x , y, z): 1≤ z ≤ 5−x2−y2}with outward normal and F= 〈z2,−3x y, x3 y3〉.
Ans: 0

24. Find
∮

∂ S
F · ds

where F= (x +2y +3z, x2+2y2+3z2, x + y + z) and S is the portion of the plane x + y + z = 1 in the
first octant.

Ans: z = 1− x − y . X (x , y) = (x , y, 1− x − y). N(x , y) = (−zx ,−zy , 1) = (1, 1,1). 0 ≤ x + y ≤ 1 so
0≤ x ≤ 1, 0≤ y ≤ 1− x . Integral −1/6

25. Evaluate
∮

∂ S
F · ds

where ∂ S is the path C1 : x = (t, 0, 0), where 0 ≤ t ≤ 2, followed by C2 : x(t) = 2cos t(1,0, 0) +

2 sin t
1
p

2
(0,1, 1) = (2 cos t,

sin t
p

2
,
sin t
p

2
) for 0 ≤ t ≤ 2π, and finally C3 : x(t) = (0,2− t, 2− t), where

0≤ t ≤ 2 and F= (z − y) i− (x + z) j− (x + y)k.

Ans: Curve C : x2 + y2 + z2 = 4 and z = y . ∇× F · n dS = −2 d x d y . Integral −4
p

2π.

26. Find
∫∫

S∇ × F · dS, where S = S1 ∪ S2, where S1 = {(x , y, z): x2 + y2 = 9, 0 ≤ z ≤ 8} and
S2 = {(x , y, z): x2 + y2 + (z − 8)2 = 9, z ≥ 8} and F= (x3 + xz + yz2) i+ (x yz3 + y7) j+ x2z5 k.

Ans: 0

27. Calculate
∮

S
∇× F · n dS

where F= z2 i+ y2 j+ x y k and S is the triangle with vertives (1, 0,0), (0,1, 0), and (0, 0,2).
Ans: 4/3

28. Verify that Stokes’ Theorem implies Green’s Theorem.
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Ans: Take F= M(x , y)i+ N(x , y)j.

29. Find the word done by the vector field F= 〈x + z2, y + x2, z + y2〉 on a particle moving around the
edge of the sphere of radius 2 centered at the origin lying in the first octant, oriented outwards.

Ans: 16J

30. Evaluate
∮

∂ S
F · ds

where F=
¬

e−x2
+ sin ln(x2 + 1)− y + z, sin y2 −

p

1+ y4 + 2x + z, x − y − ez + tan 3px
¶

and ∂ S is the

intersection of x2 + y2 = 16 and z = 2x + 4y , oriented counterclockwise viewed from above.

Ans: n= 〈−2,−4,1 for plane−2x−4y+z = 0. Curl 〈−2,0, 3〉. Integral 7· area region= 7·16π= 112π.

31. Show that x(t) = (cos t, sin t, sin2t) lines on the surface z = 2x y and evaluate
∮

S
(y3 + cos x) d x + (sin y + z2) d y + x dz

where C is closed curve parametrized and oriented by the path x(t).

Ans: The first part is trivial. Take normal
−2yi− 2x j+ k
p

4x2 + 4y2 + 1
, then we have the integral −3π/4.

32. Calculate

∫∫

S
∇ × F · dS, where F = (e y+z − 2y) i + (xe y+z + y) j + ex+y k and S is the surface

z = e−(x
2+y2) and z ≥ 1/e. [Hint: Stokes’ Theorem works for any surface with appropriate boundary.]

Ans: Use the fact that Stokes’ Theorem works for any orientable piecewise smooth surface with appro-
priate boundary. Choose S′ = {(x , y, z): x2 + y2 ≤ 1, z = 1/e}. Then we obtain 2π
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