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• Can a square and a cube of a rational number differ by 2:
x2 − x3 = 2
• Can a square and a cube of rational numbers differ by 2:

y2 − x3 = 2
• Are there right triangles with all three sides rational, and

with rational area: a2 + b2 = c2,
ab
2

= N. This naturally

leads to rational points on y2 = x3 − n2x
• What numbers are the sum of two (or more) cubes:

x3
1 + x3

2 + · · ·+ x3
n = N



1888–1972

“Mathematicians have been familiar with very few
questions for so long a period with so little

accomplished in the way of general results, as that of
finding the rational [points on elliptic curves].”

– L.J. Mordell, 1922



Question
Let F(x1, x2, . . . , xn) ∈ Q[x1, . . . , xn]. Consider the equation
F = 0.
• When are there rational solutions?
• If there are rational solutions, how many are there?
• Can we find/parametrize all the rational solutions?
• What about integer solutions?



HILBERT’S 10TH PROBLEM

Ring Hilbert’s 10th

C
R
Fq

p-adic fields
Fq((t)) ?

Number Fields ?
Q ?

Global Function Fields
Fq(t)
C(t) ?

C(t1, . . . , tn)

R(t)
OK ≈?
Z

increasing
arithm

etic
com

plexity



n = 1: F(x) = 0

anxn + an−1xn−1 + · · ·+ a0 = 0

Theorem (Rational Roots Theorem)

Let f (x) = anxn + an−1xn−1 + · · ·+ a0, where ai ∈ Z and a0, an 6= 0.
Then the only rational solutions to f (x) = 0 have x = p/q, where p is
an integer factor of a0 and q is an integer factor of an.
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n = 2: F(x, y) = 0

Now F(x, y) = 0 defines a curve in the plane, and define

d = deg F(x, y)



n = 2, d = 1: F(x, y) = 0

F(x, y) = ax + by + c ∈ Q[x, y]

ax + by + c = 0

• Infinitely many rational points.

• We can parametrize these solutions.
• Integer solutions if gcd(a, b) divides c. If so, infinitely many.
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n = 2, d = 2: F(x, y) = 0

F(x, y) = ax2 + bxy + cy2 + ex + fy + h ∈ Q[x, y].

ax2 + bxy + cy2 + ex + fy + h = 0

• These are the conic sections: circles, ellipses, parabolas,
hyperbolas, and degenerate cases like a point or pair of
lines.

• We want our curves to be smooth, i.e. there is no solution
(over C2) to

F(x, y) =
∂F
∂x

(x, y) =
∂F
∂y

(x, y) = 0
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FINDING RATIONAL POINTS

x2 + y2 = 1

C(Q) = {(−1, 0)} ∪
{(

1− t2

1 + t2 ,
2t

1 + t2

)
: t ∈ Q

}



C(Q) = ∅

x2 + y2 + 1 = 0

This has no real solutions: C(R) = ∅



C(Q) = ∅

x2 + y2 = 3

• Write x = a/c, y = b/c, and clear denominators to obtain

a2 + b2 = 3c2

• Now a, b ∈ Z are not both even, so a2 + b2 ≡ 1 mod 4. But
2c2 ≡ 0, 2 mod 4.
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Principle (Hasse, Local-Global Principle)

A collection of equations has a solution ‘if and only if’ it has a
solution in R and Qp for all p.

• Not quite true—Selmer’s Example: 3x3 + 4y3 + 5z3 = 0
• The Hasse Principle shows that the only obstruction to

rational points are essentially of one of the two previous
forms.



Principle (Hasse, Local-Global Principle)

A collection of equations has a solution ‘if and only if’ it has a
solution in R and Qp for all p.

• Not quite true—Selmer’s Example: 3x3 + 4y3 + 5z3 = 0
• The Hasse Principle shows that the only obstruction to

rational points are essentially of one of the two previous
forms.



What about higher degree curves?



Theorem (Mordell, 1922, Faltings, 1983)

If C is a curve over Q of genus g ≥ 2, then C has at most finitely
many rational points.



This leaves the ‘sweet spot’ of cubic equations



n = 2, d = 3: F(x, y) = 0—ELLIPTIC CURVES

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

• Make the substitution y 7→ y +
a1x + a3

2
.

• Obtain y2 = x3 + a′2x2 + a′4x + a′6

• Make the substitution x 7→ x +
a′2
3

EA,B : y2 = x3 + Ax + B

• Require ∆ = −16(4A3 + 27B2) 6= 0.
• C(Q) could be empty, finite, or infinite.
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Definition (Elliptic Curve)

An elliptic curve is. . .
• A nonsingular projective curve of genus 1.
• An abelian variety of dimension 1.
• A nonempty smooth variety, V(F), with deg F = 3.
• A compact Riemann surface of genus 1.
• The set
{(x, y) : y2 = x3 + Ax + B,−16(4A3 + 27B2) 6= 0} ∪ {∞}
with an addition law given by the chord-tangent law.



y2 = x(x2 + 1) y2 = x3 − x + 1



y2 = x2(x + 2) y2 = x3





What is E(C)?



Definition (Weakly Modular Form of Weight k)

Let k be an integer. A meromorphic function f : H → C is
weakly modular form of weight k if

f (γ(τ)) = (cτ + d)kf (τ) for γ =

(
a b
c d

)
∈ SL2(Z) and τ ∈ H

Definition (Modular Form of Weight k)

Let k be an integer. A function f : H → C is modular form of
weight k if

(i) f is holomorphic onH,
(ii) f is weakly modular of weight k,

(iii) f is holomorphic at∞.



Define the modular form, called the Weierstrass ℘-function,

℘(z) = ℘Λ(z) :=
1
z2 +

∑
ω∈Λ
ω 6=0

(
1

(z− ω)2 −
1
ω2

)
,

and define the Eisenstein series of weight k

Gk,Λ =
∑
ω∈Λ
ω 6=0

ω−k

℘(z) satisfies the following:

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6

Now define an elliptic curve

y2 = 4x3 − g2x− g3

g2 = 60G4

g3 = 140G6



Theorem

Let Λ be a lattice, and let E be the elliptic curve y2 = 4x3 − g2x− g3.
Then

Φ : C/Λ→ E(C)

z 7→ (℘(z), ℘′(z))

0 7→ ∞

is an isomorphism of groups.



To go the other direction, write E as

y2 = 4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3); e1 < e2 < e3

Then define

ω1 =
2i√

e3 − e1 +
√

e3 − e2

∫ 1/k

1

dt√
(t2 − 1)(1− k2t2)

ω2 =
2√

e3 − e1 +
√

e3 − e2

∫ 1

−1

dt√
(1− t2)(1− k2t2)

where

k =

√
e3 − e1 −

√
e3 − e2√

e3 − e1 +
√

e3 − e2

Then E(C) ∼= C/Λ, where Λ = Zω1 + Zω2.



S. Derbyshire, Lattice torsion points. CC BY-SA 3.0



• This shows: E[n] := {P ∈ E : nP = O} ∼= Z/nZ⊕ Z/nZ
• E(C) is isomorphic to a torus



What is E(R)?



E(R) ∼= S1 or E(R) ∼= S1 ⊕ Z/2Z



The Structure of E(Q) in the next Talk. . .



Odd ’n Ends



j-INVARIANT

Take an elliptic curve y2 = x3 + Ax + B. The transformations
which preserve this equations are: x = µ2x and y = µ3y for
µ ∈ K×. We then define the j-invariant

j = 1728
4A3

4A4 + 27B2

These classify elliptic curves up to isomorphism over K.

Remark
The j-invariant does not classify elliptic curves over K:

y2 = x3 − 25x

y2 = x3 − 4x

Both have j-invariant 1728 but are not isomorphic over K = Q
(but are over K = Q(

√
10)). So the j-invariant only classifies

elliptic curves ‘up to twisting’.



ENDOMORPHISM RING

Considering the multiplication by n-map: P 7→ nP

End E ⊇ Z

Generally, End E is one of the following:
• Z
• an order in an imaginary quadratic field
• an order in a quaternion algebra (not if char K = 0)

If End E ) Z, we say that E has complex multiplication (CM).

Example

y2 = x3 + B
(x, y) 7→ (ζ3 x,−y)

y2 = x3 + Ax
(x, y) 7→ (−x, iy)



DIVISION POLYNOMIALS

Consider an elliptic curve y2 = x3 + Ax + B and define

ψ0 = 0
ψ1 = 1
ψ2 = 2y

ψ3 = 3x4 + 6Ax2 + 12Bx− A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3)

...

ψ2n+1 = ψn+2ψ
3
n − ψn−2ψ

3
n+1

ψ2n =

(
ψn

2y

)
(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1)

The polynomial ψn is called the nth division polynomial. The
roots of ψn give the x-coordinates of the p-torsion points.



WEIL PAIRING

There is a pairing en : E[n]× E[n]→ Q(ζn), called the Weil
pairing, satisfying

(i) en is bilinear
(ii) en is non-degenerate

(iii) en(P,P) = 1
(iv) en(P,Q) = en(Q,P)−1

(v) en(Pσ,Qσ) = σen(P,Q) for all automorphisms of K which
fix A,B.

Remark

Using the Weil pairing, it is routine to verify that if E[n] ⊆ K2,
then Q(ζn) ⊆ K.



GALOIS REPRESENTATIONS

• Let GK := Gal(K/K) be the absolute Galois group of K.
• GK acts on E[n] ∼= Z/nZ⊕ Z/nZ
• Fix a basis of Z/nZ⊕ Z/nZ, then we have a representation

ρE,n : GK → Aut(E[n]) ' GL2(Z/nZ),

the so-called mod n Galois representation.
• One also forms the `-adic Tate module: T`(E) := lim←−n

E[`n]
and the `-adic representation ρ` : GK → Aut(T`(E)).

Theorem (Serre)

Let K be a number field, and let E/K be an elliptic curve without CM.
Then for all but finitely many primes `, ρE,` : GK → GL2(F`) is
surjective.



L-FUNCTIONS

Hasse Principle: |p + 1−#E(Fp)| ≤ 2√p. We define ‘error
terms’ ap := p + 1−#E(Fp).

Then we define the Hasse-Weil L-function of E to be

L(E, s) =
∏
p-∆

1
1− app−s + p1−2s

We can also write
L(E, s) =

∑
n≥1

an

ns ,

where an are the Fourier coefficients given by

ap =


p + 1−Np, if E has good reduction at p
1, if E has split multiplicative reduction at p
−1, if E has non-split multiplicative reduction at p
0, if E has additive reduction at p
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Theorem (Wiles, Taylor, Brueil, Conrad, Diamond)

L(E, s) can be analytically continued to C.

Andrew Wiles Richard Taylor Christophe Breuil

Brian Conrad Fred Diamond



In particular, L(E, s) has a Taylor expansion about s = 1:

L(E, s) = c0 + c1(s− 1) + c2(s− 1)2 + · · ·

Define the analytic rank ran of E to be the order of vanishing of
L(E, s) at s = 1,

L(E, s) = cran(s− 1)ran + · · ·
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Conjecture (BSD)

The algebraic and analytic ranks of elliptic curves are equal.

Bryan Birch (Sir Henry) Peter
Francis Swinnerton-Dyer

Due to work of Gross, Zagier, Kolyvagin, if ran ≤ 1, then
ranal = ralg. If BSD is true, there is an algorithm to compute the
rank of an elliptic curve.

lim
s→1

L(E, s)
(s− 1)rE

=
ΩE Reg(E) #X(E/Q)

∏
p cp

#E(Q)2
tors
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Questions?


