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Dear Sir or Madam, will you read my book, it took me years to write, will you take a
look?

John Lennon and Paul McCartney, Paperback Writer, single
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2. Forward to the Reader

The purpose of this text is not only to demonstrate the knowledge I have accumulated
during my time as an undergraduate at Ithaca College and time spent at Cornell University,
but as a demonstration of my ability to apply that Mathematics and learn new concepts
independently. Moreover, it is to demonstrate my ability to communicate that knowledge
to others. Accordingly, this text was written for the advanced undergraduate Mathematics
major. Many of the proofs belong to the cited sources. However, when those texts are
absent or “lacking” they have been filled in by myself. The purpose is not to replicate or
replace those texts but to provide the shortest route to the concept being discussed, i.e.
to eliminate “extra” or “extraneous” concepts. That is, to connect fields and concepts in
Mathematics sufficiently enough to see the details while removing enough details to clearly
present the big picture - the sinews binding the fields of Mathematics. The interested reader
is of course suggested to read the cited texts. Finally, although this text will provide the
necessary knowledge to follow the argumentation, the text in no way explains all possible
concepts and much is assumed to the reader. Though much of this knowledge is unnecessary
to understand the text, there are key concepts or terminology the reader should be familiar
with to make full use of this text. For simplicity, especially if the reader desires only to
read a portion of the text, the assumed knowledge is broken down here:

• Galois Theory: The division algorithm, group properties and definition, subgroups,
special groups (such as Z(G), C(g), cyclic groups, permutation groups to some ex-
tent, Aut(G), Inn(G), U(n), stabG(i), orbG(i), ker(ϕ), End(G)), the Isomorphism
and Homomorphism theorems, cosets, Lagrange’s Theorem, external and inter-
nal direct products, normal groups, factor groups, Cauchy’s Theorem for abelian
groups, Sylow’s Theorems, Fundamental Theorem of Abelian Groups, ring prop-
erties and definitions, ideals, integral domains (ID), fields, ring homomorphisms,
polynomial rings, reducibility, factorizations of polynomials, Eisenstein Criterion,
Cyclotomic polynomials, unique factorization domains (UFD), principal ideal do-
mains (PID), ascending/descending chains, vector spaces, vector subspaces, linear
independence/dependence, bases, and some basic knowledge of tensor products.
• Representation Theory: Some of the above group theory knowledge, basic knowl-

edge of the permutation group, cosets, isomorphisms, homomorphisms, special
groups (as above), vector spaces, vector subspaces, linear independence/dependence,
bases, and some knowledge about matrices.
• Lie Representations: Much if not all of the knowledge from Galois Theory, vec-

tor spaces, vector subspaces, linear independence/dependence, bases, eigenvalues,
bilinear forms, euclidean spaces, some tensor products, algebras. Though not nec-
essary, it is also useful to know the special matrix groups and their algebras (such
as O(n), U(n), SU(n), Sp(n), sl(n,C), so(n), sp(n), et cetera), and commutative
diagrams.
• Topology: The definition of a topological space, basis, closed sets, boundary, clo-

sure, interior, dense, continuous functions, homeomorphisms, open/closed maps,
limit points, “special topologies” (such as the standard, order, product, subspace,
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metric, and quotient topologies), countability, metrics, Hausdorfness, connected
spaces, compactness, components, separation axioms, countability axioms, normal-
ity, Urysohn lemma, Tietze Extension Theorem, Tychonoff Theorem, and some
complex analysis (such as winding numbers and various aspects of contour integra-
tion).
• Combinatorics: Not much is assumed here. All that is required is some knowledge

of basic counting principals and a good understanding of group theory.

Moreover, there things that are not easily expressed in a list which the reader is expected
to have, such as the ability to follow proofs and understand typical Mathematical jargon,
such as “if and only if”, “...that makes the following diagram commute”, “for all” and
its negation “there exists at least one...”, “agrees with ϕ on ...”, et cetera. Though these
concepts are assumed, a few of the above are briefly stated or reviewed for the reader for
issues of clarity. Finally, this text in no way is exhaustive or even sufficient in its description
in the topics it contains. However, the text should contain the knowledge that is necessary
to understand the basic principals. However, the focus will be on the bigger picture and
the connections to simpler mathematics or to other fields of Mathematics. The interested
reader is of course suggested to continue their reading to more in-depth texts - the works
cited page is a good start.

Finally, I have worked strenuously to create a coherent system of language, definition,
and notation in this paper - especially working from texts with very different notation for
the same topic. While it is standard for an algebraist to write aφ, whereas an analyst would
write φ(a) and the topologist would write either, I believe it is clearest when written in the
form φ(a) to avoid confusion when many symbols are present. Moreover, some texts will
have commutative diagrams written inverted from what is seen here. Again, I believe the
way I have done it is clearest within the context in which I am working, especially when
a diagram would not often be written. The order of the chapters have been presented
such that some knowledge that would otherwise need to have been assumed has already
been presented in a previous chapter, helping to create a somewhat smooth flow between
concepts. Lastly and importantly, any errors are my own and do not reflect on the sources
or my instructors. Any errors the reader wishes to report or suggestions for revision can be
sent to cbgmcwhorter@gmail.com and would gladly be taken with my deepest gratitude.
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Introduction

Mathematics is not a linear object. Though it may start off in such a fashion, soon it
is a interweaving fabric of logic and definitions which create a coherent system of solving
problems. Indeed, at the heart of Mathematics is logic. Once a definition in Mathematics
is made, all the results that follow were always true, we just did not see them. Mathematics
is then not a journey of construction or proof but of quest for understanding. The most
powerful Mathematics comes when the various fields work together to solve a problem.
Often, the first proof is not the simplest. It is the profession of the mathematician to look
for a better way or a shorter way. Indeed, many of the results one reads in textbooks
seem rather trivial. Why where these results so slow to arrive? The proof one often sees is
decades of careful dissection and understanding which often comes when more discoveries
had been made and a coherent theory created. Moreover, the proofs, especially of the more
difficult questions or those which are most general, come only when one combines the fields
of Mathematics into a powerful theorem proving machine. For example, the classification
of all finite simple groups took over 100 years and all the tools of Analysis, Lie Theory,
Group and Field Theory, and Topology to finally put to rest in a total proof length of
over 10,000 mathematical journal pages. Today, after great work in careful reduction this
number has been reduced substantially to a 8 volume set of books.

More often than not, the thread which binds the fields together and patches holes is
not a singular theorem but rather a broader concept that bridges the gap. The concept of
looking at the possible ways to count arrangements of a collection of objects - permutations
- is a simple idea but is seen in nearly every field of Mathematics in some form. Its power
to count and view the structure of an object is enhanced by a theory that came much later
than the idea of a permutation itself - the concept of a group. As Fraleigh said, “never
underestimate a theorem which counts something.” Indeed, I would contest that there is
not a field of Mathematics that does not use the concept of a group in one way or another.
The concept of a group forces a coherent structure on an object which only further enhances
the probing power of the symmetry of an object. In fact, embedded in the concepts of a
group is the idea of a permutation. Any binary operation in a group takes an element
and “permutes” that element through (left/right) multiplication to another element in the
group. This viewpoint yields is exactly Cayley’s Theorem:

Theorem 2.1. (Cayley’s Theorem) Every group is isomorphic to a group of permutations.

Proof: Let G be a group. We prove the theorem in 3 steps:

1. We construct a mapping from G to itself and show that it is a permutation.
2. Using the mapping in (1), we construct a group of permutations SG.
3. We show that G is isomorphic to SG.

We now will follow the roadmap we have just established.

1. Let Pg : G → G be a map defined by x 7→ gx for a fixed g ∈ G. To show that Pg
is a permutation of G, we need to show that it is a bijection of G to itself. Suppose
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that Pg(x) = Pg(x
′), then gx = gx′ and left cancelation yields x = x′, showing Pg is

injective. For surjectivity, suppose we wish to produce x ∈ G. Because g, x ∈ G and G
is a group, g−1 ∈ G and so is g−1x. But then Pg(g

−1x) = g(g−1x) = (gg−1)x = ex = x,
demonstrating surjectivity. Therefore, Pg is a permutation.

2. The construction of the group should be obvious. Take SG to be the set defined by
SG = {Pg | g ∈ G}. Since each Pg is a permutation, SG is a set of permutations.
However, we need to show that SG is a permutation group. Hence, we need to give it
a binary operation, show it is nonempty, contains identity, and is closed under inverses
and its operation. Let the operation on SG be function composition. We know that
there is an identity in SG since e ∈ G then Pe is the identity in SG because if Pg ∈ SG
and x ∈ G. This shows that SG is nonempty, then

(PePg)(x) = Pe(Pg(x)) =Pe(gx) = e(gx) = gx = Pg(x)

and

(PgPe)(x) = Pg(Pe(x)) =Pg(ex) = g(ex) = gx = Pg(x)

Similarly, it is simple to show that SG is closed under its binary operation. Suppose
Pg, Ph ∈ SG and x ∈ G, then

(PgPh)(x) = Pg(Ph(x)) = Pg(hx) = g(hx) = (gh)x = Pgh(x)

Since g, h ∈ G, we know gh ∈ G and this shows that (PgPh)(x) = Pgh(x). We now need
only show that each element in SG has an inverse. Since G is a group, if g ∈ G then
g−1 ∈ G and the inverse of Pg has the inverse Pg−1 as

(PgPg−1)(x) =Pgg−1(x) = Pe(x)

and

(Pg−1Pg)(x) =Pg−1g(x) = Pe(x)

Therefore, SG is a group.
3. Finally, we show that G ∼= SG, which means we need to find an isomorphism between

them. But this isomorphism has practically been made for us! Let ϕ : G → SG be
the mapping defined by g 7→ Pg. We need to show that ϕ is surjective, injective, and
a homomorphism. First, to see that it is surjective is simple since each Pg ∈ SG must
come from at least one g ∈ G, namely g itself. To see injectivity, let g, h ∈ G and
suppose ϕ(g) = ϕ(h), then Pg = Ph for all x ∈ G. Letting x = e ∈ G, we see that

Pg(e) =Ph(e)

ge =he

g =h

Finally, we need to show that ϕ is a homomorphism. But this follows directly from the
properties of Pg. Suppose that x, y ∈ G then

ϕ(xy) = Pxy = PxPy = ϕ(x)ϕ(y)

Therefore, ϕ is an isomorphism and G ∼= SG, completing the theorem. �
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First, notice we constructed Pg(x) = gx through left multiplication, this is called the left
regular representation. There is nothing wrong with having chosen Pg(x) = xg, called the
right regular representation. Cayley’s Theorem would still have followed in the same way.
However, we may obtain a different subgroup of Sn (as the group action in any subgroup
of Sn is almost never commutative it would follow that left multiplication by an element
would unlikely correspond to the same permutation induced by applying the permutation
on the right). But this group would still have to be isomorphic to the one constructed by
the left regular representation. Second, notice that Cayley’s Theorem holds for any group,
even an infinite one!

Groups are the study of objects through a binary operation. Cayley’s Theorem then
tells us that this concept is exactly analogous to examining the symmetry in the way the
group can be arranged or permuted. We should expect then that the symmetric group
should have a critical role in the study of groups. Indeed, the symmetric group appears
in some way in almost every field of Algebra. However, its presence is often not obvious.
Our goal is to motivate and develop some of the bigger theorems of Mathematics, with an
emphasis on illustrating where the concept of a permutation is applied.
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3. Combinatorics

Introduction. We start by showing an application of the symmetric group in perhaps
its most natural element - combinatorics. However, one should not make the mistake
of thinking that the symmetric group as a counting object. Yes, the symmetric group
can be used to count things. The order of the symmetric group may count the possible
number of arrangements of an object but the elements of the symmetric group, as the
reader should well be aware, are maps of the set to another possible arrangement of its
elements. Therefore, as stated before, the symmetric group in some way informs us about
the symmetry of a collection of objects (hence the name the symmetric group). The number
of these symmetries is what we tend to count.

Here, we will first present how symmetries can be considered as groups using very visual
examples. Then we extend this idea to group actions and show how these are again the
same idea as a permutation. Finally, we give very special groups resulting from the concept
of group actions and conclude with their culmination, Burnside’s Theorem, to show how
this can be applied in very real world examples.

Example 3.1. We will show that the group of rigid motions of the cube (that is motions
you could obtain by simply picking the cube and turning it in some way) has order 24. This
is the same as saying that there are 24 ways to rigidly move the cube onto itself. Let H
be the set of vertices of the cube, i.e. H = {1, 2, · · · , 8}. Label the vertices of the cube H
such that 1 is adjacent to 2 and so forth. Consider the rigid motions of vertex 1. There are
7 different vertices to which 1 can be sent, not including the motion which fixes the cube.
For each of these 8 total rigid motions, there are 3 possibilities for the placement of vertex
2 as it must be adjacent to vertex 1. This yields a total of 3 · (7 + 1) = 24 total possible
rigid motions of the cube. Since a rigid motion must fix the edge connecting vertex 1 and
vertex 2, this is sufficient to determine the cube. Hence, |G| = 24.

Figure 1. A standard cube in 3-space.

Notice in this example that the group of rigid motions are maps of the object onto itself
and its order is the number of possible rigid motions. The group of rigid motions can be
thought of as a permutation group. Indeed, the rigid motions must be a subgroup of the
symmetric group, not just from an a fortiori argument resulting from Cayley’s Theorem.
We illustrate this with the following example:

Example 3.2. Let G be the group of rigid motions of the cube. We will show that G ∼= S4.
We have already shown in Example 1 that |G| = 24. So we already know that G has the
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same order of S4. Observe that the cube has 4 diagonals and that any rigid motion induces
a permutation of the diagonals. To show that the groups are isomorphic, it is sufficient to
show that all 24 permutations of these diagonals come as a result of a rigid motion. Label
the diagonals arbitrarily as 1, 2, 3, and 4. Consider a rigid rotation that would take a cube
sitting on a flat surface and push it onto one of the sides who has an edge against the flat
surface, this corresponds to the permutation (1234). A rotation of a right angle that is also
right to the one corresponding to (1234) is (1423). But by closure of a group, the image
of our group of rotations must at least contain the subgroup generated by (1234), (1423):
{(), (1234), (1234)(1234), (1234)(1234)(1234), (1423)(1423), (1423)(1423)(1234),
(1423)(1423)(1234)(1234), (1423)(1423)(1234)(1234)(1234)}. Moreover, it must contain
the element (1234)(1423), which has order 3. Recall that the order group elements and
subgroups must divide the order of a group. Our permutation group already contains a
subgroup of order 8 and an element of order 3, the smallest possibility for the order of a
group is 24. But then since this is the total order of our group, the rotations must yield
all 24 possible rotations.

So how do we get the symmetric group to count for us? In the examples of above,
we create a group which somehow contains the object of our attention and count the
group elements which we are interested in. For examples, above we were interested in the
number of rigid motions and the order of the group itself was the number of such motions.
In general, the order of the whole group counts more than the total number of whatever
it is we are interested in. Instead, we will often have to look at subgroups of G or perhaps
create a quotient group. Typically, this will be done using subgroups such as the orbit or
stabilizer. However, these are subgroups not under the typical group operation but through
the concept of a group action.

3.1. Group Actions.

Definition 3.1. (Group Action) Given a group G and a set S, then a group action of G
on S is a map G× S → S, denoted g · s and satisfies

1. 1 · s = s
2. g1 · (g2 · s) = (g1g2) · s
for all g1, g2 ∈ G and s ∈ S. This is called the left action of G on S. When the set and
group are clear, the operation is omitted and is simply written gs. The right action is
defined analogously.

One should note that in the proof of Cayley’s Theorem, we have already used the concept
of a group action. We created an action where S was the group G, i.e. G×G→ G defined
by g · s = gs. In fact, this is a well known and used group action. Let G be a group and S
be a set then define a map σg : S → S given by σg(s) = g · s. Then for every fixed g ∈ G,
σg is a permutation of S and the ϕ : G→ SS from the group G to the set of permutations
on S, defined by g 7→ σg (the permutation representation), is a homomorphism. But this
should have already all been clear from our proof of Cayley’s Theorem.
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Remark 3.1. We can also, similar to the idea of Cayley’s Theorem, say G acts a nonempty
set S if there is a homomorphism ϕ : G→ SS . These definitions are equivalent.

Proof: Assume that G is a group and S is a nonempty set. We need to show the two
group action axioms are satisfied. First, assume that there is a homomorphism ϕ : G→ SS .
Then for all g, h ∈ G and s ∈ S,

(gh) · s = ϕ(gh)(s) = (ϕ(g)ϕ(h))(s) = ϕ(g)(ϕ(h)(s)) = g · (h · s)
and because ϕ is a homomorphism, e · s = ϕ(e)(s) = s.

Now assume that G acts on S. Let ϕ : G→ SS be a map defined by ϕ(g)(x) = g · x. To
show that ϕ(g) is injective, suppose ϕ(g)(x) = ϕ(g)(y), then g · x = g · y and

g · x =g · y
g−1 · (g · x) =g−1 · (g · y)

(g−1g) · x =(g−1g) · y
e · x =e · y
x =y

Surjectivity is simple. Choose s ∈ S, then consider g−1 · s ∈ S
ϕ(g)(g−1 · s) = g · (g−1 · s) = (gg−1) · s = e · s = s

Therefore, ϕ(g) is a bijection and it only remains to show that ϕ is a homomorphism.

ϕ(gh)(x) = (gh) · x = g · (h · x) = ϕ(g)(ϕ(h)(x)) = (ϕ(g)ϕ(h))(x)

But then the two definitions are equivalent. So a group action definition is equivalent of
thinking of the group action as some permutation of S.

But why bother to consider groups actions? It is very similar to the inherent binary
operation in a group G, so how do we get more from it? Indeed, the binary operation of
a group is a group action of a group on itself. Obviously, we have already seen the use in
proving Cayley’s Theorem. However, we proved it earlier without ever having to consider
our mappings as a group action. So where is the use? Using the idea of group action,
one can study a set (or perhaps let the set be a group!) by forcing more structure on the
set using another group. One can then use the group to learn more about the set, or use
the set to learn about the group. Moreover, group actions lead to a partial converse of
Lagrange’s Theorem - Sylow’s Theorem, which we will not examine here. The concept of
permutations and group actions are powerful in their own right but together they prove
extremely useful. We focus on three particularly useful sets created through group actions.

Definition 3.2. (Kernel) Given a group G acting on a nonempty set S, the kernel of the
action is the set of all elements of G with act trivially on S:

ker = {g ∈ G | g · s = s for all s ∈ S}

Note this kernel is not the same as a kernel of a homomorphism but follows the same
idea, those elements which act trivially.
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Definition 3.3. (Orbit) Let G be a group acting on a nonempty set S. Then the equiv-
alence class OG(s) = { g · s | g ∈ G} = orbG(s) is called the orbit of s under the action of
G. Moreover, if there is only one orbit under the action of G on S, the action is called
transitive.

Definition 3.4. (Stabilizer) Let G be a group acting on a nonempty set S. Then the
stabilizer of s ∈ S is stabG(s) = {g ∈ G | g · s = s}. In other words, the stabilizer of s is
the set of g ∈ G which act trivially on s.

Remark 3.2. It is easily checked that the stabilizer, orbit, and kernel are subgroups of G.
In fact, the kernel is a normal subgroup of G.

Of course, we could have defined the kernel in terms of the stabilizer as ker =
⋂
s∈S stabG(s).

This also shows that ker ≤ stabG(s). Of course, one would think there should be an inti-
mate relation between actions and homomorphisms given they both have a kernel. This is
indeed correct, suppose a group G acts on a nonempty set S and let ϕ : G → SS . Then
one can obtain a group action through

g · s = ϕ(g)(s)

This defined action is exactly the same as ker ϕ. Moreover, there is an interesting relation
between the orbit and stabilizer of a group G acting on a set S.

Theorem 3.1. (Orbit-Stabilizer Theorem) Let G be a finite group of permutations acting
on a set S. Then for any s ∈ S, |G : stabG(s)| = |orbG(s)|. Equivalently,

|G| = |orbG(s)| |stabG(s)|

Proof: By Lagrange’s Theorem, |G : orbG(s)| is the number of left cosets of orbG(s) in
G. We create a bijection between these left cosets and stabG(s). Let C denote the set of
left cosets of orbG(s) in G and let ϕ : C → stabG(s) be a map defined by g ·S 7→ g stabG(s).
We need to show

1. ϕ is well-defined.
2. ϕ is injective.
3. ϕ is surjective.

We can do (1.) and (2.) quite easily.

1 & 2. Fix a s ∈ S and g1, g2 ∈ G such that g1 · s = g2 · s ∈ orbG(s). Then

g1 · s =g2 · s
g−1

2 (g1 · s) =s

(g−1
2 g1) · s =s

This occurs of course if and only if g−1
2 g1 ∈ stabG(s). But then ϕ(g1 · s) = ϕ(g2 · s)

and the mapping is well-defined. Since at each step we had an “if and only if”, ϕ is
injective. If there were no such g1, g2, then the result follows immediately as every
g · s is unique. Hence, the action is well-defined and trivially injective.
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3. Surjectivity is trivial for any g stabG(s) came from at least one g ∈ G as g · s 7→
g stabG(s).

It follows that ϕ is a bijection. Therefore, we must have

|G|
|orbG(s)|

= |stabG(s)|

or equivalently, |G| = |orbG(s)| |stabG(s)|. �

3.2. Orbits and Fixed Points. With sufficient review and definitions at hand, we are
prepared to address the issue of putting groups to combinatorial use. It is clear that given
a set of n elements, say Xn, that the number of possible orderings of the elements of n is
n!. However, these types of counting questions are uninteresting. Often, we are interested
in distinct arrangements. For example, a 3× 3 checkered board is full of blank tiles are we
are given the colors black, red, and blue with which to color the board. Not all possible
colors of this checkered board using 3 colors would be unique, see Figure 2. It will be
our goal to use groups to determine equivalent arrangements and count them. We follow
Grove’s “Groups and Characters” closely for its brevity in proofs1.

Figure 2. Here we see 4 possible 3× 3 checkerboard tilings using 3 colors.
Notice the top two are actually what we would consider to be equivalent as a
90◦ rotation counter-clockwise of the upper right board results in the upper
left board. We then consider these arrangements of color to be equivalent.
However, notice that the bottom two boards are not equivalent.
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Definition 3.5. (Fix) Let G be a group acting on a set S. Given a x ∈ G, the fix(x) =
{s ∈ S |x · s = s} or the set of elements s ∈ S that are fixed by x.

Definition 3.6. (Character) Let G be a group acting on a set S. Then the character θ of
the action is defined by θ(x) = |fix(x)|. Therefore, θ : G→ N is a function.

Lemma 3.1. (Characters are Class Functions) The character θ of a group action is con-
stant on the conjugacy classes of G, i.e. θ is a class function on G.

Proof: We show that fix(yxy−1) = y fix(x)y−1. Suppose that x, y ∈ G. Let r ∈
fix(x), then clearly r ∈ fix(yxy−1) and y fix(x)y−1 ⊆ fix(yxy−1). Next, assume that
r ∈ fix(yxy−1). Then yxy−1 · r = r and it follows that yry−1 = r. But this implies that
r ∈ y fix(x)y−1 and then fix(yxy−1) ⊆ y fix(x)y−1. Therefore, fix(yxy−1) = y fix(x)y−1.
Finally, it then follows

θ(yxy−1) = |fix(yxy−1)| = |y fix(x)y−1| = |fix(x) = θ(x)

�

We then get the following very useful formula:

Theorem 3.2. (Burnside’s Theorem) If G is a finite group and acts on a set S with
character θ then the number, k, of distinct G-orbits in S is

k =
1

|G|
∑
x∈G
|fix(x)| = 1

|G|
∑
x∈G

θ(x)

Proof: Let M = {(x, s) ∈ G × S |xsx−1 = s}. Given a x ∈ G, there are θ(x) such
ordered pairs in S. But given any s ∈ S, there must be |stabG(s)| ordered pairs in S.
Therefore,

|S| =
∑
s∈S
|stabG(s)| =

∑
x∈G

θ(x)

Observing the first sum on the left, we can evaluate the sum by letting O1,O2, · · · ,Ok be
the distinct G-orbits in S. Choose a si ∈ Oi for some 1 ≤ i ≤ k. Then by applying the
Orbit-Stabilizer Theorem, we have∑

s∈S
|stabG(s)| =

k∑
i=1

|Oi| |stabG(si)| = k|G|

But then we have k|G| =
∑

x∈G θ(x). �

Theorem 3.2 is also known as the Burnside’s Orbit Formula or simply the Orbit Formula.
Although, this formula was proven earlier by Frobenius and appeared even earlier in the
works of Cauchy. But what do fixes have to do with permutations? We already know that
group actions are exactly parallel to the idea that there is a homomorphism ϕ : G → SS ,
i.e. a group into a permutation of a set S. Then fix(x) is simply the set of elements that
are left unchanged by the action of x and this is all we need focus on. Thinking back to the
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cube in Example 1, the set S was the set of vertices, which told use the cube configuration.
Then G was acting on this set of vertices. We exemplify this and its counting uses in the
following two examples.

Example 3.3. Consider making a necklace out of a 6 beads using blue and red beads.
Suppose for each necklace we are going to use 3 blue and 3 red beads. Basic combinatorics
tells us there are

(
6
3

)
= 20 possible necklaces. However, as in our example in Figure 2, simply

rotating some of these necklaces on ones neck yields one of the other necklace arrangements.
Hence, a retailer would not be happy paying for a box of 20 “unique” necklaces when they
are really getting less. More combinatorics could be applied to find the number of unique
necklaces. However, we can do it here simply using Burnside’s Theorem. Arrange the 6
beads into a hexagon and consider the rigid motions of the hexagon. Let G be the group
of rigid motions, then G = {rot0◦ , rot60◦ , rot120◦ , rot180◦ , rot240◦ , rot300◦}. We simple need
to count how many of the 20 possible necklaces each of these elements fix. That is, if S is
the set of vertices of the hexagon and G is the set of rigid motions of the hexagon, then
we can let G act on S. Two designs are the same if they are in the same G-orbit.

g ∈ G Number of Designs Fixed
rot0◦ 20
rot60◦ 0
rot120◦ 2
rot180◦ 0
rot240◦ 2
rot300◦ 0

Since |G| = 6, the total number of possible unique necklaces is

1

6
(20 + 0 + 2 + 0 + 2 + 0) =

1

6
(24) = 4

We can see the possible unique necklaces in Figure 3
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Figure 3. The four possible necklaces using 3 red and 3 blue beads. All
other 16 possible necklaces are rigid motions of one of these 4 necklaces.

Example 3.4. Suppose we wish to color the edges of a regular tetrahedron using only the
colors black, red, and blue. Since there are 6 edges and 3 colors, simply counting gives a
total number of 36 = 729 possible colorings. However, obviously some of these colorings
are equivalent through a simple rigid motion. We wish to count the unique ways of coloring
the tetrahedron. As before, let S = {1, 2, 3, 4} be the set of vertices of the tetrahedron and
G be the group of rigid motions of the tetrahedron. We let G act on S and two colorings
are equivalent only if they are in the same G-orbit. One can show that the group of rigid
motions of the tetrahedron is A4 and we know that |A4| = 12. Moreover, one can show that
A4 = 〈(234), (12)(34)〉 and that there is one element of order 1 (the identity), 3 elements
of order 2 (the disjoint product of 2-cycles), and 8 elements of order 3 (the 3 cycles).

We take these types of elements one-by-one. The identity must trivially fix all possible
colorings of the tetrahedron, so |fix(e)| = 729. It is sufficient to consider one of the
generators since we have one of each of the two remaining element types. Consider (234) in
A4. Then (234) must take edge 12 to edge 13, edge 13 to edge 14, and edge 14 to edge 12.
This means these edges are the same color. Moreover, (234) takes edge 23 to edge 34, edge
24 to edge 32, and edge 34 to edge 42 so they must have the same coloring. For each of
these sets of colorings, we have 3 possible colors giving a total of 32 = 9 possible colorings
of the tetrahedron fixed by (234). Therefore, |fix( (234) )| = 9. Finally, consider (12)(34).
Edge 12 and edge 34 are fixed by (12)(34) and each can be colored in any of the three ways
giving 3(3) = 9 colorings for these edges. Moreover, edge 14 and edge 23 are exchanged
using the rotation (12)(34) and are therefore have the same color (for 3 possible colorings).
Finally, edge 13 and edge 24 are exchanged using the rotation (12)(34) so they must have
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the same color (with 3 possible choices). There are 3(3) = 9 possible way to combine the
colors of edges 14,24 and edges 13,24. Then the total number of ways to combine this with
the colorings of edges 12 and 34 is 9(9) = 81. Therefore, |fix( (12)(34) )| = 81. Now using
Burnside’s Theorem, the number of possible colorings, N , is

N =
1

|G|
∑
a∈A4

|fix(a)|

=
1

12

(
729 + 3(81) + 8(9)

)
=87

Burnside’s Theorem also tells a bit more about the permutations induced by the action
of G under special circumstances.

Corollary 3.1. If G is transitive on a nonempty set S then G has an element x having
no fixed points.

Proof: The number of distinct G-orbits is k = 1
|G|
∑

x∈G θ(x). But since G is transitive,

1 = 1
|G|
∑

x∈G θ(x). But this is equivalent to saying that the average number of fixed points

for an element in g is one. But then not all elements can have more than one fixed point.
Since the identity in G has more than one fixed point. Therefore, there must be an element
with less than one fixed point, i.e. zero fixed points. �
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4. Galois Theory

Recall from high school Algebra that the quadratic formula solves for the roots of the
polynomial. However, these roots are not always in the real numbers. But the roots are
always in the complex numbers. Recall also that a first degree polynomial always has a root
in the reals that is easily obtained. Do such formulas exist for all polynomials? This is the
general question we seek to answer. Though we may think this is an Analysis question as
we are working with continuous and differentiable functions. Indeed, introductory Calculus
almost programs you to think of max, mins, slopes, concavity, and zeros when you hear the
word polynomial. However, this is not the only approach. Instead, we look at polynomials
as rings and investigate their properties. Indeed, the reader should already have some
questions what it means that some polynomials do/do not have roots in the reals but
always have roots in the complex plane. In answering this question we look at Galois
Theory, which links together into a coherent framework the theory of fields and that of
groups into a powerful computational tool. However, we need to develop the necessary
theory before discussing a theorem such as the Fundamental Theorem of Galois Theory.
First, we shall look at the simplest rings and ways to partition them into useful ways. Our
initial approach will closely follow that of Gallian’s Contemporary Abstract Algebra for its
brevity and simplicity.2

4.1. Factor Rings and Ideals. Normal groups and their corresponding factor/quotient
groups are a powerful tool of Group Theory. Furthermore, they are used in the proof of
Cauchy’s Theorem and in Algebraic Topology in mappings of the fundamental group. It is
then desirable to construct an analogous concept for rings. The question at hand is given
an arbitrary ring R, is it possible to partition the ring in such a way so that the partitions
are rings themselves when inheriting the operations from R. The partitions we seek are
called ideals and are treated similar to quotient groups.

Definition 4.1. (Ideals)
A subring S of a ring R is called a (two-sided) ideal of R if for every r ∈ R and every
s ∈ S, sr, rs ∈ S. An ideal which is a proper subring of R is a proper ideal, otherwise it
is called an improper ideal. This ideal is called a two-sided ideal. Right and left ideals are
defined similarly.

A subring S of a ring R is an ideal if it is somehow “fixed” when acted on by elements
of R. This is not to say that operation under elements of R is equivalent to an identity
mapping but rather that R keeps S the same and merely permutes the elements of S
amongst themselves. In fact, every ring comes equipped with two ideals: {0} (the trivial
ideal) and the ring R itself, also trivial.

Example 4.1. The set nZ is an ideal of Z for any integer n.

Example 4.2. 〈x〉 is an ideal of R[x].

Example 4.3. The set of all n× n matrices with bottom row zero is a right ideal in Mn,
the set of all n× n matrices. Similarly, the set of all n× n matches with last column zero
is a left ideal of Mn.
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Example 4.4. The ring of all continuous functions from R to R, C(R), where the operation
is pointwise multiplication, then Cf(1)=0, or all continuous functions f such that f(1) = 0,
is an ideal.

However, one needs a way of telling if a subset of R is an ideal. Luckily, there is a simple
way of telling whether or not a given subring of R is an ideal.

Theorem 4.1. (Ideal Test)
A nonempty subset S of a ring R is an ideal of R if the following hold

1. s, t ∈ S then s− t ∈ S.
2. s ∈ S and r ∈ R then rs, sr ∈ S.

Condition 1 says that the subset is a subring and condition 2 is what forces it to be an
ideal. Ideals are then used to construct our factor rings. As with groups, given an ideal I
of R, the factor ring r + I is a ring under the operations inherited from R. We first show
given any ring R, we can always construct a factor ring, as every ring always has the trivial
ideals.

Theorem 4.2. (Existence of Factor Rings)
Let R be a ring and S be a subring of R. The set of cosets {r + S | r ∈ R} is a ring under
the operations

(s+ S) + (t+ S) = (s+ t) + S

(s+ S)(t+ S) = st+ S

if and only if S is an ideal of R.

The proof is simple and left to other texts or the interested reader. One only need check
that the operations only maintain closure when the quotient factor is an ideal (many of
the operations come trivially and the proof really reduces down to showing that the ring
is well defined only if we are working with an ideal).

Example 4.5. The subset {0, 3} in Z6 is an ideal. Moreover, the factor ring Z6/{0, 3} has
three elements: 0 + {0, 3}, 1 + {0, 3}, 2 + {0, 3} and Z6/{0, 3} ∼= Z3

Example 4.6. Recall from example 4.1 that nZ is an ideal of Z. The factor ring Z/nZ =
{0 + nZ, 1 + nZ, · · · , (n − 1) + nZ} is equivalent to mod n arithmetic and therefore is
isomorphic to Zn.

Looking at the examples above, we notice that many of the factor rings are integral
domains or fields. This fact is dependent on the ideal used to construct the factor ring.
But then that begs the question, “what conditions on the ideal force the factor ring to be an
integral domain or a field?”. To answer this, special types of ideals need to be considered.

Definition 4.2. (Principal Ideal)
Let R be a commutative ring with unity and let a ∈ R. The set 〈a〉 = {ra | r ∈ R} is an
ideal of R called the (left) principal ideal generated by a, the right and two-sided principal
ideal are defined analogously. That is, a principal ideal is an ideal generated by a single
element.
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Notice that a principal ideal is an ideal generated by a single element a ∈ R. Moreover,
notice in a commutative ring there is no need to specify which type of principal ideal
domain is meant as they are all equivalent. Principal ideals are essential in the study of
rings, especially polynomial rings. Eventually they are generalized to very important types
of rings called Noetherian rings (said simply, a ring where every ideal is finitely generated).

Remark 4.1. Notice all principal ideals are ideals but not all ideals are principal. Consider
the ring C[x, y], polynomials in two variables with complex coefficients. The ideal formed
by 〈x, y〉, or all polynomials in x, y with constant term 0, is not a principal ideal. Why? If
p is a generator for the ideal 〈x, y〉, then p | x and p | y. But this can’t happen unless p is
a nonzero constant, the only one of which in 〈x, y〉 is 0, a contradiction.

However, there are more types of useful ideals.

Definition 4.3. (Prime Ideal)
A prime ideal I of a commutative ring R is a proper ideal of R such that a, b ∈ R and
ab ∈ I imply that a ∈ I or b ∈ I.

Example 4.7. The ideal generated by y2 − x3 − x− 1 is a prime ideal in C[x, y] (in fact,
this is an important fact in the theory of elliptic curves). It is a good exercise to show that
this is an ideal.

Example 4.8. pZ, where p is prime, is a prime ideal of Z.

Example 4.9. The ideal 〈x3〉 is not prime in Z9[x] as it the ideal contains (x + 3)3 =
x3 + 9x2 + 27x+ 27 = x3 but does not contain x+ 3.

Notice that prime ideals are the ring analogue of the fact that if p | (ab) then p | a or
p | b, where p is prime and a, b ∈ Z.

Definition 4.4. (Maximal Ideal)
A maximal ideal of a commutative ring R is a proper ideal of R such that, whenever I is
an ideal of R and I ′ ⊆ I ⊂ R, then I ′ = I or I = R.

Example 4.10. All principal ideals 〈p〉, where p is prime, are maximal ideals in the ring
Z.

Example 4.11. The ideal 4Z is a maximal ideal in 2Z but is not a maximal ideal in the
ring Z.

The definition of a maximal ideal of course implies that the only ideal which can properly
contain a maximal idea is the ring R itself. Maximal ideals are what eventually we will
call simple rings. They have very important roles. However, one must wonder whether
every ring must have a maximal ideal. In fact, every ring does not have to have a maximal
ideal. However, using an argument with Zorn’s Lemma, we can show that every ring with
identity has a maximal ideal. Without this condition a ring need not have a maximal ideal.
Moreover, commutative rings with identity have unique maximal ideals, as is easy to show.
It is too complicated for our scope here to give an example of a ring without maximal
ideal. In any case, we are now equipped to answer the question of when a factor ring is an
integral domain or a field.
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Theorem 4.3. (R/I is an I.D. iff I Prime)
Let R be a commutative ring with unity and let I be an ideal of R. Then R/I is an integral
domain if and only if I is prime.

Proof:
⇒: Suppose that R/I is an integral domain with ab ∈ I. Then we have

(a+ I)(b+ I) = ab+ I = I

So either a+ I = I or b+ I = I, i.e. a ∈ I or b ∈ I. Therefore, I is a prime ideal.

⇐: First, note that R/I is a commutative ring with unity for any proper ideal I. Suppose
that I is prime and

(a+ I)(b+ I) = ab+ I = 0 + I = I

Then ab ∈ I and then a ∈ I or b ∈ I. So either a+ I or b+ I is the zero factor in R/I. �

This then implies that if I is a maximal ideal in a commutative ring R then R/I is also
an integral domain since I is necessarily prime. Moreover, the other direction is true also
giving us the following theorem.

Theorem 4.4. (R/I Field iff I Maximal)
Let R be a commutative ring with unity and let I be an ideal of R. Then R/I is a field if
and only if I is maximal (has no proper ideals).

Proof:
⇒: Suppose that R/I is a field and that A is an ideal of R that properly contains I. Let
a ∈ A but a /∈ I. Then a+ I is a nonzero element of R/I. There is then an element b+ I
such that

(a+ I)(b+ I) = 1 + I

Since a ∈ A, ab ∈ I. Now because

1 + I = (a+ I)(b+ I) = ab+ I

we have 1− ab ∈ I ⊂ A. Notice that (1− an) + ab = 1 ∈ A and then A = R.

⇐: Suppose that I is maximal and a ∈ R and a /∈ I. We need to show that a + I
has a multiplicative inverse (the rest of the field properties then follow trivially). Take
A = {ar+ i | r ∈ R, i ∈ I}. A is then an ideal of R that properly contains I. But since I is
maximal, we must have A = R. Therefore, 1 ∈ A. Suppose that 1 = ab+ i′, where i′ ∈ I.
Then we must have

1 + I = ab+ i′ + I = ab+ I = (a+ I)(b+ I)

�

We then get the next result trivially.
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Corollary 4.1. (Maximal then Prime)
Every maximal ideal in a commutative ring R with unity is necessarily a prime ideal.

Proof: If I is a maximal ideal in a commutative ring R with unity, then the factor ring
R/I is a field and hence an integral domain. But then I is a prime ideal by Theorem 4.3. �

Of course, the converse is not true. Consider x = {f(x) ∈ Z[x] | f(0) = 0}. This is a
prime ideal as if f(x)g(x) ∈ x, then as f, g are integers, f(0)g(0) = 0 implies that f(0) = 0
or g(0) = 0. So one of them is in x. However, this ideal is not maximal as x ⊂ 〈x, 2〉 ⊂ Z[x].

4.2. Extension Fields. A question in early Mathematics was how does one find the zeros
of a polynomial? Although geometric constructions and arguments were originally pre-
ferred, analytic solutions were known. Indeed, even the Babylonians were aware of the
quadratic formula. But not all polynomials were believed to have a zero. For example,
the polynomial x2 + 1 does not appear to have any zeros in R. Though not initially given
much consideration, the complex number i =

√
−1 is a zero for x2 + 1. However, notice

that i ∈ C but i /∈ R, making the following observation by Cauchy in 1847, surprising.

Remark 4.2. R[x]/〈x2 + 1〉 contains a zero of x2 + 1 Consider the principal ideal generated
by x2 + 1.

〈x2 + 1〉 = {f(x)(x2 + 1) | f(x) ∈ R[x]}
Then we have

R[x]/〈x2 + 1〉 ={g(x) + 〈x2 + 1〉 | g(x) ∈ R[x]}
={(ax+ b) + 〈x2 + 1〉 | a, b ∈ R}

But then using the division algorithm

g(x) + 〈x2 + 1〉 =
(
q(x)(x2 + 1) + r(x)

)
+ 〈x2 + 1〉

=r(x) + 〈x2 + 1〉

Notice this is because 〈x2+1〉 is the zero in this quotient ring. Moreover, we have R[x]/〈x2+
1〉 ∼= C (which we will show much later).

Therefore, x2 + 1 has no zeros in the field R but does indeed have zeros in the field
R[x]/〈x2 + 1〉 ∼= C. We have constructed a field with real coefficients such that x2 + 1 has a
zero without using complex numbers! In any case, this shows that a field must be specified
when a polynomial f(x) is said to have no zeros . But does every polynomial have a zero in
some field? Indeed, it is true that given any polynomial in a field F that does not contain
a zero for the polynomial, we can extend the field into a larger field E that contains F and
the zeros of f(x).

Definition 4.5. A field E is an extension field F if F ⊆ E and the operations of F are
those of E restricted to F .
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Theorem 4.5. Kronecker’s Theorem (Fundamental Theorem of Field Theory)
Let F be a field and let f(x) be a nonconstant polynomial in F [x]. Then there is an
extension field E of F in which f(x) has a zero.

Proof: Since F is a field, F [x] is a unique factorization domain. Then for any f(x) ∈ F [x],
f(x) has an irreducible factor, even if it is f(x) itself. Call this factor p(x). Since p(x)
is irreducible, 〈p(x)〉 is maximal and E = F [x]/〈p(x)〉 is a field. Let φ be a mapping
φ : F → E defined by

φ(a) = a+ 〈p(x)〉
Note that φ is injective and operation preserving. E then has a subfield that is isomorphic
to F . Now we show that p(x) has a zero in E. Write p(x) as

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

But from the following, it is then so that in E, x+ 〈p(x)〉 is a zero of p(x).

p(x+ 〈p(x)〉) =an(x+ 〈p(x)〉)n + an−1(x+ 〈p(x)〉)n−1 + · · ·+ a1(x+ 〈p(x)〉) + a0

=an(xn + 〈p(x)〉) + an−1(xn−1 + 〈p(x)〉) + · · ·+ a1(x+ 〈p(x)〉) + a0

=anx
n + an−1x

n−1 + · · ·+ a1x+ a0 + 〈p(x)〉
=p(x) + 〈p(x)〉
=〈p(x)〉

�

Notice that extension fields are not necessarily unique. For example, x2− 2 ∈ Q[x] does
not have a zero in Q but does have zeros in R,C, and Q[

√
2]. We would like to find a field

that contains the zero of a given polynomial but is not so large that it loses the structure of
the original field. Moreover, it would be helpful if we could identify this field; that is, have
the field be unique. This smallest extension field is called the splitting field. Moreover, it
has the property we want - that it is unique up to isomorphism, as we will show.

4.3. Splitting Fields.

Definition 4.6. (Splitting Field)
Let E be an extension field of F and let f(x) ∈ F [x]. We say that f(x) splits in E if f(x)
can be factored as a product of linear factors in E[x]. We call E a splitting field for f(x)
over F if f(x) splits in E but in no proper subfield of E.

Similarly to how every polynomial in some polynomial ring has an extension field in
which it has a zero, it also has a splitting field. Indeed, this must be the case because by
Kronecker’s Theorem, it must have a extension field.

Theorem 4.6. (Existence of Splitting Fields)
Let F be a field and let f(x) be a nonconstant element of F [x]. Then there exists a splitting
field E for f(x) over F .
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Proof: We will prove this by induction. If deg f(x) = 1, then F itself is a splitting
field for f(x). Now assume that the theorem is true for all fields with degree less than
n = deg f(x). By Kronecker’s Theorem, there is an extension E of F for which f(x)
has a zero. Call this zero a, where a ∈ E. We can then factor out this zero and write
f(x) = (x − a)g(x), where g(x) ∈ E[x]. But then we have deg g(x) < deg f(x), so by the
induction hypothesis, there is a smallest field K that contains E and also all the zeros of
g(x). Suppose the zeros of g(x) are z1, z2, · · · , zn ∈ K ⊂ E. Then the splitting field for
f(x) is then F (a, z1, · · · , zn). �

Example 4.12. Consider the polynomial f(x) = (x2 − 2)(x2 + 1), where f(x) ∈ Q[x].
Clearly, f(x) has no zeros in Q[x] as the zeros of f(x) are ±

√
2 and ±i. But then using

the concept from Theorem 4.6, the splitting field for f(x) over Q is

Q(
√

2, i) = Q(
√

2)(i) = {(a+ b
√

2) + (c+ d
√

2)i | a, b, c, d ∈ Q}

Notice that similarly to extension fields, splitting fields are primarily constructed using
factor rings. Though this should not be surprising as a splitting field is simply a smallest
extension field. Now we show a useful relation between a splitting field for a irreducible
polynomial and its corresponding factor ring.

Theorem 4.7. (F (a) ∼= F [x]/〈p(x)〉)
Let F be a field and let p(x) ∈ F [x] be irreducible over F . If a is a zero of p(x) in some
extension E of F , then F (a) is isomorphic to F [x]/〈p(x)〉. Furthermore, if deg p(x) = n
then every member of F (a) can be uniquely expressed in the form

cn−1a
n−1 + cn−2a

n−2 + · · ·+ c1a+ c0

where c0, c1, · · · , cn−1 ∈ F .

Proof: Consider the mapping φa : F [x] → F (a), called the evaluation homomorphism,
given by φa(f(x)) = f(a). It is clear that φa is a ring homomorphism (since (f + g)(a) =
f(a) + g(a) and (f · g)(a) = f(a)g(a)); moreover, p(x) ∈ kerφ. Because p(x) is irreducible,
〈p(x)〉 is maximal ideal. Since p(x) 6= 1, we have kerφa 6= F [x] as f(x) = 1 ∈ F [x], we
must have kerφa = 〈p(x)〉. Specifically, if f(x) = 1, then f(a) 6= 0 and f(x) /∈ ker φ, then
ker φ 6= F [x]. By the First Isomorphism Theorem for rings and the fact that F [x]/〈p(x)〉
is a field, φa(F [x]) is a subfield of F (a). Note that F (a) is a splitting field and since
F ⊂ φa(F [x]) and a ∈ φa(F [x]), we have

F [x]/〈p(x)〉 ∼= φa(F [x]) = F (a)

Finally, it can be easily shown with the division algorithm that every element in F [x]/〈p(x)〉
can be uniquely expressed in the form

cn−1x
n−1 + · · ·+ c0 + 〈p(x)〉

with c0, c1, · · · , cn−1 ∈ F . Then the natural isomorphism from F [x]/〈p(x)〉 to F (a) carries
ckx

k + 〈p(x)〉 to cka
k. �
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Corollary 4.2. (F (a) ∼= F (b))
Let F be a field and let p(x) ∈ F [x] be irreducible over F . If a is a zero of p(x) in some
extension E of F and b is zero of p(x) in some extension E′ of F , then F (a) ∼= F (b).

Proof: By Theorem 4.7, F (a) ∼= F [x]/〈p(x)〉 ∼= F (b) �

When working with mappings of vector spaces, it is most fruitful to observe how the
mapping acts on the basis for the vector space. Knowing the behavior of the basis under
the mapping completely determines the behavior of the new space formed. In looking at
mappings between fields and their extensions and between extensions, it would be useful
to have a basis for the extension field. The power of Theorem 4.7 is that we now can
write a basis for F [x]/〈p(x)〉 ∼= F (a) by considering the obvious basis for F (a) - that is,
{1, a, a2, · · · , an−1}.
Example 4.13. Consider the irreducible polynomial f(x) = x6 − 2 ∈ Q[x]. Because f(x)

has a 6
√

2 as a zero, by Theorem 4.7, the set {1, 2
1
6 , 2

2
6 , 2

3
6 , 2

4
6 , 2

5
6 } serves as a basis for

Q(
√

2) over Q. Therefore,

Q(
6
√

2) = {a0 + a12
1
6 + a22

2
6 + a32

3
6 + a42

4
6 + a52

5
6 | ai ∈ Q}

is a field isomorphic to Q[x]/]〈x6 − 2〉.
Recall that extensions fields are not unique. That is, given a polynomial in a field, we can

find many fields containing the zeros of the polynomial. In the above example, we carefully
constructed a splitting field (the smallest extension field) for x6 − 2. However, there is no
reason we cannot find several smallest extension fields. Indeed, in the previous theorems
we see that both Q[x]/〈x6 − 2〉 and Q( 6

√
2) are both splitting fields for x6 − 2 ∈ Q[x] over

Q. They may have different structures, but they are isomorphic. The previous corollary
suggests that if one used a different root one produces an isomorphic splitting field. Are
all splitting fields then unique up to isomorphism?

Lemma 4.1. Let F be a field and p(x) ∈ F [x] be irreducible over F . Let a be a zero of
p(x) in some extension of F . If φ is a field isomorphism from F to F ′ and b is a zero of
φ(p(x)) in some extension of F ′. Then there is an isomorphism from F (a) to F ′(b) that
agrees with φ on F and carries a to b.

F (a) F [x]/〈p(x)〉 F ′[x]/〈φ(p(x))〉 F ′(b)α φ β

Proof: Since p(x) is irreducible over F , φ(p(x)) is irreducible over F ′. Simple calculations
show that the mapping φ : F [x]/〈p(x)〉 → F ′[x]/〈φ(p(x))〉 given by

f(x) + 〈p(x)〉 7→ φ(f(x)) + 〈φ(p(x))〉
is a field isomorphism. By Theorem 4.7, there is an isomorphism α from F (a) to F [x]/〈p(x)〉
that is identity on F and carries a to x+ 〈p(x)〉. Similarly, there is an isomorphism β from
F ′[x]/〈φ(p(x))〉 to F ′(b) that is the identity on F ′ and carries x+ 〈φ(p(x))〉 to b. Thus, the
composition β ◦ φ ◦ α : F (a)→ F ′(b) is the desired mapping. �
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Theorem 4.8. (Extending φ : F → F ′)
Let φ be an isomorphism from a field F to a field F ′ and f(x) ∈ F [x]. If E is a splitting field
for f(x) over F and E′ is a splitting field for φ(f(x)) over F ′, then there is an isomorphism
from E to E′ that agrees with φ on F .

E E′

⊆ ⊆

F F ′

Proof: We prove this by induction on deg f(x). If deg f(x) = 1, then we trivially have
E = F and E′ = F ′ so the mapping φ is all that is required. Now suppose that this is
true for polynomials f(x) up to degree n. Let p(x) be an irreducible factor of f(x) and
let a be a zero of p(x) in E and let b be a zero of φ(p(x)) in E′. Using Lemma 4.1, there
is an isomorphism α from F (a) to F ′(b) that agrees with φ on F and carries a to b. Now
rewrite f(x) as f(x) = (x − a)g(x), where g(x) ∈ F (a)[x]. Then E is a splitting field for
g(x) over F (a) and E′ is a splitting field for α(g(x)) over F ′(b). Since deg g(x) < deg f(x),
by the induction hypothesis there is an isomorphism from E to E′ that agrees with α on
F (a) and therefore with φ on F . �

The uniqueness of splitting fields then follows trivially:

Corollary 4.3. (Splitting Fields are Unique)
Let F be a field and let f(x) ∈ F [x]. Then any two splitting fields of f(x) over F are
isomorphic.

Proof: Suppose that E and E′ are splitting fields for f(x) over F . Then using Theorem
4.8 we simply allow our φ to be the identity map from F to F . �

Taking this theorem into account, one needn’t use the language “a splitting field” for a
polynomial f(x) over F . Instead, one simply says “the splitting field” for f(x) over F , as
they must all be isomorphic by the preceding corollary. What have we accomplished thus
far? We have shown that for every nonconstant polynomial, that any polynomial must
split in either the field in which it sits or in some extension. Moreover, there is a smallest
extension in which it splits that is unique up to isomorphism. However, we have not taken
into consideration how these polynomials must split. Indeed, is this splitting unique and
do these splittings have any other unique properties? Upon further investigation we can
find special criterion and properties for zeros of multiplicity (multiple zeros). The first
question we answer is when will an extension have multiple zeros. Is it the case that if
f(x) in F has a multiple zero that f ′(x) in E will have a multiple zero? To answer these
questions, we take into account the derivative (though this is not necessary, I believe it is
a cleaner argument).
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Definition 4.7. (Derivative)
Let f(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 be a polynomial in F [x]. The derivative of

f(x), denoted f ′(x), is the polynomial f ′(x) = nanx
n + (n− 1)an−1x

n−1 + · · ·+ a1 in F [x].

Notice we have defined the derivative without using any of the notions of Calculus.
Indeed, it turns out we only need look at the particular polynomial to answer the questions
we have at hand. We do not need to use any Calculus but merely Ring Theory. But of
course we know this to be the derivative of f(x) from Calculus and thus give it the same
name. This shows the intimate relation between polynomials in Calculus and polynomials
when considered an element in a ring.

Theorem 4.9. (Criterion for Multiple Zeros)
A polynomial f(x) over a field F has a multiple zero in some extension E if and only if
f(x) and f ′(x) have a common factor of positive degree in F [x].

Proof: ⇒: If a is a multiple zero of f(x) in some extension E then there is a g(x) in
E[x] such that f(x) = (x − a)2g(x). Since f ′(x) = (x − a)2g′(x) + 2(x − a)g(x) (as one
can check algebraically), then f ′(a) = 0. Then x− a is a factor of both f(x) and f ′(x) in
the extension E of F . Now if f(x) and f ′(x) have no common divisor of positive degree in
F [x], there are polynomials h(x), k(x) ∈ F [x] such that f(x)h(x) + f ′(x)k(x) = 1. If we
think of f(x)h(x) +f ′(x)k(x) as being an element of E[x] (NOT F [x]), we see that x−a is
a factor of 1. But this cannot be so; therefore, f(x) and f ′(x) must have a common divisor
of positive degree in F [x].
⇐: Conversely, suppose that f(x) and f ′(x) have a common factor of positive de-

gree. Let a be a zero of the common factor. Then a is a zero of f(x) and f ′(x). Since
a is a zero of f(x), there is a polynomial q(x) such that f(x) = (x − a)q(x). Then
f ′(x) = (x− a)q′(x) + q(x) and 0 = f ′(a) = q(a). Therefore, x− a is a factor of q(x) and
a is a multiple zero of f(x). �

We then use this theorem to prove a stronger condition for the existence of multiple
zeros of irreducible polynomials in a field.

Theorem 4.10. (Zeros of Irreducibles)
Let f(x) be an irreducible polynomial over a field F . If F has characteristic 0, then f(x)
has no multiple zeros. If F has prime characteristic, then f(x) has a multiple zero if it is
of the form f(x) = g(xp) for some g(x) in F [x].

Proof: Let f(x) be an irreducible polynomial over F . If f(x) has a multiple zero, then
by Theorem 4.9, f(x) and f ′(x) have a common divisor of positive degree in F [x]. Since
up to associates the only divisor of positive degree of f(x) in F [x] is itself, f(x) | f ′(x).
But a polynomial over a field cannot divide a polynomial of smaller degree, then it must
be the case that f ′(x) = 0. Writing out f ′(x), we have

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ a1
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Then f ′(x) = 0 only when ai = 0 for i = 1, 2, 3, · · · , n. Then f ′(x) = a0. But when
char F = 0, but f ′(x) = a0 is not an irreducible polynomial. This contradicts the hypoth-
esis that f(x) is irreducible over F . Therefore, f(x) has no multiple zeros.

If the character of F is prime, then we have ai = 0 when p does not divide i. Thus, the
only powers of x that appear in the sum anx

n + an−1x
n−1 + · · ·+ a1x+ a0 are those of the

form xpj = (xp)j . It follows that f(x) = g(xp) for some g(x) ∈ F [x]. �

This theorem tells that an irreducible polynomial in any field with characteristic 0 cannot
have multiple zeros. It would be useful if we could extend this to a larger class of fields
than just those with char = 0.

Definition 4.8. (Perfect Fields)
A field F is called perfect if F has characteristic 0 or if F has characteristic p and F p =
{ap | a ∈ F} = F .

The most famous of these families being the finite fields, which turn out to all be perfect;
this will come into play later. For now, we now have yet a stronger criterion for multiple
zeros.

Theorem 4.11. (Criterion for Multiple Zeros)
If f(x) is an irreducible polynomial over a perfect field F , then f(x) has no multiple zeros.

Proof: When F has characteristic 0, we have already shown that any irreducible poly-
nomial in such a field has no multiple zeros. Now assume that f(x) ∈ F [x] is irreducible
over a perfect field F of characteristic p and that f(x) has multiple zeros. By Theorem
4.10, f(x) = g(xp) for some g(x) ∈ F [x]. Let g(x) = anx

n + an−1x
n−1 + · · · + a1x + a0.

Since F p = F , each ai in F can be written in the form bpi in F for some bi in F . However,

f(x) = g(xp) =bpnx
pm + bpn−1x

p(n−1) + · · ·+ bp1x
p + bp0

=(bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0)p

=(h(x))p

where h(x) ∈ F [x] and the middle equality follows from the fact that in a field of prime
characteristic p (x1 + · · ·+ xn)p = xp1 + · · ·+ xpn. But then f(x) is reducible. �

Furthermore, the zeros of an irreducible polynomial have a surprising property in their
extension field.

Theorem 4.12. (Zeros of Irreducibles over Splitting Fields)
Let f(x) be an irreducible polynomial over a field F and let E be the splitting field of f(x)
over F . Then all the zeros of f(x) in E have the same multiplicity.

Proof: Suppose that a, b are distinct zeros of f(x) in E. If a has multiplicity m, then in
E[x] we may write f(x) = (x − a)mg(x), with g(x) ∈ E[x]. By Lemma 4.1 and Theorem
4.8, there is a field isomorphism φ from E to itself that carries a to b and acts as the
identity on F . Therefore,

f(x) = φ(f(x)) = (x− b)mφ(g(x))
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and the multiplicity of b is greater than or equal to the multiplicity of a. If we interchange
the roles of a and b, the multiplicity of a must be greater than or equal to the multiplicity
of b. Therefore, a and b must have the same multiplicity. �

But then it immediately follows how an irreducible polynomial with multiple zeros must
factor in its extension field.

Theorem 4.13. (Factorization of Irreducibles over Splitting Fields)
Let f(x) be an irreducible polynomial over a field F and let E be a splitting field of f(x).
Then f(x) has the form

a(x− a1)n(x− a2)n · · · (x− at)n

where a1, a2, · · · , at are distinct elements of E and a ∈ F , with ninZ+.

4.4. Algebraic Extensions. We have already shown our first important result: every
polynomial has a zero in some extension and hence is always factorable in some extension.
Furthermore, we described this factorization in the extension field, including for polynomi-
als with zeros of multiplicity, and given criterion for multiple zeros. However, our focus has
been on the zeros and the polynomials in the field and its extension. We have not looked
at other elements in the field to consider what implications this might have for our field if
these element have certain properties.

Definition 4.9. (Extensions)
Let E be an extension field of a field F and let a ∈ F . We call a algebraic over F if a
is the zero of some nonzero polynomial in F [x]. If a is not algebraic over F , it is called
transcendental over F . An extension E of F is called an algebraic extension of F if every
element of E is algebraic over F . If E is not an algebraic extension of F , it is called
a transcendental extension of F . An extension of F of the form F (a) is called a simple
extension of F .

What we have done is taken each element in a field and put them into one of two possible
classes: algebraic elements or transcendental elements. But why make the distinction
between elements in a field?

Theorem 4.14. (Extension Characterization)
Let E be an extension field of the field F and let a ∈ E. If a is transcendental over F ,
then F (a) ≈ F (x). If a is algebraic over F , then F (a) ≈ F [x]/〈p(x)〉, where p(x) is a
polynomial in F [x] of minimum degree such that p(a) = 0. Moreover, p(x) is irreducible
over F .

Proof: Consider the homomorphism φα : F [x] → F (a) given by f(x) → f(a). If a
is transcendental over F , then kerφ = {0} because a is the zero of no polynomial and
f(a) = 0 if and only if f(x) = 0. So we may extend φ to an isomorphism φ : F (x)→ F (a)

by defining φ
(f(x)
g(x)

)
= f(x)

g(x) .

If a is algebraic over F , then kerφ 6= 0. But recalling properties of ideals, there is a
polynomial p(x) in F [x] such that kerφ = 〈p(x)〉 and p(x) has minimum degree among all
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nonzero elements of kerφ (as F [x] is a principal ideal domain). Thus, p(a) = 0 and because
p(x) is a polynomial of minimum degree with this property, it is irreducible over F . �

Moreover, the previous theorem can easily adapted to show that the monic irreducible
polynomial is unique and that p(x) | f(x).

Theorem 4.15. (Uniqueness)
If a is algebraic over a field F , then there is a unique monic irreducible polynomial p(x) in
F [x] such that p(a) = 0.

Theorem 4.16. (Divisibility)
Let a algebraic over F and let p(x) be the minimal polynomial for a over F . If f(x) ∈ F [x]
and f(a) = 0, then p(x) divides f(x) in F [x].

The previous theorems hint that at this point a change of viewpoint would be fruitful.
We now will view the field F and its extension E in a different way. We can think of E as
a vector space over F , that is the elements of E are the basis vectors where the elements of
F are scalars. Then we can discuss extensions using the language of basis and dimension.

Definition 4.10. (Extension Degree)
Let E be an extension field of a field F . We say that E has degree n over F and write
[E : F ] = n if E has dimension n as a vector space over F . If [E : F ] is finite, E is called
a finite extension of F ; otherwise, we say that E is an infinite extension of F .

Example 4.14. A simple example familiar to the reader is the complex numbers, C. The
complex numbers C have dimension 2 over the reals with a possible basis of {1, i}.

Example 4.15. If a is algebraic over F and its minimal polynomial over F has degree n, so
by Theorem 4.7, {1, a, a2, · · · , an−1} is a basis for F (a) over F . Therefore, [F (a) : F ] = n.
We say that a has degree n over F .

All finite extensions have sufficient criterion to be algebraic extensions.

Theorem 4.17. (Finite then Algebraic)
If E is a finite extension of F , then E is an algebraic extension of F .

Proof: Suppose that [E : F ] = n and a ∈ E. Then the set {1, a, a2, · · · , an} is linearly
dependent over F . There are elements c0, c1, · · · , cn in F not all zero so that

cna
n + cn−1a

n−1 + · · ·+ c1a+ c0 = 0

Clearly, a is a zero of the nonzero polynomial

f(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0

�

However, it is important to note that the converse of this theorem is not true. If the
converse were to be true then the degrees of every algebraic extension E over G would
be bounded. However, Q(

√
2, 3
√

2, 4
√

2, · · · ) is an algebraic extension of Q that contains
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elements of every degree over Q. Now we show that the analogue of Cauchy’s Theorem
holds for fields as well. We will use this theorem often in later results.

Theorem 4.18. (Algebraic Orders)
Let K be a finite extension field of the field E and let E be a finite extension field of the
field F . Then K is a finite extension field of F and [K : F ] = [K : E][E : F ].

Proof: Suppose that X = {x1, x2, · · · , xn} be a basis for K over E and let Y =
{y1, y2, · · · , ym} be a basis for E over F . It suffices to show that

Y X = {yjxi | 1 ≤ j ≤ m, 1 ≤ i ≤ n}

is a basis for K over F . Let a ∈ K, then there are elements b1, b2, · · · , bn ∈ E such that

a = b1x1 + b2x2 + · · ·+ bnxn

For each i = 1, 2, · · · , n, there are elements ci1, ci2, · · · , cim ∈ F such that

bi = ci1y1 + ci2y2 + · · ·+ cimym

Therefore,

a =

n∑
i=1

bixi =

n∑
i=1

( m∑
j=1

cijyj

)
xi =

∑
i,j

cij(yjxi)

so Y X spans K over F . Suppose that there are elements cij in F such that

0 =
∑
ij

cij(yjxi) =
∑
i

(∑
j

(
cijyj

))
xi

Since each
∑

j cijyj ∈ E and X is a basis for K over E, then∑
j

cijyj = 0

for each i. But each cij ∈ F and Y is a basis for E over F , so each cij = 0. Therefore, Y X
is a linearly independent set over F . �

But given that the extension E of a field F is also a field, [E : F ] = n if and only if E
is isomorphic to Fn as vector spaces.

Example 4.16. A basis for Q(
√

3,
√

5) has a basis {1,
√

3} over Q(
√

5) and {1,
√

5} is a
basis for Q(

√
5) for Q(

√
5) over Q. Then {1,

√
3,
√

5,
√

3
√

5} is a basis for Q(
√

3,
√

5) over
Q.

Theorem 4.19. (Primitive Element Theorem)
If F is a field of characteristic 0 and a and b are algebraic over F , then there is an element
c in F (a, b) such that F (a, b) = F (c).
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Proof: Let p(x) and q(x) be minimal polynomials over F for a and b, respectively. In
some extension K of F , let a1, a2, · · · , am and b1, b2, · · · , bn be the distinct zeros of p(x)
and q(x), respectively, where a = a1 and b = b1. Choose an element d ∈ F such that

d 6= ai − a
b− bj

for all i ≥ 1 and j > 1, In particular, ai 6= a+ d(b− bj) for j > 1.
Now we need show that c = a + db is such that F (a, b) = F (c). It is obvious that

F (c) ⊆ F (a, b). To show that F (a, b) ⊆ F (c), we show that b ∈ F (c), then b, c, d ∈ F (c)
and a = c − b d. Consider the polynomials q(x) and r(x) = p(c − d x) over F (c). Be-
cause q(b) = 0 and r(b) = p(c − d b) = p(a) = 0, both q(x) and r(x) are divisible
by the minimal polynomial s(x) for b over F (c). Because s(x) ∈ F (c)[x]. We prove
s(x) = x − b, that is b ∈ F (c). Since s(x) is a common divisor of q(x) and r(x), the
only possible zeros of s(x) in K are the zeros of q(x) that are also the zeros of r(x). But
r(bj) = p(c − d bj) = p(a + d b − d bj) = p(a + d(b − bj)) and d was chosen such that
a + d(b − bj) 6= ai for j > 1. If follows that b is the only zero of s(x) in K[x]. Therefore,
s(x) = (x− b)u. Since s(x) is irreducible and F has characteristic 0. But then by Theorem
4.12, u = 1. �

It should come as no surprise that extending an algebraic extension yields an algebraic
extension.

Theorem 4.20. (Algebraic is Algebraic)
If K is an algebraic extension of E and E is an algebraic extension of F , then K is an
algebraic extension of F .

Proof: Let a ∈ K. We need to show that a belongs to some finite extension of F , by
Theorem 4.17. Since a is algebraic over E, we know that a is the zero of some irreducible
polynomial in E[x], say p(x) = bnx

n + · · ·+ b0. We construct a tower of field extensions of
F as follows,

F0 =F (b0)

F1 =F0(b1), · · · , Fn = Fn−1(bn)

In particular, Fn = F (b0, b1, · · · , bn). So p(x) ∈ Fn[x]. Thus, [Fn(a) : Fn] = n. Because
each bi is algebraic over F ; each [Fi+1 : Fi] is finite. Therefore,

[Fn(a) : F ] = [Fn(a) : Fn][Fn : Fn−1] · · · [F1 : F0][F0 : F ]

is finite. �

It would be beneficial to us further down the road if we could group all algebraic elements
together in some way. Yes, we have already grouped elements in a field into algebraic and
transcendental classes. However, do they form a concrete structure? In fact, they do. All
algebraic elements in an extension E form a subfield of E with which we can work.
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Corollary 4.4. (Algebraic Subfields)
Let E be an extension field of the field F . Then the set of all elements of E that are
algebraic over F is a subfield of E.

Proof: Suppose that a, b ∈ E are algebraic over F and b 6= 0. We need to show that
we have a subfield, we need show that a + b, a − b, ab, and a/b are all algebraic over F .
However, it suffices to show that [F (a, b) : F ] is finite (since each of these four elements
belong to F (a, b)). However, note that

[F (a, b) : F ] = [F (a, b) : F (b)][F (b) : F ]

Because a is algebraic over F , it is algebraic over F (b). Therefore, both [F (a, b) : F (b)]
and [F (b) : F ] are finite. �

If E is an extension of F then the subfield over all elements that are algebraic over
F is called the algebraic closure of F in E. We considered extension fields and found
the smallest possible extension field possible, i.e. the splitting field. Similarly, when we
worked with ideals, we know the smallest possible ideal is the trivial ideal and we also
discussed the largest proper ideal, the maximal ideal. It is clear that we can find a smallest
algebraic extension. However, is there a largest-smallest algebraic extension? That is, an
algebraic extension E of F that has no proper algebraic extension is an extension which is
its own closure (similar to the idea of a closed set in topology). For such a field to exist,
it is necessary that every polynomial in E[x] splits in E. Otherwise, by the Fundamental
Theorem of Field Theory, E would have a proper algebraic extension. If every member of
E[x] happen to split in E and K were an algebraic extension of E, then every member of
K is a zero of some element in E[x]. But all the elements in E[x] have their zeros in E. A
field for which there is no algebraic extension is called algebraically closed.

It was proved in 1910, by Ernst Steinitz, that every field F has, up to isomorphism,
a unique algebraic extension that is algebraically closed (to show that every field has an
algebraic extension that is closed one needs to use Zorn’s lemma which is equivalent to
the Axiom of Choice!). In fact, C is algebraically closed. This was shown by Gauss and
is known as the Fundamental Theorem of Algebra (that is every polynomial in R[x] has
a root in C[x], see the Appendix for two different proofs of this). If one is familiar with
the quaternions, H, one may misbelieve that H could be an algebraic extension of C as it
properly contains C. However, H is not a field but rather a skew-field. If any polynomial
h(x) in H[x] has a zero, then h(x) must have infinitely many. For example, if i, j, k are
zeros of a polynomial h(x) ∈ H[x], then every scalar multiple of i, j, k is a zero for h(x).
In fact, H is the smallest and up to isomorphism unique object which properly contains C
and is not itself a field but a skew field.

4.5. Algebraic and Simple Extensions. We will now discuss further properties of al-
gebraic fields and simple extensions. For the remainder of the discussion of groups and
fields, we will turn to Fraleigh’s text An Introduction to Abstract Algebra for it’s precise
language and its readability.3 First, we will introduce some notation and remind the reader
of previous results.
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Theorem 4.21. (Unique Irreducible Polynomial)
Let E be an extension field of F and let α ∈ F , where α 6= 0 and α is algebraic over F .
Then there is an irreducible polynomial p(x) ∈ F [x] such that p(α) = 0. This irreducible
polynomial p(x) is uniquely determined up to a constant factor in F and is a polynomial
of minimal degree greater than 1 in F [x] having α as a zero. If f(α) = 0 for f(x) ∈ F [x],
with f(x) 6= 0, then p(x) | f(x).

Proof: Let φα be the evaluation homomorphism φα : F [x]→ E defined by

φα(anx
n + an−1x

n−1 + · · ·+ a1x+ a0) = anα
n + an−1α

n−1 + · · ·+ a1α+ a0

The kerφα is an ideal and because F is a field, F [x] is a principal ideal domain so kerφα is
a principal ideal generated by some element p(x) ∈ F [x]. Clearly, 〈p(x)〉 consists precisely
of those elements of F [x] having α as a zero. Thus, if p(x) is a polynomial of minimal
degree greater than 1 having α as a zero and any other such polynomial of the same degree
as p(x) must be of the form a · p(x) for some a ∈ F .

It only remains to show that p(x) is irreducible. If p(x) = r(x)s(x) were a possible
factorization of p(x) into polynomials of lower degree, then p(α) = 0 would imply that
r(α)s(α) = 0, since E is a field, either r(α) = 0 or s(α) = 0. This contradicts the fact that
p(x) is of minimal degree greater than 1 such that p(α) = 0. Hence, p(x) is irreducible. �

So after multiplying by a constant in F , we can force the coefficient of the higher power
of x in p(x) to be 1. This is called a monic polynomial (though for a monic polynomial we
do not require anything about reducibility).

Definition 4.11. (Irreducible Polynomials Continued)
Let E be an extension field of a field F and let α ∈ F be algebraic over F . The unique
monic polynomial p(x) of the previous theorem is the irreducible polynomial for α over
F and is denoted irr(α, F ). The degree of irr(α, F ) is the degree of α over F , denoted
deg(α, F ).

Example 4.17. Clearly, irr(
√

2,Q) = x2 − 2. However, α =
√

1 +
√

3 ∈ R is a zero for
x4 − 2x2 − 2 ∈ Q[x]. By the Eisenstein criterion, x4 − 2x2 − 2 is irreducible over Q. So

irr(
√

1 +
√

3,Q) = x4− 2x2− 2. Therefore,
√

1 +
√

3 is algebraic element of degree 4 over
Q.

Remark 4.3. We never say that α is algebraic but rather that α is algebraic over F .
Similarly, we never say the degree of α but rather the degree of α over F . For example,√

2 ∈ R is algebraic of degree 1 over R but is algebraic of degree 2 in Q.

Then consider a special type of extension field E.

Definition 4.12. (Simple Extension)
An extension field E of a field F is a simple extension of F if E = F (α) for some α ∈ E.

Specifically, we want to consider the case where α is algebraic over F .
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Theorem 4.22. (Algebraic Forms)
Let E be a simple extension F (α) of a field F and let α be algebraic over F . Let the degree
of irr(α, F ) be n ≥ 1. Then every element β of E = F (α) can be uniquely expressed in the
form

β = b0 + b1α+ · · ·+ bn−1α
n−1

where the bi are in F .

Proof: This follows from Theorem 4.7. �

Example 4.18. The polynomial p(x) = x2 + x + 1 ∈ Z2[x] is irreducible over Z2 since
neither 0 or 1 are zeros of p(x). We know by the Fundamental Theorem for Fields that
there is an extension field E of Z2[x] containing a zero α of x2 +x+ 1. Z2(α) has elements
0 + 0α = 0, 1 + 0α = 1, 0 + 1α = α, and 1 + 1α = 1 + α. This is a new finite field of four
elements.

Example 4.19. Recall earlier that we had stated R[x]/〈x2 + 1〉 is isomorphic to C. We
are finally prepared to show this. Let α = x + 〈x2 + 1〉. Then R(α) = R[x]/〈x2 + 1〉 and
consists of all elements of the form a+ bα for a, b ∈ R. But since α2 + 1 = 0, we can clearly
see that α plays the role of i ∈ C and that a+ bα plays the role of x+ yi ∈ C. Therefore,
R(α) ∼= C. So we have found an elegant algebraic way to construct C from R.

We remind the reader of the following results:

Theorem 4.23. Let E be an extension field of F . Then

FE = {α ∈ E |α is algebraic over F}

is a subfield of E, the algebraic closure of F in E.

which have already shown this in Theorem 4.4. However, we did not state the following
corollary:

Corollary 4.5. The set of all algebraic numbers forms a field.

Moreover, we have previously discussed what it means for a field to be algebraically
closed, that every polynomial in F [x] has a zero in F . But then this means we can express
every polynomial in F [x] as a product of linear factors! Moreover, this gives us a necessary
criterion for a field to be algebraically closed.

Theorem 4.24. (Polynomials are Linear Products) A field F is algebraically closed if and
only if every nonconstant polynomial in F [x] factors in F [x] into linear factors.

Proof: ⇒: Let F be algebraically closed and let f(x) be a nonconstant polynomial in
F [x]. Then f(x) has a zero a ∈ F . But then f(x) can be written as f(x) = (x − a)g(x).
Then if g(x) is nonconstant, it has a zero b ∈ F and f(x) = (x− a)(x− b)h(x). Since our
polynomial is of finite degree, it can only have finitely many zeros. Hence, this process is
finite and gives a factorization of f(x) ∈ F [x] into linear factors.
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⇐: Suppose that every nonconstant polynomial of F [x] has a factorization into linear
factors. If ax− b,a, b ∈ Z, a 6= 0, is a linear factor of f(x), then b/a ∈ F is a zero of f(x).
Thus, F is algebraically closed. �

Corollary 4.6. An algebraically closed field F has no proper algebraic extensions.

Proof: Let E be an algebraic extension of F , so F is a subfield of E. Then if α ∈ E,
irr(α, F ) = x−α. Then by Theorem 4.24, since F is algebraically closed. Therefore, α ∈ F
and we have F = E. �

4.6. Field Automorphisms. The reader may have already forgotten our ultimate goal,
to investigate the solvability of polynomials. Of course this means we focus on the zeros
of polynomials and ultimately their irreducibility. Thus far, we have shown that every
irreducible has a field in which it has a zero. We then looked at the two classes of numbers
in such fields: algebraic and transcendental. However, we shift our focus now to looking at
the isomorphisms of an extension E to itself, that is the automorphisms of E. Our goal for
the moment is to show that for an extension field E of a field F with α, β ∈ E, that α, β ∈ E
have the same algebraic properties if and only if irr(α, F ) = irr(β, F ). To do this, we show
the existence of an isomorphism ψα,β of F (α) onto F (β) which maps each elements which
acts as the identity on F and maps α onto β, in the case where irr(α, F ) = irr(β, F ). This
will become our main tool in studying different algebraic extensions. The function ψα,β
can be thought of as the “basic isomorphism of algebraic field theory.” First, we introduce
some new concepts.

Definition 4.13. (Conjugate)
Let E be an algebraic extension of a field F . Two elements α, β ∈ E are conjugate over
F if irr(α, F ) = irr(β, F ). That is, if α and β are zeros of the same irreducible polynomial
over F .

This is precisely the idea of complex conjugation.

Example 4.20. Consider the polynomial x2 + 1 ∈ R[x] with extension field C. Then the
elements i and −i are conjugates in C since they are both roots of the polynomial x2 + 1
in R[x].

Theorem 4.25. (Basic Isomorphisms of Algebraic Field Theory)
Let F be a field and let α and β be algebraic over F with deg(α, F ) = n. The map
ψα,β : F (α)→ F (β), defined by

ψα,β(c0 + c1α+ · · ·+ cn−1α
n−1) = c0 + c1β + · · ·+ cn−1β

n−1

for ci ∈ F is an isomorphism of F (α) onto F (β) if and only if α and β are conjugate over
F .

Proof: ⇒: Suppose that ψα,β : F (α)→ F (β) is an isomorphism as stated in the theorem.
Let irr(α, F ) = a0 + a1x+ · · ·+ anx

n. Then a0 + a1α+ · · ·+ anα
n = 0, so

0 = ψα,β(a0 + a1α+ · · ·+ anα
n) = a0 + a1β + · · ·+ anβ

n
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But this implies that irr(β, F ) | irr(α, F ). A similar argument shows that (ψα,β)−1 = ψβ,α
shows that irr(α, F ) mod irr(β, F ). Therefore, since both of the polynomials are monic,
irr(α, F ) = irr(β, F ), and so α and β are conjugate over F .
⇐: Suppose that irr(α, F ) = irr(β, F ) = p(x). Then the evaluation homomorphisms

φα : F [x] → F (α) and φβ : F [x] → F (α) both have the same kernel 〈p(x)〉. There is a
natural isomorphism ψα, corresponding to φα : F [x] → F (α), mapping F [x]/〈p(x)〉 onto
φα(F [x]) = F (α). Similarly, φβ gives rise to an isomorphism ψβ mapping F [x]/〈p(x)〉 onto
F (β). Let ψα,β = ψβ((ψα)−1). As the composition of two isomorphisms ψα,β is also an
isomorphism and maps F (α) onto F (β). Also, for (c0 + c1α+ · · ·+ cn−1α

n−1) ∈ F (α), we
have

ψα,β(c0 + c1α+ · · ·+ cn−1α
n−1) =ψ−1

α (c0 + c1α+ · · ·+ cn−1α
n−1)

=ψβ

(
(c0 + c1α+ · · ·+ cn−1α

n−1) + 〈p(x)〉
)

=c0 + c1β + · · ·+ cn−1β
n−1

Thus, the mapping ψα,β is the map in the theorem statement. �

Corollary 4.7. (Conjugates and the Unique Isomorphism)
Let α be algebraic over a field F . Every isomorphism ψ mapping F (α) into F such that
aψ = a for a ∈ F maps α onto a conjugate β of α over F . Conversely, for each conjugate
β of α over F , there exists exactly one isomorphism ψα,β of F (α) into F mapping α onto
β and mapping each a ∈ F onto itself.

Proof: ⇒: Let ψ be an isomorphism mapping F (α) into F such that aψ = a for a ∈ F .
Let irr(α, F ) = a0 + a1x+ · · ·+ anx

n = 0. Then

a0 + a1α+ · · ·+ anα
n = 0

Therefore,

0 = ψ(a0 + a1α+ · · ·+ anα
n) = a0 + a1ψ(α) + · · ·+ anψ(α)n

and β = αψ is a conjugate of α.
⇐: Suppose for each conjugate β of α over F , the isomorphism ψα,β is an isomorphism

with the desired properties. That ψα,β is the only such isomorphism follows from the fact
that an isomorphism of F (α) is completely determined by its values on the elements of F
and its value on α. �

The next result one should be familiar with from high school algebra, that is complex
roots occur in conjugate pairs for f(x) ∈ R[x].

Corollary 4.8. (Conjugate Pairs)
Let f(x) ∈ R[x]. If f(a+ bi) = 0 for a+ bi ∈ C, where a, b ∈ R, then f(a− bi) = 0 also.

Proof: We have seen that C = R(i) and that C = R(−i). Now

irr(i,R) = irr(−i,R) = x2 + 1
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so that i and −i are conjugate over R. Then the map ψi,−i : C→ C given by ψi,−i(a+bi) =
a− bi is an isomorphism. Thus, if for ai ∈ R

f(a+ bi) = a0 + a1(a+ bi) + · · ·+ an(a+ bi)n = 0

then

0 = ψi,−i
(
ψi,−i(f(a+ bi))

)
=a0 + a1(a− bi) + · · ·+ an(a− bi)n

=f(a− bi)

that is, f(a− bi) = 0 also. �

Notice from Corollary 4.8, an isomorphism from a field to itself need not be trivial. The
set of all mappings of a field to itself forms a group called the automorphism group.

Definition 4.14. (Field Automorphisms)
An isomorphism of a field onto itself is an automorphism of the field.

Next, we consider this automorphism as a simple permutation of the field.

Definition 4.15. (Automorphism as Permutations)
If σ is an isomorphism of a field E into some field, then an element a of E is left fixed by σ
if aσ = a. A collection S of isomorphisms of E leaves a subfield F of E fixed if each a ∈ F
is left fixed by every σ ∈ S. If {σ} leaves F fixed, then σ leaves F fixed.

Notice that we have started to make a shift from a focus of fields to a discussion about
groups. We shall show that the set of field automorphisms form a group.

Theorem 4.26. (Automorphism form a Group)
The set of all automorphisms of a field E is a group under function composition.

Proof: Multiplication of automorphisms of E is defined by function composition and is
thus associative (as it is permutation multiplication). The identity permutation i : E → E
given by i(α) = α for all α ∈ E is obviously an automorphism of E. If σ is an au-
tomorphism, then the permutation σ−1 is also obviously an automorphism. Thus, all
automorphisms of E form a subgroup of SE , the group of all permutations of E. �

The idea of Galois theory is to relate the properties of groups and fields. The following
theorems describes essentially all properties of fixed elements of E.

Theorem 4.27. Let {σi | i ∈ I} be a collection of automorphisms of a field E. Then the
set E{σi} of all a ∈ E left fixed by every σ for i ∈ I forms a subfield of E.

Proof: If σ(a) = a and σi(b) = b for all i ∈ I, then

σi(a± bi) = σi(a) + σi(b) = a± b

and

σi(ab) = σi(a)σi(b) = ab
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for all i ∈ I. Also, if b 6= 0, then

σi(a/b) = σi(a)/σi(b) = a/b

for all i ∈ I. Since the σi are automorphisms, we have

σi(0) = 0 σi(1) = 1

for all i ∈ I. Hence, 0, 1 ∈ E{σi}. Thus, E{σi} is a subfield of E. �

Definition 4.16. (Fixed Field)
The field E{σi} of Theorem 4.27 is the fixed field of {σ | i ∈ I}. For a single automorphism
σ, we shall refer to E{σ} as the fixed field of σ.

Example 4.21. Consider the automorphism ψ√2,−
√

2 of Q(
√

2) given by

ψ√2,−
√

2(a+ b
√

2) = a− b
√

2

for a, b ∈ Q. However, a − b
√

2 = a + b
√

2 if and only if b = 0. Thus, the fixed field of
ψ√2,−

√
2 is Q.

Theorem 4.28. (Automorphisms Fixing F )
Let E be a field and let F be a subfield of E. Then the set of all G(E/F ) of all auto-
morphisms of E leaving F fixed forms a subgroup of the group of all automorphisms of E.
Furthermore, F ≤ EG(E/F )

Proof: For σ, τ ∈ G(E/F ) and a ∈ F , we have

(τσ)(a) = τ(σ(a)) = τ(a) = a

so στ ∈ G(E/F ). Clearly, the identity automorphism i is in G(E/F ). Also, if σ(a) = a for
a ∈ F , then a = σ−1(a), so σ ∈ G(E/F ) implies that σ−1 ∈ G(E/F ). Thus, G(E/F ) is a
subgroup of the group of all automorphisms of E. �

Definition 4.17. (Fixed Automorphisms)
The group G(E/F ) of Theorem 4.28 is the group of automorphisms of E leaving F fixed,
or the group of E over F .

It is important to note that the notation E/F does not refer to a quotient space. Rather,
it reminds one that E is the extension of a field F .

Example 4.22. Consider the field Q(
√

2,
√

3). Viewing Q(
√

2,
√

3) as (Q(
√

3))(
√

2), the
basic isomorphism ψ√2,−

√
2 defined by

ψ√2,−
√

2(a+ b
√

2) = a− b
√

2

for a, b ∈ Q(
√

3) is an automorphism of Q(
√

2,
√

3), having Q(
√

3) as a fixed field. Sim-
ilarly, we can repeat the same process with ψ√3,−

√
3 as an automorphism of Q(

√
2,
√

3)
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fixing Q(
√

3). Since the product of automorphisms is again an automorphism, consider
ψ√3,−

√
3(ψ√2,−

√
2). Then let

i = identity automorphism

σ1 =ψ√2,−
√

2

σ2 =ψ√3,−
√

3

σ3 =ψ√2,−
√

2 ψ
√

3,−
√

3

The group of all automorphisms of Q(
√

2,
√

3) must have a fixed field, which must contain
Q since every automorphism of a field leaves 1 fixed and hence the prime subfield fixed. A
basis for Q(

√
2,
√

3) over Q is {1,
√

2,
√

3,
√

2
√

3}. It is easy to see that Q is exactly the fixed
field of {i, σ1, σ2, σ3}. Then the group G = {i, σ1, σ2, σ3} is a group under automorphism
under function composition. Moreover, G is isomorphic to the Klein 4-group.

Suppose that F is a finite field. It turns out, as we will later show, that the automorphism
group of F is cyclic. Though typically one doesn’t care about the choice of generator for
a cyclic group (supposing there is more than one). However, for the automorphism group
of a finite field there is a natural choice. This natural choice is the canonical (natural)
generator, called the Frobenius automorphism (also known as the Frobenius substitution).

Theorem 4.29. Let F be a finite field of characteristic p. Then the map σp : F → F
defined by aσp = ap for a ∈ F is an automorphism called the Frobenius automorphism.
Morevoer, F{σp}

∼= Zp.

Proof: Let a, b ∈ F . Applying the binomial theorem to (a+ b)p, we have

(a+ b)p =ap + (p · 1)ap−1b+

(
p(p− 1)

2
· 1)

)
ap−2b2 + · · ·+ (p · 1)abp−1 + bp

=ap + 0ap−1b+ 0ap−2b2 + · · ·+ 0abp−1 + bp

=ap + bp

Thus, we have

σp(a+ b) = (a+ b)p = ap + bp = σp(a) + σp(b)

and of course

σp(ab) = (ab)p = apbp = σp(a)σp(b)

so σp is a homomorphism. If σp(a) = 0, then ap = 0 and a = 0. So the kernel of σp is {0}
and σp is an isomorphic mapping. Finally, since F is finite, σp is onto by basic counting
principles. Thus, σp is an automorphism of F .

The prime field Zp must be contained, up to isomorphism, in F since F is of characteristic
p. For c ∈ Zp, we have σp(c) = cp = c, by Fermat’s Theorem. Thus the polynomial xp − x
has p zeros in F , namely the elements of Zp. But a polynomial of degree n over a field can
have at most n zeros in the field. Since the elements fixed under σp are precisely the zeros
in F of xp − x, we see that

Zp = F{σp}
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�

This is ironic in the sense that high school students tend to want to “distribute” powers,
meaning they believe

(a+ b)n = an + bn

and are told that this is not true. However, we see that in a field of prime characteristic,
this is indeed the case!

4.7. Splitting Fields, Separable Extensions, and Totally Inseparable Extensions.
We will now revisit splitting fields but revisit them using our new terminology and in a
different light. The splitting field of a field F turns out to be a field such that every
isomorphic mapping of E to F leaving F fixed is an automorphism of E, the extension
field. So for every α ∈ E, all conjugates of α over F must be in E as well. We can then
reformulate the definition of a splitting field as follows.

Definition 4.18. (Splitting Field) Let F be a field with algebraic closure F . Let {fi(x) | i ∈
I} be a collection of polynomials in F [x]. A field E ≤ F is the splitting field of {fi(x) | i ∈ I}
over F if E is the smallest subfield of F containing F and all the zeros in F of each of the
fi(x) for each i ∈ I. A field K ≤ F is a splitting field over F if it is the splitting field of
some set of polynomials in F [x].

Then we can given a criterion for being a splitting field in terms of mappings.

Theorem 4.30. (Splitting Field Criterion)
A field E, where F ≤ E ≤ F , is a splitting field over F if and only if every automorphism
of F leaving F fixed maps E onto itself and thus induces an automorphism of E leaving F
fixed.

Proof:
⇒: Let E be a splitting field over F in F of {fi(x) | i ∈ I} and let σ be an automorphism

of F leaving F fixed. Let {αj | j ∈ J} be the collection of all zeros in F of all of the fi(x)
for i ∈ I. For a fixed αj , F (αj) has elements all expressions of the form

g(αj) = a0 + a1αj + · · ·+ anj−1α
nj−1
j

where nj is the degree of irr(α, F ) and ak ∈ F . Consider the set S of all finite sums of
finite products of elements of the form g(αj) for all j ∈ J . The set S is a subset of E
closed under addition and multiplication and containing 0,1 and the additive inverses in
each element in the set. Each element of S is in some F (α1, · · · , αjr) ⊆ S, S also contains
the multiples of αj for j ∈ J . By the definition of a plotting field E of {fi(x) | i ∈ I},
S = E. But then {αj | j ∈ J} generates E over F . Then the value of σ on any element
of E is completely determined by the values of σ(αj). But σ(αj) must also be a zero of
irr(α, F ). But irr(α, F ) divides fi(x) when fi(αj) = 0, so σ(αj) ∈ E. Thus, σ maps E

into E isomorphically. However, the same is true of the automorphism σ−1 of F , since for
β ∈ E,

β = σ(βσ−1)
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Then we see that σ maps E onto E and induces an automorphism of E.
⇐: Suppose that every automorphism of F leaving F fixed induces an automorphism of

E. Let g(x) be an irreducible polynomial in F [x] having a zero α in E. If β is any zero of
g(x) in F , then there is a basic isomorphism ψα,β of F (α) leaving F fixed. Then ψα,β can

be extended to an isomorphism τ of F into F . Then

τ−1 : τ(F )→ F

can be extended to an isomorphism mapping F into F . Since the image of τ−1 is already
all of F , τ must have been onto F , so τ is an automorphism of F leaving F fixed. By
assumption, τ induces an automorphism of E, so τ(α) = β is in E. So if g(x) is an ir-
reducible polynomial in F [x] having one zero in E, then all zeros of g(x) in F are in E.
Hence, if {gk(x)} is the set of all irreducible polynomials in F [x] having a zero in E, then
E is the splitting field of {gk(x)}. �

Definition 4.19. (Splits)
Let E be an extension field of a field F . A polynomial f(x) ∈ F [x] splits in E if it factors
into a product of linear factors in E[x].

Corollary 4.9. If E ≤ F is a splitting field over F , then every irreducible polynomial in
F [x] having a zero in E splits in E.

Proof: If E is a splitting field over F in F , then every automorphism of F induces an
automorphism of E. The second half of Theorem 5.5 then showed precisely that E is also
the splitting field over F of the set {gk(x)} of all irreducible polynomials in F [x] having a
zero in E. Thus an irreducible polynomial f(x) of F [x] having a zero in E has all its zeros
in F in E. Therefore, its factorization into linear factors in F [x], actually taking place in
E[x]. Therefore, f(x) splits in E. �

Definition 4.20. (Index)
Let E be a finite extension of a field F . The number of isomorphism of E into F leaving
F fixed is the index {E : F} of E over F .

Corollary 4.10. If E ≤ F is a splitting field over F , then every isomorphic mapping of E
into F leaving F fixed is actually an automorphism of E. In particular, if E is a splitting
field of finite degree over F , then

{E : F} = |G(E/F )|

Proof: Every isomorphism σ mapping E into F leaving F fixed can be extended to an
automorphism τ of F . If E is a splitting field over F , then by Theorem 5.5, τ restricted
to E, that is σ in Theorem 5.5, is an automorphism of E. Thus for a splitting field E
over F , every isomorphic mapping of E into F leaving F fixed is an automorphism of E.
The equation {E : F} = |G(E/F )| then follows immediately for a splitting field E of finite
degree over F , since {E : F} was defined as the number of different isomorphic mappings
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of E into F leaving F fixed. �

Recall that splitting fields are unique. Then there is only one fixed algebraic closure F
of F . When are the [E : F ] and {E : F} equivalent? We show that for a simple algebraic
extension F (α) of F , there is only one identity isomorphism from F into F for each distinct
zero of irr(α, F ); moreover, these are the only extensions of the isomorphism. Therefore,
{F (α) : F} is the number of distinct zeros of irr(α, F ).

Theorem 4.31. Let E be an algebraic extension of a field F . Then then there exists a
finite number of elements α1, α2, · · · , αn in E such that E = F (α1, · · · , αn) if and only if
E is a finite-dimensional vector space over F , i.e., if and only if E is a finite extension of
F .

Proof: ⇒: Suppose that E = F (α1, · · · , αn). Since E is an algebraic extension of
F , each αi is algebraic over F , so clearly each αi is algebraic over every extension field
of F in E. Thus, F (α1) is algebraic over F and in general, F (α1, · · · , αj) is algebraic
over F (α1, · · · , αj−1) for j = 2, · · · , n. By Theorem 4.20 applied to the sequence of finite
extensions

F, F (α1), F (α1, α2), · · · , F (α1, · · · , αn) = E

then shows that E is a finite extension of F .
⇐: Suppose that E is a finite algebraic extension of F . If [E : F ] = 1, then E = F (1) =

F and we are done. If E 6= F , let α1 ∈ E, where α1 /∈ F . Then [F (α1) : F ] > 1. If
F (α1) = E, we are done; if not, let α2 ∈ E, where α2 /∈ F (α1). Continuing this process,
we see that since [E : F ] is finite, we must arrive at αn, such that

F (α1, α2, · · · , αn) = E

�

Theorem 4.32. ({E : F} | [E : F ]) If E is a finite extension of F , then {E : F} divides
[E : F ].

Proof: By Theorem 4.31, if E is finite over F , then E = F (α1, · · · , αn), where αi ∈ F .
Let irr(αi, F (α1, · · · , αi−1) have αi as one of ni distinct zeros which are all of a common
multiplicity vi, then because all the zeros of f(x) in F have the same multiplicity and has
a linear factorization in F [x],

[E : F ] =
∏
i

nivi

and

{E : F} =
∏
i

ni

Therefore, {E : F} divides [E : F ]. �
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Definition 4.21. (Separable Extension)
A finite extension E of F is a separable extension of F is {E : F} = [E : F ]. An element α
of F is separable over F is F (α) is a separable extension of F . An irreducible polynomial
f(x) ∈ F [x] is separable over F if every zero of f(x) in F is separable over F .

However, we have just shown that {E : F} is the number of distinct zeros of irr(α, F ).
Moreover, the multiplicity of α in irr(α, F ) must be the same as the multiplicity of each
conjugate of α over F . Therefore, α is separable over F if and only if irr(α, F ) has all zeros
of multiplicity 1. It then immediately follows that an irreducible polynomial f(x) ∈ F [x]
is separable over F if and only if f(x) has all no repeated roots. The notion of totally
inseparable extensions is derived similarly.

Definition 4.22. (Totally Inseparable Extensions)
A finite extension E of field F is a totally inseparable extension of F if {E : F} = 1 < [E :
F ]. An element α of F is totally inseparable over F if F (α) is totally inseparable over F .

As we had before, α is totally inseparable over F if and only if irr(α, F ) has only one
zero which is of multiplicity greater than 1.

Example 4.23. Zp(y) is totally inseparable over Zp(yp), where y is an indeterminate.

The following two results exactly parallel the notion we had for separable extensions.

Theorem 4.33. If K is a finite extension of E, E is a finite extension of F and F < E <
K, then K is totally inseparable over F if and only if K is totally inseparable over E and
E is totally inseparable over F .

Proof:
⇒: Since F < E < K, we have [K : E] > 1 and [E : F ] > 1. Suppose that K is totally

inseparable over F . Then{K : F} = 1 and

{K : F} = {K : E}{E : F}
so we must have

{K : E} = 1 < [K : E] and {E : F} = 1 < [E : F ]

Thus K is totally inseparable over E and E is totally inseparable over F .
⇐: If K is totally inseparable over E and E is totally inseparable over F , then

{K : F} = {K : E}{E : F} = (1)(1) = 1

and [K : F ] < 1. Thus, K is totally inseparable over F . �

The previous theorem can then be extended by induction to any finite proper tower of
finite extensions. The final field is totally inseparable extension of the initial one only if
each field is totally inseparable extension of the preceding one.

Corollary 4.11. If E is a finite extension of F , then E is totally inseparable over F if
and only if each α in E, α /∈ F , is totally inseparable over F .
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Proof: ⇒: Suppose that E is totally inseparable over F and let α ∈ E with α /∈ F .
Then

F < F (α) ≤ E
If F (α) = E, we are done. If F < F (α) < E, then by Theorem 4.33 shows that since E is
totally inseparable over F , F (α) is totally inseparable over F .
⇐: Suppose that for every α ∈ E, with α /∈ F , α is totally inseparable over F . Since E

is finite over F , there exist α1, · · · , αn such that

F < F (α1) < F (α1, α2) < · · · < F (α1, α2, · · · , αn) = E

Now since αi is totally inseparable over F , αi is totally inseparable over F (α1, · · · , αi−1), for
q(x) = irr(αi, F (α1, · · · , αi−1)) divides irr(αi, F ) so that αi is the only zero of q(x) and is of
multiplicity greater than 1. Thus, F (α1, · · · , αi) is totally inseparable over F (α1, · · · , αi−1)
and E is totally inseparable over F by Theorem 4.33, extended by induction. �

Theorem 4.34. Let F have characteristic p 6= 0 and let E be a finite extension of F .
Then α ∈ E, α /∈ F , is totally inseparable over F if and only if there is some integer t ≥ 1
such that αp

t ∈ F . Furthermore, there is a simple extension K of F , with F ≤ K ≤ E
such that K is separable over F and either E = K or E is totally inseparable over K.

Proof:
⇒: Let α ∈ E and α /∈ F be totally inseparable over F . Then irr(α, F ) has just one

zero α of multiplicity greater than 1 and must be of the form

xp
t − αpt

Hence, αp
t ∈ F for some t ≥ 1.

⇐: If αp
t ∈ F for some t ≥ 1, where α ∈ E and α /∈ F , then

xp
t − αpt = (x− α)p

t

and (xp
t −αpt) ∈ F [x], showing that irr(α, F ) divides (x−α)p

t
. Therefore, irr(α, F ) has α

as its only zero and this zero is of multiplicity greater than 1. So α is totally inseparable
over F . �

Definition 4.23. (Separable Closure)
The unique filed K of theorem 4.34 is the separable closure of F in E.

The purpose of Theorem 4.34 gives the exact structure of totally inseparable extensions
of a field with characteristic p. That is to say, we can create such an extension simply by
adding the elements to obtain larger fields, that is the pth roots of unity.

4.8. Finite Fields. We have already made mention that all finite fields are perfect. We
are ready to show that for every prime p and positive integer n, that there is only one,
up to isomorphism, finite field with order pn. This field is referred to as the Galois field
of order pn. Here, the properties of cyclic groups come into play heavily and will play the
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most critical role in our proof of the insolvability of the quintic. First, we show that every
finite field must have an order that is a prime power.

Theorem 4.35. (Order of Finite Fields)
Let E be a finite extension of degree n over a finite field F . If F has q elements, then E
has qn elements.

Proof: Let {α1, · · · , αn} be a basis for E as a vector space over F . Then every β ∈ E
can be uniquely written in the form

β = b1α1 + · · ·+ bnαn

for each bi ∈ F . Since each bi may be any of the q elements of F , the total number of such
distinct linear combinations of the αi is qn. �

Corollary 4.12. If E is a finite field of characteristic p, then E contains exactly pn

elements for some positive integer n.

Proof: Every finite field E is a finite extension of a prime field isomorphic to the field
Zp, where p is the characteristic of E. The result then follows immediately from Theorem
4.35. �

Now let’s look at the structure of a finite field under its operation.

Theorem 4.36. A finite field E of pn elements is the splitting field of xp
n − x over its

prime subfield Zp (up to isomorphism).

Proof: Let E be a finite field with pn elements, where p is the characteristic of F . The
set E∗ of nonzero elements of E forms a multiplicative group of order pn − 1 under field
multiplication. For α ∈ E∗, the order of α in this group divides the order pn − 1 of the

group. Thus for α ∈ E∗, we have αp
n−1

= 1, so αp
n

= α. Therefore, every element in E is
a zero of xp

n − x. Since xp
n − x can have at most pn roots, we see that E is the splitting

field of xp
n − x over Zp. �

This theorem tells us that we can form any finite field from a prime subfield of the field,
much in the way we can always take any positive integer and obtain it through a multiple
of a prime number.

Definition 4.24. (Root of Unity)
An element α of a field is an nth root of unity if αn = 1. It is a primitive nth root of unity
if αn = 1 and αm 6= 1 for 0 < m < n.

Therefore, using the language of this definition, the nonzero elements of a finite field
with characteristic pn are the (pn − 1)th roots of unity. Typically, the nth roots of unity
are denoted by Un an form a group under multiplication. Moreover, the group Un is cyclic.
However, we prove a more general result.
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Theorem 4.37. If G is a finite multiplicative subgroup of the multiplicative group 〈F ∗, ·〉
of nonzero elements of a field F , then G is cyclic.

Proof: Because G is a finite abelian group, G is isomorphic to a direct product Zm1 ⊕
Zm2⊕· · ·Zmn of cyclic groups by the Fundamental Theorem for Abelian Groups, where mi

divides mi+1. Think of each of the Zmi as a cyclic group of order mi in multiplicative no-
tation. Then for ai ∈ Zmi , a

mi
i = 1, so amni = 1, since mi divides mn. Thus, for all α ∈ G,

we have αmn = 1, so every element of G is a zero of xmn −1. But G has
∏n
i=1mi elements.

However, xmn−1 can have at most mn zeros in a field. Therefore, n = 1 and G is cyclic. �

Corollary 4.13. The multiplicative group of all nonzero elements of a finite field under
field multiplication is cyclic.

Proof: This result follows trivially from the proof of the Theorem 4.37. �

Corollary 4.14. A finite extension E of a finite field F is a simple extension of F .

Proof: Let α be a generator for the cyclic group E∗ of nonzero elements of E. Then it
is trivial that E = F (α). �

Example 4.24. Consider the finite field Z11. By Corollary 1 to Theorem 4.37, 〈Z11, ·〉
is cyclic. The generator of Z∗11 is easy to finite as by Fermat’s Little Theorem, ap−1 ≡ 1
mod p, where p is prime. Therefore, 2 is a generator of Z∗11 as 210 ≡ 1 mod 11. So 2 is
a primitive 10th root of unity in Z11. But then by the Fundamental Theorem of Abelian
Groups, all the primitive roots of unity in Z11 are of the form 2n, where n is relatively
prime to 10.

4.9. Galois Theory. “Galois theory is a showpiece of mathematical unification, brining
together several different branches of the subject and creating a powerful machine for the
study of problems of considerable historical and mathematical importance.”
Ian Stewart, Galois Theory

We have built the basic parts to our “machine”. We will now put all the basic pieces
together to form a power machine for looking at the relation between groups and fields. We
will then later use this tool to complete our goal of proving the insolvability of polynomials
of degree n ≥ 5.

The power of Galois Theory is the realization that there is an intimate connection
between the lattice of subgroups and the lattice of subfields. Specifically, Galois theory
examines the intimate connection between the lattice of subfields of an algebraic extension
E of a field F to the subgroup structure on a particular group, the set of all automorphisms
from E to F while acting as the identity on F . Ultimately, this discovery came while
trying to solve polynomials by radicals. In fact, we will show that there is a injective
correspondence between the set of all automorphisms from E to F acting as the identity
on F and all subfields of an extension E containing F . If one looks at the proof of the
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insolvability of the quintic given by Abel, though certainly not exactly as it appears today
and does not use modern language, Abel’s idea is exactly that of Galois Theory.

First, we will remind the reader of all the necessary accomplishments we have made
in the preceding sections which will come together to allow us to prove the Fundamental
Theorem of Galois Theory.

1. Let F ≤ E ≤ F , α ∈ E and let β be conjugate of α over F . Then there is an isomorphism
ψα,β mapping F (α) onto F (β) which leaves F fixed and maps α onto β.

2. If F ≤ E ≤ F and α ∈ E, then an automorphism σ of F which leaves F fixed must map
α onto some conjugate of α over F .

3. If F ≤ E, the collection of all automorphisms of E leaving F fixed forms a group
G(E/F ). For any subset S of G(E/F ), the set of all elements of E left fixed by all
elements of S is a field ES . Moreover, F ≤ EG(E/F ).

4. A field E, F ≤ E ≤ F , is a splitting field over F if and only if every isomorphism of E
into F leaving F fixed is an automorphism of E. If E is a finite extension and a splitting
field over F , then |G(E/F )| = {E : F}.

5. If E is a finite extension of F , then {E : F} divides [E : F ]. If E is also separable over
F , then {E : F} = [E : F ]. Also, E is separable over F if and only if irr(α, F ) has all
zeros of multiplicity 1 for every α ∈ E.

6. If E is a finite extension of F and is a separable splitting field over F , then |(G(E/F )

Our focus is on automorphisms of a finite extension K of F that leaves F fixed and

[K : F ] = {K : F}
But these are exactly the separable splitting fields over F !

Definition 4.25. (Finite Normal Extension)
A finite extension K of F is a finite normal extension of F is K is a separable splitting
field over F .

We need but one more theorem before we can state our main result.

Theorem 4.38. (Induced Automorphism)
Let K be a finite normal extension of F and let E be an extension of F , where F ≤
E ≤ K ≤ F . Then K is a finite normal extension of E and G(K/E) is precisely the
subgroup of G(K/F ) consisting of all those automorphisms which leave E fixed. Moreover,
two automorphisms σ and τ in G(K/F ) induce the same isomorphism of E and into F if
and only if they are in the same right coset of G(K/E) in G(K/F ).

Proof: If K is the splitting field of a set {fi(x) | i ∈ I} of polynomials in F [x], then
clearly K is the splitting field over E of this same set of polynomials viewed as elements of
E[x]. Theorem 4.33 shows that K is separable over E, since K is separable over F . Thus,
K is a normal extension of E. This proves the first part.

Clearly, every element G(K/E) is an automorphism of K leaving F fixed, since it even
leaves the possibly larger field E fixed. Thus, G(K/E) can be viewed as a subset of
G(K/F ). Since G(K/E) is a group under function composition also, we see that G(K/E) ≤
G(K/F ).
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Finally, for σ and τ in G(K/F ), σ and τ are in the same right coset of G(K/E) if and
only if τ−1(σ) ∈ G(K/E) or if and only if σ = τ(µ) for µ ∈ G(K/E). But if σ = τ(µ) for
µ ∈ G(K/E), then for α ∈ E, we have

σ(α) = (τµ)(α) = τ(µ(α)) = τ(α)

since µ(α) = α for α ∈ E. Conversely, if σ(α) = τ(σ) for all σ ∈ E, then

τ−1(σ(α)) = α

for all σ ∈ E, so στ−1 leaves E fixed and µ = στ−1 is thus in G(K/E). �

The heart of Galois Theory says that for a finite normal extension K of a field F ,
there must be an injective correspondence between the subgroups of G(K/F ) and all the
intermediate fields E, where F ≤ E ≤ K. But this correspondence associates with each
intermediate field E the subgroup G(K/E)! We can reverse this process. We illustrate this
with an example.

Example 4.25. Let K = Q(
√

2,
√

3). Now K is a normal extension of Q and there are
four automorphisms of K leaving Q fixed (which we found in an earlier example).

i : identity map

σ1 :
√

2 7→ −
√

2,
√

6 7→ −
√

6

σ2 :
√

3 7→ −
√

3,
√

6 7→ −
√

6

σ3 :
√

2 7→ −
√

2,
√

3 7→ −
√

3

We already stated that G = {i, σ1, σ2, σ3} is isomorphic to the Klein 4-group. Below we
see all possible subgroups of G paired with its corresponding intermediate field which it
fixes.

{i, σ1, σ2, σ3} ↔ Q

{i, σ1} ↔ Q(
√

3)

{i, σ2} ↔ Q(
√

2)

{i, σ3} ↔ Q(
√

2
√

3)

{i} ↔ Q(
√

2,
√

3)

Notice all the subgroups of the Abelian group {i, σ1, σ2, σ3} are normal subgroups of G.
Moreover, all the intermediate fields are normal extensions of Q.

Notice from the example that if one subgroup is contained in another, then the larger
corresponds to the smaller of the two corresponding fixed fields, why? The larger the
subgroup the more possible automorphisms that are possible. Vise versa, the smaller the
fixed field, the fewer the elements that could be left fixed. Furthermore, notice in the
example that groups at the top of the chain correspond to the fields on the bottom of
the chain. But then the lattice of subgroups is corresponds to the lattice of subfields
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turned upside-down! This is known as the lattice inversion principle and this was the key
observation made by Galois.

Definition 4.26. (Galois Group) If K is a finite normal extension of a field F , then
G(K/F ) is called the Galois group of K over F .

We finally can state the fruits of all our labor.

Theorem 4.39. (The Fundamental Theorem of Galois Theory) Let K be a finite normal
extension of a field F with Galois group G(K/F ). For a field E, where F ≤ E ≤ K, let Eλ
be the subgroup of G(K/F ) leaving E fixed. Then λ is a injective map of the set of all such
intermediate fields E onto the set of all subgroups of G(K/F ). The following properties
hold for λ:

1. λ(E) = G(K/E)
2. E = KG(K/E) = Kλ(E)

3. For H ≤ G(K/F ), λ(KH) = H
4. [K : E] = |λ(E)|; [E : F ] = {G(K/F ) : λ(E)}, the number of cosets of λ(E) in G(K/F ).
5. E is a normal extension of F if and only if Eλ is a normal subgroup of G(K/F ). When
Eλ is a normal subgroup of G(K/F ), then

G(E/F ) ∼= G(K/F )/G(K/E)

6. The lattice of subgroups of G(K/F ) is the inverted lattice of intermediate fields of K
over F .

Proof:

1. Property 1 follows straight from the definition of λ.
2. From Theorem 4.28, we know that

E ≤ KG(K/E)

Let α ∈ K, where α /∈ E. Since K is a normal extension of E, we can find an automor-
phism an automorphism of K leaving E fixed and mapping α onto a different zero of
irr(α, F ). This implies that

KG(K/E) ≤ E
so E = KG(K/E). Then we have shown Property 2. Moreover, we have shown that λ is
injective because if λ(E1) = λ(E2), then we have

E1 = Kλ(E1) = Kλ(E2) = E2

3. Property 3 is equivalent to showing that λ is surjective. For H ≤ G(K/F ), we have
H ≤ λ(KH), for H surely is included in the set of all automorphisms leaving KH fixed.
Here we use the property [K : E] = {K : E}.. We know that H ≤ λ(KH) ≤ G(K/F ).
Thus, what we really must show is that it is impossible to have H a proper subgroup
of λ(KH). We assume that H < λ(KH) and derive a contradiction. If KH is infinite,
then as a finite separable extension of an infinite field, K = KH(α) for some α ∈ K, by
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the Primitive Element Theorem. On the other hand, if KH is finite, then we still have
K = KH(α) for some α ∈ K, by the second Corollary to Theorem 4.37. Let

n = [K : KH ] = {K : KH} = |G(K/KH)|

Then H < G(K/KH) implies that |H| < |G(K/KH)| = n. Thus, we would have to have
|H| < [K : KH ] = n. Let the elements of H be σ1, · · · , σ|H| and consider the polynomial

f(x) =

|H|∏
i=1

(
x− σi(α)

)
Then f(x) is of degree |H| < n. Now the coefficients of each power of x in f(x) are
symmetric expressions in the σi(α). Thus, the coefficients are invariant under each
isomorphism σi ∈ H, since if σ ∈ H, then σ(σ1), · · · , σ(σ|H|) is again the sequence
σ1, · · · , σ|H|, up to ordering, H being a group. Hence, f(x) has coefficients in KH and
since some σi is the identity, we see that some σi(α) = α, so f(α) = 0. Therefore, we
would have

deg(α,KH) ≤ |H| < n = [K : KH ] = [KH(α) : KH ]

which is impossible.
4. This comes from [K : E] = {K : E},[E : F ] = {E : F}, and the final statement of

Theorem 4.38
5. Every extension E of F , F ≤ E ≤ K, is separable over F by Theorem 4.37. Thus,
E is normal over F if and only if E is a splitting field over F . By the Isomorphism
Extension Theorem, every isomorphism of E into F leaving F fixed can be extended to
an automorphism of K, since K is normal over F . Thus, the automorphisms of G(K/F )
induce all possible isomorphisms of E into F leaving F fixed. This shows that E is a
splitting field over F and hence normal over F if and only if for all σ ∈ G(K/F ) and
α ∈ E

σ(α) ∈ E
By Property 2, E is the fixed field of G(K/E), so (ασ) ∈ E if and only if for all
τ ∈ G(K/E)

τ(σ(α)) = σ(α)

However, this holds if and only if

(στσ−1)(α) = α

for all α ∈ E, σ ∈ G(K/F ), and τ ∈ G(K/E). But this means that for all σ ∈ G(K/F )
and τ ∈ G(K/E), στσ−1 leaves every element of E fixed, that is

(στσ−1) ∈ G(K/E)

This is precisely the condition that G(K/E) be a normal subgroup of G(K/F ). Finally,
we only need show that when E is a normal extension of F , G(E/F ) ∼= G(K/F )/G(K/E).
For σ ∈ G(K/F ), let σE be the automorphism of E induced by σ (assuming that E is a
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normal extension of F ). Thus, σE ∈ G(E/F ). The map φ : G(K/F ) → G(E/F ) given
by

σφ = σE

for σ ∈ G(K/F ) is obviously a homomorphism. By the Isomorphism Extension The-
orem, every automorphism of E leaving F fixed can be extended to some automor-
phism of K, i.e. it is τE for some τ ∈ G(K/F ). Thus, φ is onto G(E/F ). The
kernel of φ is clearly G(K/E). Therefore, by the Fundamental Isomorphism Theorem,
G(E/F ) ∼= G(K/F )/G(K/E). Furthermore, this isomorphism is the natural one. �

The power of the Fundamental Theorem of Galois Theory comes from its ability to
relate the lattice of subfields to the lattice of subfields and their corresponding sub-
groups/subfields. In general, it is difficult to find all possible subfields of a given field.
However, it is a simpler exercise to try to find all possible subgroups of a given group.
Hence, the Fundamental Theorem gives us a powerful computation saving device.

4.10. Solvability and Galois Groups of Polynomials. We have reached the final
stretch. In this section, we will reach our ultimate goal of showing the insolvability of
the quintic. However, first we must define what we mean when we say solvable. Cer-
tainly there are quintics which are “solvable”. For example, take the quintic f(x) =
x5 − 15x4 + 85x3 − 225x2 + 274x− 120 ∈ R[x]. Then f(x) has zeros 1, 2, 3, 4, and 5 in R.
When we say solvable, we mean solvability by radicals.

Definition 4.27. (Extension by Radicals)
An extension K of a field F is an extension of F by radicals if there are elements α1, · · · , αr
and positive integers n1, · · · , nr such that K = F (α1, · · · , αr), αn1

1 ∈ F and αnii ∈
F (α1, · · · , αi−1) for 1 < i ≤ r.

Definition 4.28. (Solvable by Radicals)
A polynomial f(x) ∈ F [x] is solvable by radicals over F if the splitting field K of f(x)over
F is an extension of F by radicals.

This simply means that a polynomial f(x) ∈ F [x] is solvable if we can obtain all possible
zeros of f(x) by adjoining the nth roots (n dependent) to F . Hence, a polynomial f(x) ∈
F [x] is solvable by radicals over F if we can obtain every zero of f(x) by using a finite
sequence of the operations of addition, subtraction, multiplication, division, and taking
roots, starting with the elements of F . We take this question about solvability and turn
it into a question about field extensions. Here we will follow the proof given in Abstract
Algebra by Dummit and Foote4, see the Appendix for the derivations of the formulas for
finding roots of the linear, quadratic, cubic, and quartic equations as well as proofs of the
Fundamental Theorem of Algebra. We first discuss the Galois groups of a polynomial.

If K is a Galois extension of F then K is the splitting field for some separable polynomial
f(x) over F . Furthermore, any automorphism σ ∈ G(K/F ) cannot change the roots of
f(x). Hence, σ is a permutation of the roots and is uniquely determined by the permutation
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of the roots (since the permutations generate K over F ). But then each σ ∈ G(K/F ). This
then gives the injection

G(K/F )→ Sn

Therefore, as with all groups, we can think of the Galois groups as a subgroup of some
permutation group. By the Fundamental Theorem of Galois Theory, the degree of the
splitting field is the same as the order of the Galois group. But recall that we can write a
polynomial f(x) as a product of irreducibles in the form f1(x)f2(x) · · · fk(x), where each
of the fi(x) has some degree ni. Since the Galois group merely permutes the roots of f(x),
i.e. it permutes the roots of the irreducibles amongst themselves, it must be the case that

G(K/F ) ≤ Sn1 ⊕ · · · ⊕ Snk
Similarly with Cayley’s Theorem, it is an open mathematical question whether every finite
group embeds in some Galois group. Next, we introduce some terminology to show that a
general polynomial of degree n has Sn as its Galois group.

Definition 4.29. (Symmetric Functions)
Let x1, x2, · · · , xn be indeterminates. The elementary symmetric functions s1, s2, · · · , sn
are defined by

s0 =1

s1 =x1 + x2 + · · ·+ xn

s2 =x1x2 + x1x3 + · · ·+ x2x3 + x2x4 + · · ·+ xn−1xn

...

sn =x1x2 · · ·xn
Now we will rigorously define what we mean when we say the general polynomial.

Definition 4.30. (General Polynomial)
The general polynomial of degree n is the polynomial f(x) given by

(x− x1)(x− x2) · · · (x− xn)

Where the roots of f(x) are x1, x2, · · · , xn.

Theorem 4.40. (General Polynomial Coefficients)
The coefficient of the ith power of the general polynomial f(x) of degree n is the elementary
symmetric function sn−i.

Proof: We prove this by induction. The proof is trivial for the n = 0, 1 cases. We look
at the n = 2 case explicitly here. Let n = 2, then the general polynomial has the form

f2(x) = (x− x1)(x− x2) = x2 − (x1 + x2)x+ x1x2

But notice the coefficients are precisely s0, s1, s2. Now assume this is true for n =
1, 2, 3, 4, · · · , k. Consider the general polynomial

fk+1(x) = (x− x1)(x− x2)(x− x3) · · · (x− xk)(x− xk+1)
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By the induction hypothesis, we have

fk+1(x) = (xks0,k + xk−1s1,k + · · ·+ sk,k)(x− xk+1)

Applying simple algebra, we find that

fk+1(x) =(xks0,k + xk−1s1,k + · · ·+ sk,k)(x− xk+1)

=(xk+1s0,k + xks1,k + · · ·+ xsk,k) + (−xks0,kxk+1 − xk−1s1,kxx+1 − · · ·+ sk,kxk+1)

=s0,kx
k+1 + (s1,k − s0,kxk+1)xk + · · ·+ sk,kxk+1

However, notice that

s0,k+1 =s0,k

s1,k+1 =s1,k − s0,kxk+1

...

sk+1,k+1 =sk,kxk+1

Then the coefficients of the nth power term of fk+1(x) are precisely sn−(k+1). �

It is important to notice that for any field F , the extension F (α1, α2, · · · , αn) is a
Galois extension of the field F (s1, s2, · · · , sn) since it is a splitting field of the general
polynomial of degree n. If given a rational function F (α1, α2, · · · , αn), σ ∈ Sn acts on it by
permuting the roots. This automorphism of F (α1, α2, · · · , αn) identifies Sn as a subgroup
of Aut(F (α1, α2, · · · , αn)). However, the symmetric functions remainder fixed, up to order,
under this permutation, hence the name symmetric. Then the (sub)field F (α1, α2, · · · , αn)
is contained in the fixed field of Sn. Using the Fundamental Theorem of Galois Theory,
the fixed field of Sn must have index n! in F (α1, α2, · · · , αn). Then we have

[F (α1, α2, · · · , αn : F (s1, s2, · · · , sn] ≤ n!

because F (α1, α2, · · · , αn) is the splitting field over F (s1, s2, · · · , sn). But then the two
must be equivalent. Therefore, F (s1, s2, · · · , sm) is the fixed field of Sn.

Definition 4.31. (Symmetric)
A rational function f(x1, x2, · · · , xn) is called symmetric if it is not changed by any per-
mutation of the variables x1, x2, · · · , xn.

Theorem 4.41. (Fundamental Theorem on Symmetric Functions)
Any symmetric function in the variables x1, x2, · · · , xn is a rational function in the ele-
mentary symmetric functions s1, s2, · · · , sn.

Proof: A symmetric function lies in the fixed field of Sn. Hence, it is a rational function
in s1, s2, · · · , sn. �

Moreover, one can show that there is no rational function “between” the symmetric
polynomials. That is to say, there are no polynomial relations between them. With this
fact, it makes no difference whether one considers a polynomial f(x) to have indeterminate
roots or indeterminate coefficients.
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Definition 4.32. (Discriminant)
THe discriminant D of x1, x2, · · · , xn by the formula

D =
∏
i<j

(xi − xj)2

Define the discriminant of a polynomial to be the discriminate of the roots of the polyno-
mial. Moreover, the discriminant is a symmetric function in x1, · · · , xn and therefore is an
element of K = F (s1, s2, · · · , sn).

Recall that in a typical high school course, one learns that the discriminant of a qua-
dratic ax2 + bx + c is b2 − 4ac. Notice that this is a symmetric function and uses the
indeterminate coefficients of the polynomial. Recall that in high school one used this to
learn the types of roots the quadratic had. This is because of the intimate relationship
between the coefficients of the quadratic and the roots themselves.

Theorem 4.42. If char F 6= 2, then the permutation σ ∈ Sn is an element of An if and
only if it fixed the square root of the discriminant D (i.e., the discriminate D ∈ F is the
square of some element f ∈ F ).

Proof: A permutation σ ∈ Sn is a member of the alternation group An if and only if it
fixes the product √

D =
∏
i<j

(xi − xj) ∈ Z[x1, x2, · · · , xn]

Then by the Fundamental Theorem of Galois Theory, if F has characteristic different than
2 then

√
D generates the fixed field of An and generates a quadratic extension of K. �

We now make two important remakes about the discriminant.

Remark 4.4. The discriminant D is symmetric in the roots of f(x) and is fixed by all the
automorphisms of the Galois group of f(x). Then by the Fundamental Theorem of Galois
Theory, D ∈ F .

Remark 4.5. The discriminant can be written as a polynomial in the coefficients of f(x).
Since √

D =
∏
i<j

(αi − αj)

√
D is always contained in the splitting field for f(x). So if the roots of f(x) are distinct, we

can fix an order of the roots and consider the Galois group of f(x) as merely a permutation
of the roots and hence a subgroup of Sn.

This is exactly why one looked at the discriminant in high school. For example, if D = 0,
then we have detected the presence of roots of multiplicity.

We have already discussed what it means to be solvable by radicals. We will use simple
radical extensions, that is extensions obtained simply by adjoining the nth root of an
element a ∈ F to F . Notice that all the roots of xn − a differ only by the factors of the
nth roots of unity for a ∈ F . Therefore, if we adjoin a root we obtain a Galois extension
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if and only if the new field contains the nth root of unity. This new field “behaves well”
over the original field F when the field F already contains the necessary roots of unity.

Remark 4.6. The symbol n
√
a, for a ∈ F , is used to denote the root of the polynomial

xn − a ∈ F [x].

Definition 4.33. (Cyclic Extension)
The extension K/F is said to be cyclic if it is Galois with a cyclic with a cyclic Galois
group.

We will need something called the Lagrange resolvent for the proof of the next theorem.

Definition 4.34. (Lagrange Resolvent)
For α ∈ K and any nth root of unity ζ, define the Lagrange resolvent (α, ζ) ∈ K by

(α, ζ) = αζσ(α) + ζ2σ2(α) + · · ·+ ζn−1σn−1(α)

Theorem 4.43. (Characteristics of Unity)
Let F be a field of characteristic relatively prime to n which contains the nth roots of unity
if and only if the extension F (

√
a) for a ∈ F is cyclic over F of degree dividing n.

Proof:
⇒: The extension K = F ( n

√
a) is Galois over F if F contains the nth roots of unity

since it is the splitting field for xn−a. For any σ ∈ G(K/F ), σ( n
√
a) is another root of this

polynomial, hence σ( n
√
a) = ζσ n

√
a for some nth root of unity ζσ. This gives the mapping

G(K/K)→ µn

σ 7→ ζσ

where µn denotes the group of nth roots of unity. Since F contains µn, every nth root of
unity is fixed by every element of G(K/F ). Hence

στ( n
√
a) =σ(ζτ

n
√
a)

=ζτσ( n
√
a)

=ζτζσ
n
√
a = ζσζτ

n
√
a

this shows that ζστ = ζσζτ , therefore the map is a homomorphism whose kernel consists
precisely of those automorphisms which fix n

√
a, namely the identity. This gives an injection

of G(K/F ) into the cyclic group µn of order n, which completes the theorem.
⇐: Let K be any cyclic extension of degree n over a field F of characteristic relatively

prime to n which contains the nth roots of unity. Let σ be a generator for the cyclic group
G(K/F ). If we apply the automorphism σ to the Lagrange resolvent, (α, ζ), we obtain

σ(α, ζ) = σα+ ζσ2(α) + ζ2σ3(α) + · · ·+ ζn−1σn(α)
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since ζ is an element of the base field F and is fixed by σ, we have ζn = 1 in µn and σn = 1
in G(K/F ), so this can be written

σ(α, ζ) =σα+ ζσ2(α) + ζ2σ3(α) + · · ·+ ζ−1α

=ζ−1(α+ ζσ(α) + ζ2σ2(α) + · · ·+ ζn−1σn−1(α))

=ζ−1(α, ζ)

It then follows that
σ(α, ζ)n = (ζ−1)n(α, ζ)n = (α, ζ)n

so that (α, ζ)n is fixed by G(K/F ). Therefore, (α, ζ)n ∈ F for any α ∈ K. Let ζ be a
primitive nth root of unity. By the linear independence of the automorphisms 1, σ, · · · , σn−1

(our basis), there is an element α ∈ K with (α, ζ) 6= 0. Iterating the process above, by
induction, we find that

σi(α, ζ) = ζ−i(α, ζ), i = 0, 1, 2, · · ·
and it follows that σi does not fix α, ζ for any i < n. Therefore, this element cannot lie in
any proper subfield of K, so K = F ((α, ζ)). Since we have proved that (α, ζ)n = a ∈ F ,
we have F ( n

√
a) = F ((α, ζ)) = K. �

Moreover, we see that every such field must have this form. This is known as Kummer
theory. We give a basic proof outline below.

Theorem 4.44. Any cyclic extension of degree n over a field F of characteristic relatively
prime to n contains the nth roots of unity if and only if it is of the form F ( n

√
a) for some

a ∈ F .

“Proof”: Let F be a field of characteristic relatively prime to n which contains the nth
roots of unity. If we take elements a1, a2, · · · , ak ∈ F ∗, then the extension

F ( n
√
a1, n
√
a2, · · · , n

√
ak)

is an abelian extension of F whose Galois group is of exponent n. Conversely, any abelian
extension of exponent n is of this form. Denote by (F ∗)n the subgroup of the multiplica-
tive group F ∗ consisting of the nth powers of the nonzero elements of F . The factor
group F ∗/(F ∗)n is an abelian group of exponent n. The Galois group of the extension
above is isomorphic to the group generated in F ∗/(F ∗)n by the elements a1, · · · , ak and
two extensions as above are equal if and only if their associated groups in F ∗/(F ∗)n are
equal. Hence, the finitely generate subgroups of F ∗/(F ∗)n classify the abelian extensions
of exponent n over fields containing the nth roots of unity (and characteristic relatively
prime to n). These extensions are called Kummer extensions and can by generalized to
larger cases by induction. �

Recall that we say something is solvable by radicals if we can create a chain or tower
of simple radical expressions, each a root extension of the previous. When we consider
radical extensions, we may always adjoin roots of unity as they they are radicals. Then
cyclic extensions are radical extensions and the converse also holds.
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Theorem 4.45. If α is contained in a root extension K, then α is contained in a root
extension which is Galois over F , where each extension Ki+1/Ki is cyclic.

Proof: Let L be the Galois closure of K over F . For any σ ∈ G(L/F ), we have the chain
of subfields

F = σK0 ⊂ σK1 ⊂ · · · ⊂ σKi ⊂ Ki+1 ⊂ · · · ⊂ σKs = σK

where σKi+1/σKi is again a simple radical extension as it is generated by the element
σ( ni
√
ai), which is a root of xni − σ(ai) over σ(Ki). Then the composition of two root

extensions is again a root extension. It follows that the composition of all the conjugate
fields σ(K) for σ ∈ G(L/F ) is again a root extension. This field is precisely L, then α is
contained in a Galois root extension.

Adjoin the nith roots of unity to F for all the roots ni
√
a for the simple radical extensions

in the Galois root extension K/F to obtain a field, say F ′, and form the composition of F ′

with the root extension

F ⊆ F ′ = F ′K0 ⊆ F ′K1 ⊆ · · · ⊆ F ′Ki ⊆ F ′Ki+1 ⊆ · · · ⊆ F ′Ks = F ′K

The field F ′K is a Galois extension of F since it is the composition of two Galpois exten-
sions. The extension from F to F ′ = F ′K0 can be represented as a chain of subfields with
each individual extension being cyclic (as is true with any Abelian extension). Each ex-
tension F ′Ki+1/F

′Ki is a simple radical extension and since we now have the appropriate
roots of unity in the base fields, each of these individual extensions from F ′ to F ′K is a
cyclic extension by Theorem 4.43. Therefore, F ′K/F is a root extension which is Galois
over F with cyclic intermediate extensions. �

4.11. Insolvability of the Quintic. We now have reached the end. Recall our original
question was if there was a general formula for the zeros of a polynomial of degree 5 or
higher. We then looked at the properties of zeros by finding fields which contained the
zeros of a given irreducible polynomial, i.e. extension fields and splitting fields. Then we
classified elements in a field as algebraic or transcendental based on whether they were
a zero of a polynomial in the field. Then we looked at the properties of automorphic
mappings of the extension field which fixed the base field. We called this the Galois group
and showed that it must permute the roots of a polynomial in the base field amongst
themselves. However, we then showed there was no difference between examining the roots
in terms of the indeterminates or by observing the undetermined coefficients. Then we
created root extensions and found that the roots must be contained in a Galois group
over a field F and the quotient groups of the tower of root extensions must be cyclic. We
complete our proof of the insolvability of the general polynomial of degree greater than or
equal to 5 by showing that a group is solvable if and only if its Galois group is solvable. But
we showed that such a group for polynomials is a subgroup of Sn. Then showing that Sn
contains only the single normal nonabelian simple subgroup An for n ≥ 5 will be sufficient.

Theorem 4.46. (Radical Solvable iff Galois Solvable) The polynomial f(x) can be solved
by radicals if and only if its Galois group is a solvable group.
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Proof:
⇒: Assume that f(x) can be solved by radicals. Then each root of f(x) is contained in

an extension as in Theorem 4.45. Let Gi be the subgroups corresponding to the subfields
Ki, i = 0, 1, · · · , s− 1. Since

G(Ki+1/Ki) = Gi/Gi+1, i = 0, 1, · · · , s− 1

it follows that the Galois group G = G(L/F ) is a solvable group. The field L contains the
splitting field for f(x) so the Galois group of f(x) is a quotient group of the solvable group
G and therefore solvable.
⇐: Suppose that the Galois group G of f(x) is a solvable group and let K be the

splitting field of f(x).Taking the fixed fields of the subgroups in a chain for G, gives the
chain

F = K0 ⊂ K1 ⊂ · · · ⊂ Ki ⊂ Ki+1 ⊂ · · · ⊂ Ks = K

where Ki+1/Ki, i = 0, 1, · · · , s − 1 is a cyclic extension of degree ni. Let F ′ be the
cyclotomic field over F of all roots of unity of order ni, i = 0, 1, · · · , s − 1 and form the
composite fields K ′i = F ′Ki. Then we have the sequence of extensions

F ⊆ F ′ = F ′K0 ⊆ F ′K1 ⊆ · · · ⊆ F ′Ki ⊆ F ′Ki+1 ⊆ · · · ⊆ F ′Ks = F ′K

Then extension F ′Ki+1/F
′Ki is cyclic of degree dividing ni, i = 0, 1, · · · , s − 1. Since we

now have the appropriate roots of unity in the base fields, each of these cyclic extensions is
a simple radical extension. Then each of the roots of f(x) is contained in the root extension
F ′K so that f(x) can be solved by radicals. �

Now we show that the only normal subgroup of Sn for n ≥ 5 is An and then we show
that An is simple for n ≥ 5.

Theorem 4.47. The only normal subgroup of Sn is An for n ≥ 5 and the only subgroup
of Sn with index 2 is An.

Proof: Suppose that N is a normal subgroup of Sn with N nontrivial. We show that
An ⊆ N and therefore N = An or N = Sn. Choose a permutation σ ∈ N with σ not
the identity permutation. So there is an index i such that σ(i) 6= i. Choose an element
j ∈ {1, 2, 3, · · · , n} such that j 6= i and j 6= σ(i). They define α = (ij). Then we have

σ α σ−1 α−1 = (σ(i) σ(j))(i j)

But neither σ(i) = i nor j = σ(j) and σ(i) = σ(j), then the 2-cycles (σ(i) σ(j)) and (i j)
are not equal. Therefore, their product cannot be the identity. Then we have σ α 6= α σ.

Since N is a normal subgroup, σ α σ−1 α−1 ∈ N . From our construction, we have
σ(i) 6= i, j. It follows then that (σ(i) σ(j))(i j) must have the same cycle type, which is
(2, 2). If σ(j) one of i, j, then (σ(i) σ(j))(i j) must be a 3-cycle. Therefore, N must contain
a permutation of type (2, 2) or be a 3-cycle. However, since N is a normal subgroup of Sn,
it must contain all (2, 2) cycles or all 3-cycles.
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However, we know that An is generated by 3-cycles. Moreover, for n > 5, An is generated
by permutations of type (2, 2) as we can write any 3-cycle (x y z) as

(x y z) = (x y)(w v)(w v)(y z)

so long as neither w, v are one of the x, y, z. Since for n ≥ 5, all 3-cycles are conjugate in
An. Why? Suppose that σ is a 3-cycle in An with n ≥ 5. Then we can conjugate to (1 2 3)
for some permutation τ ∈ Sn. That is,

(1 2 3) = τ σ τ−1

If τ ∈ An, then the proof is complete. If τ /∈ An, then let τ = (4 5), notice that τ ∈ An.
Now when we conjugate, we find

τ σ τ−1 = (4 5)τ σ τ−1 = (4 5)(1 2 3)(4 5) = (1 2 3)

for some τ ∈ Sn. But then all this shows that An ⊂ N and N must contain a generator
for An; therefore, either N = An or N = Sn. �

Theorem 4.48. An is simple for n ≥ 5.

Proof: We apply induction on n. Let n = 5, then we first look at the conjugacy classes
of A5 and their orders. The representatives of the cycle types of even permutations can be
taken to be

1, (1 2 3), (1 2 3 4 5), (1 2)(3 4)

The only centralizers of the 3-cycles and 5-cycles which are contained in A5 are

CA5

(
(1 2 3)

)
= 〈(1 2 3)〉, CA5

(
(1 2 3 4 5)

)
= 〈(1 2 3 4 5)〉

These groups have order 3 and 5 with index 20 and 12, respectively. Therefore, there are
20 distinct conjugates of (1 2 3) and 12 distinct conjugates of (1 2 3 4 5) in A5. Since there
are twenty 3-cycles in S5 and all of these must lie in A5, we have that all 20 3-cycles are
conjugate in A5. There are 24 5-cycles in A5. However, only 12 of these distinct conjugates
of the 5-cycles (1 2 3 4 5). Thus, some 5-cycle, say σ, is not conjugate to (1 2 3 4 5) in
A5 (for example, σ = (1 3 5 2 4). Any element of S5 conjugating (1 2 3 4 5) to (1 3 5 2 4)
must be an odd permutation. So σ also has 12 distinct conjugates in A5, accounting for
all 24. So the conjugacy classes of A5 have order 1,15,20,12, and 12. Now suppose that H
is a normal subgroup of A5. Then H would be the union of the conjugacy classes of A5.
But then the order of H would be a divisor of 60 (the order of A5) and be the sum of some
collection of the integers {1, 12, 12, 15, 20}. But then the only possibilities are |H| = 1 or
|H| = 60. Hence, the only normal subgroups of A5 are trivial.

Now we proceed with the induction. Assume that n ≥ 6 and let G = An. Assume
that there exists a normal subgroup H of G with H nontrivial (H 6= 1 and H 6= G).
For each i ∈ {1, 2, 3, · · · , n}, let Gi be the stabilizer of i in the natural action of G on
i ∈ {1, 2, 3, · · · , n}. Therefore, Gi ≤ G and Gi ∼= An−1. By induction, Gi is simple for
1 ≤ i ≤ n.
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Now suppose first that there is some τ ∈ H with τ 6= 1 but τ(i) = i for some i ∈
{1, 2, 3, · · · , n}. Since τ ∈ H ∩Gi and H ∩Gi being normal in Gi, by the simplicity of Gi
we must have H ∩Gi = Gi, that is

Gi ≤ H
However, σGiσ

−1 = Gσ(i), so for all i, σGiσ
−1 ≤ σHσ−1 = H. Thus,

Gk ≤ H

for all j ∈ {1, 2, · · · , n}. Any λ ∈ An may be written as the product of an even number of
2t transpositions, so

λ = λ1λ2 · · ·λt
where λk is a product of two transpositions. Since n > 4, each λk ∈ Gj , for some j. Hence,

G = 〈G1, G2, · · · , Gn〉 ≤ H

which is a contradiction. Therefore, if τ /∈ 1 is an element of H, then τ(i) 6= i for an
i ∈ {1, 2, · · · , n}. That is, no nonidentity element of H fixes any element of {1, 2, 3, · · · , n}.

It then follows that if τ1, τ2 are elements of H with

τ1(i) = τ2(i)

for some i, then

τ1 = τ2

since then we would have τ−1
2 τ1(i) = i. Now suppose that there exists a τ ∈ H such that

the cycles decomposition of τ contains a cycle of length greater than 3, say

τ = (a1a2a3 · · · )(b1b2 · · · ) · · ·

Let σ ∈ G be an element with σ(a1) = a1, σ(a2) = a2 but σ(a3) 6= a3 (such an element
exists since in An since n ≥ 5). Then we have

τ1 = στσ−1 = (a1a2σ(a3) · · · )(σ(b1)σ(b2) · · · ) · · ·

so τ and τ1 are distinct elements of H with τ(a1) = τ1(a1) = a2, contrary to the fact that
if τ1(i) = τ2(i) for some i, then τ1 = τ2. So the only 2-cycle that can appear in the cycle
decomposition of nonidentity elements of H.

Now let τ ∈ H, with τ 6= 1, so that

τ = (a1a2)(a3a4)(a5a6) · · ·

Let σ = (a1a2)(a3a4)(a5a6) ∈ G. Then

τ1 = στσ−1 = (a1a2)(a3a4)(a5a6) · · ·

hence τ and τ1 are distinct elements of H with τ(a1) = τ1(a1) = a2, again contrary to the
fact that if τ1(i) = τ2(i) for some i, then τ1 = τ2. �

Finally, the proof we have been waiting for:

Theorem 4.49. The general equation of degree n cannot be solved by radicals for n ≥ 5.



63

Proof: For n ≥ 5, the group Sn has only An as the nontrivial proper normal subgroup,
which is simple. Because An is not abelian for n ≥ 5, it cannot be cyclic and then Sn
cannot be solvable and therefore the Galois group is not solvable. �

Notice how short the proof is! So short in fact, that it is almost lost in the sea of
theorems we developed to answer it. This shows the power of Galois theory - that a
difficult question as the solvability of all polynomials of certain degrees can be answered
so efficiently. However, the path to this power is certainly nontrivial.
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5. Representation Theory

Introduction. Here we look at how the one can study the symmetric groups with what
are called representations, which will be defined shortly. By Cayley’s Theorem, every
finite group can be thought of as a subgroup of the permutation group Sn for some n.
Our goal is to understand groups in a very different way. Every group of course comes
equipped with a binary operation. However, how the group behaves becomes a difficult
problem to answer. The goal of representation theory is to take a elements of a group and
represent them as matrices. Operations in the group then are linear transformations on a
vector space and the group operations become matrix operations. That is we study the
symmetries of a group G acting on a set X with a few extra structure restrictions. In this
way, questions about the group structure are reduced to linear algebra questions, which
are more concrete and well understood. Here then we make a change from the language of
groups to the language of modules and algebras. In group theory, we look at factor groups
to understand the group structure by looking at smaller pieces of the group. Similarly, we
will create a representation for a group and then break it up into irreducible pieces. If all
the irreducible pieces can be understood the symmetries of the space are understood and
hence the original group. Finally, it turns out that these representations for the symmetric
group can be quickly found and understood using diagrams called Young Tableaux. For
its clarity and brevity, we closely follow the language and proofs found in Sagan’s “The
Symmetric Group.” Throughout this section we assume that the group G under discussion
is finite.

5.1. Permutations. Though we have been discussing the properties of permutations through-
out this paper, we have not had occasion to work with many of its properties and repre-
sentation. Therefore, we shall briefly review these here to be sure of our language and
definitions throughout our discussion of representations. We call π ∈ Sn a permutation.
We can represent a permutation by specifying each action of π on {1, 2, · · · , n}. For ex-
ample, take π ∈ S4 given by

π(1) = 2 π(2) = 4 π(3) = 3 π(4) = 1

But this is not only very time consuming but repetitive. It is simpler to represent π using
a matrix. Taking π as before, we can represent it using the matrix

π =

(
1 2 3 4
2 4 3 1

)
where the top line is the element under consideration and the element directly below it is
where it is sent under π. Elements missing from the matrix notation are assumed to be
mapped to themselves under π. Now since the top line is fixed, we can drop it to obtain
the one line cycle notation.

π = (1 2 4)

where again elements missing from (· · · ) are assumed to be fixed. This is one of the
most common way of presenting a permutation π. Looking at the cycle notation for π, it is
clear that π breaks the elements into cycles of possibly varying lengths. The permutation
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π creates a partition on the set {1, 2, · · · , n}. It would then be useful to develop a language
so that we can talk about permutations in terms of partition on a set.

Definition 5.1. (k-Cycle/Cycle Type) A k-cycle or cycle of length k is a cycle containing
k elements. The cycle type type or the type of a permutation π is an expression in the
form (1n1 , 2n2 , · · · ,mnj ), where nj is the is the number n of k-cycles of length j in π.

Example 5.1. Consider the permutations π = (123)(45) and ρ = (12)(45) in S5. Then π
has cycle type (10, 21, 31) and ρ has cycle type (10, 22). Notice their product πρ = (13) has
cycle type (10, 21) and ρπ = (23) has cycle type (10, 21).

Example 5.2. Take the permutation (partition) of π ∈ S14 given by

π = (1 2)(3 4)(5)(6 7 8)(9 10 11 12 13 14)

contains the 2-cycles (1 2) and (3 4) and the 1-cycle (or fixed point, 5). The cycle type of
the permutation π is (11, 21, 31, 40, 50, 61) or (11, 21, 31, 61).

With this we can talk directly about partitions of a set as permutations on the set.

Definition 5.2. (Partitions) A partition on a set of n elements is a sequence

λ = (λ1, λ2, · · · , λl)

where all the λi are weakly decreasing and
∑l

i=1 λi = n

Notice in the following examples, the partition is essentially the cycle type.

Example 5.3. Consider again the permutations π = (123)(45) and ρ = (12)(45) in S5.
Then π corresponds to the partition (3, 2) and ρ to the partition (2, 2).

Example 5.4. Take the permutation from Example 5.2,

π = (1 2)(3 4)(5)(6 7 8)(9 10 11 12 13 14)

this corresponds to the partition λ = (6, 3, 2, 2, 1).

It should be clear that we are going to often be interested in partitions of a set, in this
case a group, because these partitions correspond to permutations of the set. Recall that
we say two elements g, h of a group are conjugate if there is a k ∈ G such that

g = khk−1

Lemma 5.1. Conjugacy classes form an equivalence relation.

Proof: Let g ∼ h if h = khk−1 for some k ∈ G.

1. Reflexive: g ∼ g as g = ege−1 = g.
2. Symmetric: If g ∼ h then there is a k ∈ G such that g = khk−1. Then h = k−1gk. So

let k′ = k−1 and then h = k′gk′−1 and h is conjugate to g.
3. Transitive: Suppose g ∼ h and h ∼ k. Then there is a m,n ∈ G such that g = mhm−1

and h = nkn−1. Then g = mhm−1 = m(nkn−1)m−1 = (mn)k(mn)−1 and mn conju-
gates k to g so g ∼ k. �
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The set of all elements that are conjugate to an element g is called the equivalence class,
Kg of g. Notice that as before we partitioned the set with numbers, conjugacy forms a set
partition of the set/group into conjugacy classes. The question is, how does one calculate
the number of conjugacy classes in a group? Since a permutation only permutes those
elements which are in the same cycle type, two permutations are in the same conjugacy
class if they have the same cycle type. In fact, the other direction holds as well. But then
there is a natural bijection between the cosets of Zg and Kg, giving the nice relation on
the cardinality of G

|G| = |Kg||Zg| or |Kg| =
|G|
|Zg|

Theorem 5.1. (|G| = |Kg||Zg|) Given a group G and an element g ∈ G, there is a
bijection between the cosets of Zg and elements of Kg so that |G| = |Kg||Zg|.

Proof: Suppose a group G acts on a set S. Let s ∈ S. Recall that the stabilizer of s in
G is Gs = {g ∈ G | gs = s} and the orbit of s is Os = {gs : g ∈ G}. First, we show that
Gs is a subgroup of G. Notice that e ∈ Gs because it fixes s. Therefore, Gs is nonempty.
Assume that a, b ∈ Gs. Then as = s and bs = s. Furthermore, b−1 ∈ Gs because

s =es

=(b−1b)s

=b−1(bs)

=b−1s

But since b−1s = s, then s = as = ab−1 and Gs is a subgroup of G. The natural mapping
from G to Os is surjective by definition since s is acted on by all of G. Define a mapping
φ : G/Gs → Os by

gGs → g · s
We need only show that this is injective to show that φ is a bijection. But this quickly
follows from the fact that if g, g′ ∈ G and gs = g′s then s = (g−1g′)s. Then g and g′ are in
the same coset. It is clear that the number of elements in Os is the number of left cosets
of Gs in G. This is given by |G|/|Gs|. Then we have

Os =
|G|
|Gs|

The g ∈ G act on s if and only if they lie in the same left coset of Zg. But then this is
exactly the idea that

|Ks| =
|G|
|Zg|

�



67

If we make the situation less general by letting G = Sn. If g ∈ G, g ∈ Sn, g is a
permutation π with some cycle type λ. We can then write Kλ and obtain the following for
permutations of cycle type λ

Theorem 5.2. (Centralizer Order) If λ = (1n1 , 2n2 , · · · ,mnj ) and g ∈ Sn has cycle-type
λ, then |Zg| depends only on λ and

zλ
def
= |Zg| = 1n1n1!2n2n2! · · ·mnjnj !

Proof: Given a h ∈ Zg, h will either permute the cycles of length i amongst themselves,
permute elements within the cycles, or both. Since there are mi cycles of length i, there
are mi! ways to permute them. Moreover, there are imi ways to rotate the elements with
a cycle of length i. To give the total number, we need only multiply and then we obtain
the relation in the theorem statement. �

Applying Theorem 5.1 to the symmetric group, we have

kλ =
n!

zλ
where kλ = |Kλ| and of course zλ can be calculated as in Theorem 5.2. One particular
aspect of permutations we will make use of is the sign of a permutation. Recall that
we can always decompose a permutation into transpositions (permutations of the form
π = (i, j)). Furthermore, the symmetric group Sn is generated by adjacent transpositions
(1 2), (3 4), · · · , (n − 1 n). When we write a permutation π in terms of two-cycles, then
the sign of the permutation is

sgn(π) = (−1)k

where k is the number of 2-cycles in π when it is written as the product of two-cycles
exclusively. Moreover, the sgn of a permutation is independent of the decomposition of π
into two-cycles, i.e it is well-defined, even though the decomposition of π into two cycles
need not be unique. It easily follows then that

sgn(πσ) = sgn(π)sgn(σ)

5.2. Representations. We now begin our goal of representing a group using matrices. We
attempt to imbed our group into a matrix space and study the group operation there where
it is equivalent to linear transformations on group elements. These questions are more well
understood and will allow us some insight on the more complicated structure of the group
and perhaps allow us to break the group into smaller parts. To do this we take a group and
associate each element with a matrix in GLn(C), the set of n× n invertible matrices with
entries in C. Using this we are able to create an algebra. An algebra is a vector space with
an associative multiplication of vectors and hence imposes a ring structure on the space.

Definition 5.3. (Representation)
A matrix representation of a group G is a group homomorphism

X : G→ GLd
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Equivalently, to each g ∈ G is assigned a matrix X(g) ∈ GLd such that

1. X(e) = I the identity matrix
2. X(gh) = X(g)X(h) for all g, h ∈ G
The parameter d is called the degree, or dimension, of the representation, denoted degX.

One might wonder why we only require a homomorphism and not an isomorphism be-
tween the space. First, finding an isomorphism between a group G and a subspace of
GLn for some n is generally more difficult than finding a homomorphism or even finding
subgroups of G! Second, we only need insight into the group structure. Requiring an
isomorphism would be equivalent trying to study the group structure as a whole, the only
difference being it is then in GLn. Only then it would require more work to translate the
whole group into GLn. Requiring only the homomorphism allows us to eventually break
the group into pieces and see a bit of its structure without having to understand it in its
entirety. Furthermore, since we only see a homomorphism we can vary the dimension of
the representation, d, and obtain different matrix representations which each may tells us
something different about the group.

Example 5.5. All groups have a matrix representation as we can place, as usual, the
trivial representation on the group. That is we map all of X to the identity in GLd. This
mapping is a homomorphism as

X(g)X(h) = 1d1d = X(gh)

for all g, h ∈ G. We often use 1G or 1 to represent the trivial representation of G. Moreover,
here we wrote [1]d to denote that this is the identity matrix for a matrix in GLd.

Example 5.6. An important 1 degree representation that is commonly seen for Sn is the
sign representation, X : G→ GL1. That is, given π ∈ Sn, then

X(π) = (sgn(π))

In fact, the reader should have already seen a matrix representation for the symmetric
group while studying permutations.

Example 5.7. Consider S3, then we have the matrix representation X : S3 → GL3 given
by

X(e) =

 1 0 0
0 1 0
0 0 1

 X((12)) =

 0 1 0
1 0 0
0 0 1


X((13)) =

 0 0 1
0 1 0
1 0 0

 X((23)) =

 1 0 0
0 0 1
0 1 0


X((123)) =

 0 0 1
1 0 0
0 1 0

 X((132)) =

 0 1 0
0 0 1
1 0 0
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Notice that the result of multiplying the permutations yields the same result as multiplying
their corresponding matrices. In fact, it is always easy to construct a matrix representation
for Sn. If i 7→ j under a permutation, simply go to column i and row j and place a
1 there. Do this for the entire permutation π ∈ Sn and the remaining entries are 0.
Moreover, notice each row and column has exactly one 1 in them. Finally, the det of the
corresponding permutation matrix is either 1 or -1 depending on if the permutation is even
or odd, respectively.

Example 5.8. The defining representation of Sn is also an important representation. If
π ∈ Sn then X(π) = (xi,j)n×n, where

xi,j =

{
1, if π(j) = i

0, otherwise

This is called the defining representation and it has degree n.

Example 5.9. We are going to find all 1-dimensional representations X of the cyclic group
of order n, Cn. That is, we are going to describe them all. Suppose g is the generator of
Cn,

Cn = {g, g2, g3, · · · , gn = e}

Now suppose that X(g) = (c), c ∈ C, then the matrix for every element of Cn is determined
by g since X(gk) = (ck), then

(cn) = X(gn) = X(e) = (1)

Therefore, c is a root of unity. But then there are exactly n representations with degree 1.
For example, take n = 4 and C4 = {e, g, g2, g3}. The fourth roots of unity are 1, i,−1,−i.
Then we have the table

e g g2 g3

X(1) 1 1 1 1

X(2) 1 i −1 −i
X(3) 1 −1 1 −1

X(4) 1 −i −1 i

Notice the trivial representation appearing in the first row of the table. We can create
other representations of a cyclic group. For example, we can take the example(

1 0
0 i

)
But notice this is the same as a combination of X(1) and X(2). So the above representation
is reducible with irreducible components X(1) and X(2). In fact, every representation of
Cn can be built using n representations of degree 1 as building blocks.
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5.3. G-Modules and Group Algebras. Now that we have represented a group as a
matrix, we can formalize the language we need to think of representations in terms of linear
transformations. This is called a G-module. Because matrix multiplication corresponds to
linear transformations this is fairly simple. Suppose that V is a complex vector space, we
will always assume that V has finite dimension. GL(V ) is the set of all invertible linear
transformations of V to itself, the general linear group of V . Note that if dimV = d then
GLd and GL(V ) are isomorphic groups.

Definition 5.4. (G-Module)
Let V be a vector space and G be a group. Then V is a G-module if there is a group
homomorphism

ρ : G→ GL(V )

Equivalently, V is a G-module if there is a multiplication, Gv, of elements of V by elements
of G such that

1. gv ∈ V
2. g(cv + dw) = c(gv) + d(gw)
3. (gh)v = g(hv)
4. ev = v

for all g, h ∈ G, v,w ∈ V , and scalars c, d ∈ C. Often G-module is shortened to just
module when the group used is clear. Moreover, often one says that the space V carries a
representation of G.

The equivalence of the definitions above is easy to see and the interested reader can
check that they are. Moreover, one can go back and forth between the definitions. If one
is given a representation X with degree d, let V be the vector space Cd of all possible
columns of length d. Then using

gv
def
= X(g)v

Then choose a basis β for V , where V is a G-module. Then X(g) is a matrix (linear
transformation) for g ∈ G in terms of the basis β. We can multiply v ∈ V by g ∈ G and
the multiplication on the right is matrix multiplication. Moreover, we have emphasized
the importance of group actions many times already and it doesn’t lose any importance
here. Suppose that G is a group and S is a nonempty finite set such that G acts on
S. Then we can take S and turn it into a G-module. Let S = {s1, s2, · · · , sn} and let
CS = C{s1, s2, · · · , sn} denote the vector space generated by S over C, i.e. it consists
of all linear combinations of {s1, s2, · · · , sn} with coefficients in C. Addition and scalar
multiplication in CS are defined as they are in normal vector operations. Now we extend
the action of G on S to an action on CS by linearity

g(c1s1 + c2s2 + · · ·+ cnsn) = c1(gs1) + c2(gs2) + · · ·+ cn(gsn)

where ci ∈ C. Then CS is a G-module with dimension |S| = n. This associated module,CS,
is known as the permutation representation. The elements of S form a basis for CS called
the standard basis.
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Definition 5.5. (Permutation Representation)
(Sagan) If a group G acts on a set S, then the associated module described above, CS, is
called the permutation representation associated with S. Also, the elements of S form a
basis for CS called the standard basis.

Example 5.10. We can create an Sn-module from the set S = {1, 2, · · · , n} as follows,

CS = {c11 + c22 + · · ·+ cnn | ci ∈ C for all i}
with action

π(c11 + c22 + · · ·+ cnn) = c1π(1) + c2π(2) + · · ·+ cnπ(n)

for all π ∈ Sn. Of course, we can create these using permutation matrices as described in
Example 5.7.

Example 5.11. Here is one of the most important representations for a group G, the (left)
regular representation - the right is constructed analogously. Let G be a group, then G
acts on itself through left multiplication, using the usual product in the group. Almost all
of the representation properties follow from the group axioms of G. So if G is finite, i.e.
G = {g1, g2, · · · , gn} then the G-module

C[G] = {c1g1 + c2g2 + · · ·+ cngn | ci ∈ C for all i}
is called the group algebra of G. The square brackets indicate that this is an algebra and
not simply a vector space. If gigj = gk ∈ G then gigj = gk ∈ C[G]. So the action of G on
the group algebra is given by

g(c1g1 + c2g2 + · · ·+ cngn) = c1(gg1) + c2(gg2) + · · ·+ cn(ggn)

for all g ∈ G. Similarly, we can construct a coset representation analogously as well.

Definition 5.6. (Group Algebra) Let G be a finite group. Then the group algebra of G is

C[G] = {c1g1 + c2g2 + · · ·+ cngn | ci ∈ C for all i}

Example 5.12. We can easily find the regular representation for the cyclic group C3. Let
g be a generator of C3, then

C[C3] = {c1e + c2g + c3g
2 | ci ∈ C for all i}

Then the matrices are easily found in the standard basis. For example,

ge = g gg = g2 gg2 = e

and then

X(g) =

 0 0 1
1 0 0
0 1 0


Remark 5.1. If G acts on a vector space V , then so does C[G].

Notice that the left regular representation for a finite group G embeds G into the sym-
metric group on a set of |G| elements. However, notice that we have shown this before in
the Introduction and the reader know this as Cayley’s Theorem.



72

5.4. Reducibility of Representations. When working with any complex mathematical
object, the most fruitful method of attack is to break the object up into manageable pieces.
Once these pieces are understood, we can take them and build larger representations. The
reader should be familiar with this from the study of normal groups and the work we did
earlier with quotient rings previously. With representations, this concept is reducibility.

Definition 5.7. (Submodule) Let V be a G-module. A submodule of V is a subspace W
that is closed under the action of G, i.e.

w ∈W → gw ∈W for all g ∈ G
Equivalently, W is a subset of V that is a G-module under the same action. We say that
W is a G-invariant subspace. If W is submodule of V , then we write W ≤ V .

Example 5.13. Every G-module comes equipped with two submodules, W = {0}, called
the trivial submodule, and W = V .

Example 5.14. Take G = Sn for n ≥ 2 and W = C{1 + 2 + · · ·+ n}. Define W as

W = C{1 + 2 + · · ·+ n} = {c(1 + 2 + · · ·+ n) | c ∈ C}
Then W is a 1-dimensional submodule spanned by 1 + 2 + · · ·+ n.

We can now define what exactly it means to be able to break a representation into
smaller pieces.

Definition 5.8. (Reducibility) A nonzero G-module V is reducible if it contains a non-
trivial submodule W . Otherwise, V is said to be irreducible. Equivalently, V is reducible
if it has a basis B in which every g ∈ G is assigned a block matrix of the form

C =

(
A(g) B(g)

0 C(g)

)
where the A(g) are square matrices, all of the same size, and 0 is a nonempty matrix of
zeros.

Remark 5.2. The equivalence of the two definitions for reducibility is not immediately clear.
To see it, suppose that V has dimension d and has a non-zero proper submodule W with
dimension f . Then let

B = {w1,w2, · · · ,wf ,vf+1,vf+2, · · · ,vd}
with the first f w vectors are a basis for W . Since W is a submodule of V , gwi ∈ W for
all i, 1 ≤ i ≤ f . Then the last d− f coordinates of gwi will all be zero. This is why there
is a 0 in the bottom left corner of the block matrix. Now note that we also know that A(g)
for all g ∈ G are matrices of the restriction of G to W and hence must all be square and
of the same size.

Now if X(g) has the form given by the definition with every A(g) being f × f in size.
Then let V = Cd and consider

W = C{e1, e2, · · · , ef}
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where ei is the column vector with a 1 in the ith row and zeros everywhere else, i.e. the
standard basis for Cd. The zero placement guarantees that X(g)ei ∈W for 1 ≤ i ≤ f and
all g ∈ G. Then W is a G-module. It must be nontrivial because the matrix of zeros is
nonempty.

It is not easy to determine when a representation is reducible. Without doubt, the 1-
dimensional representation is irreducible. However, given a representation of degree d, is
it reducible? One could find all subspaces of a vector space V and check to see if they are
also submodules would be computationally inefficient. In fact, with the tools we have now,
we cannot answer this question. But later we will develop the tools needed to check the
reducibility of a module. For now, we will extend the concept of reducibility.

Definition 5.9. (Complements) Let V be a vector space with subspaces U and W . Then
V is the internal direct sum of U and W , V = U ⊕ V , if every v ∈ V can be written
uniquely as a sum

v = u + w u ∈ U,w ∈W
If both are G-modules, say that U and W are complements of each other. However, if X
is a matrix, then X is the direct sum of matrices A and B, written X = A⊕ B, if X has
the block diagonal form

X =

(
A 0
0 B

)
Remark 5.3. Again, we shall show the equivalency of the definitions. Suppose V is a
G-module with V = U ⊕ W , where U,W ≤ V . So given a basis {u1,u2, · · · ,uf} and
{w1,w2, · · · ,wd−f} are a basis for U and W , respectively, then we can construct a basis
for V

B = {u1,u2, · · · ,uf ,wf+1,w2, · · · ,wd}
Since U,W are submodules, then

gui ∈ U and gwj ∈W
for all g ∈ G, ui ∈ U , and wj ∈W . Then any matrix of g ∈ G in the basis B is

X =

(
A 0
0 B

)
where A(g) and B(g) are matrices of the action of G restricted to U and W , respectively.

However, we are left with the problem of finding these irreducible parts. This problem
is not as simple as finding how to break apart the vector space. For example, consider the
defining representation of S3. It is clear that

V = C{1,2,3} = C{1 + 2 + 3} ⊕ C{2,3}
as vector spaces. But C{1+2+3} is an S3 submodule while C{2,3} is not an S3 submodule.
as (12)2 = 1 /∈ C{2,3}. So in order to completely reduce S3, we need to find a submodule
U such that

C{1,2,3} = C{1 + 2 + 3} ⊕ U
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It is clear that U will be the complement of C{1 + 2 + 3} in C{1,2,3}. To find such a
complement, we will need the concept of the inner product.

Definition 5.10. (Inner Product) Suppose that v = (v1, v2, · · · , vn) and w = (w1, w2, · · · , wn).
Then their inner product, 〈v,w〉, is given by

〈v,w〉 =
n∑
i=1

viwi

where · is complex conjugation. Equivalently, define

〈v,w〉 = δi,j

where δi,j is the Kronecker delta and extend the linearity in the first variable and conjugate
linearity in the second.

Both these definitions satisfy the axioms for an inner product, as the reader can easily
check. Moreover, these inner products are invariant under the action of G, that is

〈gv, gw〉 = 〈v,w〉
for all g ∈ G and v,w ∈ V . To show that the inner product is invariant on V , one need only
check these for the basis elements. But now given a submodule, we can find its orthogonal
complement.

Definition 5.11. (Orthogonal Complement) Given a subspace W of a vector space V , the
orthogonal complement of W , W⊥ is

W⊥ = {v ∈ V | 〈v,w〉 = 0 for all w ∈W}

Notice then that V = W ⊕W⊥. This is not to say if we take a subspace that we are then
always able to reduce the space to an inner product. If the orthogonal complement of W is
{0}, then this is trivial and we haven’t reduced the space. This is certainly the case when
the space is already reduced. Moreover, the orthogonal complement itself may be reducible!
But this process allows us to slowly reduce the space - when possible. However, there are
circumstances where we can extend this further, when the inner product is G-invariant and
W ≤ V .

Theorem 5.3. Let V be a G-module, W a submodule, and 〈·, ·, 〉 an inner product that is
invariant under the action of G, then W⊥ is also a G-submodule.

Proof: Our goal is to show that gu ∈ W⊥ holds for all g ∈ G and u ∈ W⊥. So suppose
that w ∈W , then

〈gu,w〉 =〈(g−1g)u, g−1w〉
=〈u, g−1w〉
=0

But then W⊥ is closed under the action of G. �
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Example 5.15. Take the example we discussed earlier of C{1 + 2 + 3} in C{1,2,3}. We
find the orthogonal complement.

C{1 + 2 + 3}⊥ ={v = a1 + b2 + c3 | 〈v,1 + 2 + 3〉 = 0}
={v = a1 + b2 + c3 | a+ b+ c = 0}

Choose for C{1 + 2 + 3} the obvious basis {1 + 2 + 3} and for C{1 + 2 + 3}⊥ the basis
{2− 1,3− 1}.

Then simple calculation yields the matrices

X(e) =

 1 0 0
0 1 0
0 0 1

 X((12)) =

 1 0 0
0 −1 −1
0 0 1


X((13)) =

 1 0 0
0 1 0
0 −1 −1

 X((23)) =

 1 0 0
0 0 1
0 1 0


X((123)) =

 1 0 1
0 −1 −1
0 1 0

 X((132)) =

 1 0 0
0 0 1
0 −1 −1


Notice then that all the matrices we have calculated are direct sums of matrices of the form

X(g) =

 A(g) 0 0
0

B(g)
0


One immediately notices that A(g) must be irreducible as it has degree 1. So we have

reduced the defining representation of S3 into irreducible parts.
First, notice that we don’t reduce S3 but rather we reduce a particular representation

of S3, in our example the defining representation. Second, notice nothing in this method
is case specific to Sn. So can this method be applied to any group? The answer is yes, so
long as the group is finite. This is the idea of Maschke’s Theorem.

Theorem 5.4. (Maschke’s Theorem) Let G be a finite group and let V be a nonzero G-
module, then

V = W (1) ⊕W (2) ⊕ · · · ⊕W (k)

where each W (i) is an irreducible G-submodule of V . This can also be equivalently stated
as every representation of a finite group having positive dimension is completely reducible.

Proof: We prove this by induction on dim V . If dim V = 1, it is immediate that V is
irreducible and we are done (as k = 1 and then W (1) = V ). Now assume this is true for all
V ′ with 1 < dim V ′ < dim V ′ + 1 = dim V . Now if V is irreducible, we have again that
k = 1 and W (1) = V . Suppose then V is reducible, then there is a nontrivial G-submodule,
say W . It remains to show that there is a submodule complement for W .

Let d = dim V and B = {v1,v2, · · · ,vd} be a basis for V . Then the inner product

〈vi,vj〉 = δi,j
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on all the elements of B. This inner product may not be G-invariant. If it is not, we will
“fix” it so that it is. Define a new inner product, if necessary, 〈·, ·〉, defined by

〈v,w〉′ =
∑
g∈G
〈gv, gw〉

for all v,w ∈ V . It is simple to check that 〈·, ·〉′ satisfies the axioms of an inner product
(it essentially inherits these properties from 〈·, ·〉). Now we show that 〈·, ·〉′ is G-invariant,
which means we need to show that

〈gv, gw〉′ = 〈v,w〉′

for all g, h ∈ G and v,w ∈ V . However,

〈gv, gw〉′ =
∑
g∈G
〈ghv, ghw

=
∑
f∈G
〈fv, fw〉′〉′

=〈v,w〉′

where f = gh. This shows that 〈·, ·〉′ is G-invariant. Now let

W⊥ = {v ∈ V | 〈v,w〉′ = 0}
Then we have W⊥ is a G-submodule of V with

V = W ⊕W⊥

Then simply applying induction to W and W⊥, writing each as a direct sum of irreducibles,
and putting the decompositions together, we have V in the form of the theorem. �

Corollary 5.1. (Masche’s Diagonal) Let G be a finite group and let X be a matrix repre-
sentation of G of dimension d > 0. Then there is a fixed matrix T such that every matrix
X(g), g ∈ G, has the form

TX(g)T−1 =


X(1)(g) 0 · · · 0

0 X(2)(g) · · · 0
...

...
. . .

...

0 0 · · · X(k)(g)


where each X(i) is an irreducible matrix representation of G.

Proof: Let V = Cd with action
gv = X(g)v

for all g ∈ G and v ∈ V . Then using Maschke’s Theorem,

V = W (1) ⊕W (2) ⊕ · · · ⊕W (k)

with each W (i) being irreducible with dimension di. Take some basis B for V such that
the first d1 vectors are a basis for W (1), the next d2 are a basis for W (2), and so forth.
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Then our matrix T transforms the standard basis for Cd into B will work, as conjugating
T expresses each X(g) in the new basis B. �

Definition 5.12. (Complete Reducibility) A representation is completely reducible if it
can be written as a direct sum of irreducibles.

Of course then we are able to state Mascke’s Theorem as, “every representation of a
finite group having positive dimension is completely reducible.”

5.5. G-Homomorphisms. A key tool in Mathematics in studying objects is studying
functions which preserve their structures. For G-modules, the corresponding function is
called a G-homomorphism.

Definition 5.13. (G-Homomorphism) Let V andW beG-modules. Then aG-homomorphism
is a linear transformation θ : V →W such that

θ(gv) = gθ(v)

for all g ∈ G and v ∈ V . We say that θ preserves or respects the action of G.

Example 5.16. Suppose that G = Sn and let V = C{v} with the trivial action of Sn.
Finally, let W = C{1,2, · · · ,n} with the defining action of Sn. Now define a transformation
θ : V →W by

θ(cv) = c(1 + 2 + · · ·+ n)

for all c ∈ C. The last two equalities follow because π is a permutation. To check that θ is
a G-homomorphism, it suffices to check the action of G is preserved on a basis of V . For
all π ∈ Sn,

θ(πv) = θ(v) =
n∑

i=1

i = π
n∑

i=1

i = πθ(v)

Example 5.17. Similar to the previous example, let G be an arbitrary group acting on
V = C{v} and let W = C[G] be the group algebra. We can create a G-homomorphism
θ : V →W given by extending

θ(v) =
∑
g∈G

g

linearly.

Definition 5.14. (G-Equivalency) Let V and W be G-modules. A G-isomorphism is a G-
homomorphism θ : V →W that is bijective. Then we say that V and W are G-isomorphic,
or G-equivalent. This is written V ∼= W . If V and W are not G-equivalent, we say that V
and W are G-inequivalent.

Of course with a homomorphism, we immediately have two subspaces that are of par-
ticular interest: the kernel and image under a homomorphism θ. However, when θ is a
G-homomorphism, the kernel and image have the standard properties:

Theorem 5.5. Let θ : V →W be a G-homomorphusm. Then
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1. ker θ is a G-submodule of V .
2. im θ is a G-submodule of W .

Both of these properties are easily shown; in fact, they should be expected to be so! But
we are now able to characterize G-homomorphisms for irreducible modules.

Theorem 5.6. (Schur’s Lemma) Let V and W be two irreducible G-modules. If θ : V →W
is a G-homomorphism, then one of the following

1. θ is a G-isomorphism.
2. θ is the zero map.

Proof: Since V is irreducible and ker θ is a submodule, it must be the case that
ker θ = {0} or ker θ = V . The irreducibility of W equally implies that im θ = {0} or
im θ = W . If ker θ = V or im θ = {0} then θ must be the zero map. But if ker θ = {0}
or im θ = W , θ must be an isomorphism. �

Corollary 5.2. (Schur’s Matrix Lemma) Let X and Y be two irreducible matrix represen-
tations of G. If T is any matrix such that TX(g) = Y (g)T for all g ∈ G, then one of the
following

1. T is invertible.
2. T is the zero matrix.

and where the range module is not irreducible,

Corollary 5.3. Let V and W be two G-modules with V being irreducible. Then dim HomG(V,W ) =
0 if and only if W contains no submodule isomorphic to V .

From Schur’s lemma, we know that forG-homomorphisms between irreducibleG-modules
must either be trivial or a G-isomorphism. Why? If ϕ is a G-homomorphism between two
irreducible G-modules which are moreover matrix representations, then if ϕ is an isomor-
phism, the mapping must be a linear mapping which is invertible, or if ϕ is the zero map
then the linear matrix representing the transformation must be the zero matrix. Also,
Corollary 5.3 follows from Corollary 5.2 and Theorem 5.2. These corollaries give us more
than we would expect! If the field is C and T is a matrix such that

TX(g) = X(g)T

for all g ∈ G, clearly
(T − cIn)X = X(T − cIn)

where In is the appropriately sized identity matrix and c ∈ C is a scalar. But because
C is algebraically closed, take c to be an eigenvalue of T . But then T − cIn satisfies the
corollary with X = Y . But T − cIn is not invertible by the choice of c. Hence, it must be
the case that T − cIn = 0n, where 0n is the appropriately sized zero matrix. But then we
have T = cIn.

Corollary 5.4. Let X be an irreducible matrix representation of G over the complex num-
bers. Then the only matrices T that commute with X(g) for all g ∈ G are those of the
form T = cIn, scalar multiplies of the identity.
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5.6. Special Algebras. In the previous section, we placed a special emphasis on those
matrices with commute with the representation. These matrices correspond in some way to
the set of G-homomorphisms from a G-module to itself. Here we shall extend these ideas.
These concepts will play a critical role in constructing the irreducible representations for
the symmetric group later.

Definition 5.15. (Commutant Algebra) Given a matrix representation X : G → GLd,
the corresponding commutant algebra is

Com X = {T ∈ Matd |TX(g) = X(g)T for all g ∈ G}
where Matd is the set of d× d matrices with entries in C.

Definition 5.16. (Endomorphism Algebra) Given a G-module V , the corresponding en-
domorphism algebra is

End V = {θ : V → V | θ is a G-homomorphism}

Example 5.18. Suppose we have a matrix representation X, where

X =

(
X(1) 0

0 X(2)

)
= X(1) ⊕X(2)

where X(1) and X(2) are inequivalent and irreducible of degree d1, d2, respectively. Then
one can check that the commutant algebra is

Com X = {c1Id1 ⊕ c2Id2 | c1, c2 ∈ C}
where d1 = deg X(1) and d2 = deg X(2).

In fact, in general, if X = ⊕ki=1X
(i), where the X(i) are pairwise inequivalent irreducibles,

then it is the case that
Com X = {⊕ki=1ciIdi | ci ∈ C}

where again di = deg X(i). This follows from the corollaries to Schur’s lemma. Of course,

the degree of X is
∑k

i=1 di and the dimension of Com X is k. To help simplify the notation,
we write

mX
def
= X ⊕X ⊕ · · · ⊕X

where m is a nonnegative integer and the direct sum on the right is taken m times. The
integer m is called the multiplicity of X. But of course then that gives us the general case
that if

X = m1X
(1) ⊕m2X

(2) ⊕ · · · ⊕mkX
(k)

again where the X(i) are pairwise inequivalent irreducible with deg X(i) = di, then the
degree of X is given by

deg X =
k∑
i=1

deg(miX
(i))

We shall not say much about the general properties of the commutant and endomorphism
algebras as they will only play a structural role in what will come. However, we shall
summarize their general properties.
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Theorem 5.7. Let X be a matrix representation of G such that

X = m1X
(1) ⊕m2X

(2) ⊕ · · · ⊕mkX
(k)

where the X(i) are pairwise inequivalent and irreducible with deg X(i) = di. Then we have

1. deg X =
∑k

i=1 deg(miX
(i))

2. Com X = {⊕ki=1(Mmi ⊗ Idi) |Mm ∈ Matmi for all i}
3. dim(Com X) = m2

1 +m2
2 + · · ·+m2

k

4. ZCom X = {⊕ki=1ciImidi | ci ∈ C for all i}
5. dim ZCom X = k

where ZCom X is the center of Com X. An observant reader should have noticed the
careful assumption that X is already decomposed into a list of irreducibles of some multi-
plicity. What, if anything, would change if some of the X(i) representations were reducible?
Using Maschke’s Theorem (specifically the matrix version), if we had any such module X
with one of its parts reducible, then it has to be equivalent to some reduced representation
that is of the form from the theorem statement. Moreover, saying that if X is a matrix
representation not broken up into irreducibles and X = MYM−1 for some fixed matrix
M , then the map

T 7→MTM−1

is an algebra isomorphism from Com Y to Com X. But if the commutant algebras are
isomorphic, then their centers too must be isomorphic. Then the above theorem holds
with the realization that the equalities are not true equalities but rather are isomorphisms.
As one would expect, there is a module version as well.

Theorem 5.8. Let V be a G-module, such that

V ∼= m1V
(1) ⊕m2V

(2) ⊕ · · · ⊕mkV
(k)

where the V (i) are pairwise inequivalent irreducibles and dim V (i) = di. Then we have

1. deg V =
∑k

i=1 deg(miV
(i))

2. End V ∼= ⊕ki=1Matmi
3. dim(End V ) = m2

1 +m2
2 + · · ·+m2

k
4. ZEnd V is isomorphic to the algebra of diagonal matrices of degree k
5. dim ZEnd V = k

Of course then we have

Proposition 5.1. Let V and W be G-modules with V irreducible. Then dim Hom(V,W )
is the multiplicity of V in W .

5.7. Group Characters. Our goal has been to learn about a group through representa-
tions. To understand a representation, it is easiest to break the representation into smaller,
more manageable parts, i.e. the irreducible components of a representation. To understand
these irreducible parts is to understand the entire representation. As it turns out, much
of the information about a representation is encoded in the trace of the corresponding
matrices.
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Definition 5.17. (Group Characters) Let X(g), g ∈ G, be a matrix representation. Then
the character of X is

χ(g) = tr X(g)

where tr denotes the trace of a matrix. Stated differently, χ is the map

G
tr X−−−→ C

If V is a G-module, then its character is the character of a matrix representation X corre-
sponding to V .

Of course, since there are many representations for a G-module, one first needs to check
that the module character is well-defined. However, this is a simple matter. If X and Y
both correspond to a vector space V , then Y = TXT−1 for some fixed T . But then for all
g ∈ G,

tr Y (g) = tr TX(g)T−1 = tr X(g)

since the trace of a matrix is invariant under conjugation. But then X and Y have the same
character and the definition is well-defined. The language we have created for modules will
remain the same for characters. For example, if X has character χ, then χ is said to be
irreducible whenever X is irreducible.

Example 5.19. Let G be an arbitrary group and X a representation of degree 1. Then
the character χ(g) is the sole entry of X(g) for each g ∈ G. These characters are called
linear characters.

Example 5.20. Consider the defining representation of Sn with its character χ. If n = 3,
then the character values can be computed by taking the traces of the matrices from
Example 5.7.

χ( e ) =3 χ( (12) ) = 1 χ( (13) ) =1

χ( (23) ) =1 χ( (123) ) = 0 χ( (132) ) =0

From the previous example, it is clear that for a permutation π ∈ Sn, that χ(π) is the
number of 1s along the diagonal of X(π). But this is precisely the number of fixed points
of π.

Proposition 5.2. (Group Characters) Let X be a matrix representation of a group G of
degree d with character χ

1. χ(e) = d
2. If K is a conjugacy class of G, then

g, h ∈ K → χ(g) = χ(h)

3. If Y is a representation of G with character ψ, then

X ∼= Y → χ(g) = ψ(g)

for all g ∈ G
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Proof:

1. Since X(e) = Id, we have

χ(e) = tr Id = d

2. By hypothesis, g = khk−1. Therefore,

χ(g) = tr X(g) = tr X(k)X(h)X(k)−1 = tr X(h) = χ(h)

3. This follows from the fact that the group character is well-defined. �

In fact, in the preceding proposition, the converse of number three is also true.

Definition 5.18. (Class Function) A class function on a group G is a mapping f : G→ C
such that f(g) = f(h), whenever g and h are in the same conjugacy class. The set of all
class functions on G is denoted by R(G).

In fact, since sums and scalar multiples of class functions are again class functions, R(G)
is a vector space over C. Moreover, R(G) has a natural basis consisting of all functions
with value 1 on a given conjugacy class and 0 elsewhere. Then

dim R(G) = the number of conjugacy classes of G

But then if K is a conjugacy class and χ is a character then since χ is a class function, we
can define χk to be the value of the given character on the given class:

χk = χ(g)

for any g ∈ K.

Definition 5.19. (Character Table) Let G be a group. The character table of G is an ar-
ray with rows indexed by the inequivalent irreducible characters of G and columns indexed
by the conjugacy classes. The table entry in row χ and column K is χk:

· · · K · · ·
...

...
χ · · · χk
...

By convention, the first row corresponds to the trivial character and the first column
corresponds to the class of the identity, K = {e}.

As it turns out, we can always write a character table as the character table is always
finite. But why? There may be an infinite number of irreducible characters of G! As
it turns out, the number of inequivalent irreducible representations of G is equal to the
number of conjugacy classes, so the character table is always finite. Furthermore, the
character table is always square.



83

5.8. Young Subgroups and Tableaux. Here we will finally construct all irreducible
representations of the symmetric group. The number of such representations must be the
number of conjugacy classes, which for Sn is the number of partitions of n. We will need to
find how to associate an irreducible submodule with each partition λ. Then we produce the
right number of representations by inducing the trivial representation on each Sλ up to Sn.
Then if Mλ is a module for 1 ↑SnSλ , we cannot expect that these modules will be irreducible.

But we find an ordering λ(1), λ(2), · · · of all partitions of n with a nice property. The first

module Mλ(1) will be irreducible, call it Sλ
(1)

. The next one, Mλ(2) will contain only copies

of Sλ
(1)

plus a single copy of a new irreducible Sλ
(2)

. In general, Mλ(l) will decompose into

Sλ
(k)

for k < i and a unique new irreducible Sλ
(i)

called the ith Specht module. Then the

matrix giving the the multiplicities for expressing Mλ(i) as a direct sum of the Sλ
(i)

will be
lower triangular with ones down the diagonal. It is then easy to compute the irreducible
characters of Sn. The first thing we will need to do is build the modules, Mλ. But first it
is necessary to introduce the necessary language.

Definition 5.20. (Parition) If λ = (λ1, λ2, · · · , λl) is a partition of n, we write λ ` n.
Moreover, the notation |λ| =

∑
i λi so that |λ| = n.

Definition 5.21. (Ferrers Diagram) Suppose that λ = (λ1, · · · , λl) ` n. The Ferrers
diagram, or shape, of λ is an array of n dots having l left-justified rows with row i containing
λi dots for 1 ≤ i ≤ l.

Example 5.21. Take the partition λ = (5, 5, 4, 2, 1). Then Ferrers diagrams for λ are

· · · · ·
· · · · ·
· · · ·
· ·
·

or of course

− − − − −
− − − − −
− − χ −
− −
−

where the χ is in the (3, 3) position.

However, this is the “English” notation. Some will represent their Ferrers diagram
inverted vertically to what we have here. Now we can associate with λ a subgroup of Sn.
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Definition 5.22. (Young Subgroup) Let λ = (λ1, · · · , λl) ` n. The corresponding Young
subgroup of Sn is

Sλ = S{1,2,··· ,λl} × S{λ1+1,λ1+2,··· ,λ1+λ2} × · · · × S{n−λl+1,n−λl+2,··· ,n}

Example 5.22. Consider the partition λ = (3, 3, 2, 1) in S9. Then

S(3,3,2,1) =S{1,2,3} × S{4,5,6} × S{7,8} × S{9}
∼=S3 × S3 × S2 × S1

Definition 5.23. (Young Tableaux) Suppose that λ ` n. A Young tableau of shape λ is
an array t obtained by replacing the dots of the Ferrers diagram of λ with the numbers
1, 2, · · · , n, bijectively. Let ti,j stand for the entry of t in position (i, j). A Young tableaux

of shape λ is also called a λ-tableau and denoted by tλ. We will also write sh t = λ. There
must be n! shapes.

Moreover, what we will ultimately be interested in is equivalence classes of tableaux.

Definition 5.24. (λ-tabloid) Two λ-tableaux t1 and t2 are said to be row equivalent,
t1 ∼ t2, if the corresponding rows of the two tableaux contain the same elements. A
tabloid of shape λ, or λ-tabloid, is then

{t} = {t1 | t1 ∼ t}

where sh t = λ.

Of course we already know that if λ = (λ1, λ2, · · · , λl) ` n, then the number of tableaux

in any given equivalence class is λ1!λ2! · · ·λl!
def
= λ! making the total number of λ-tabloids

n!
λ! . But how exactly do permutations act on a tableaux? If πSn acts on a tableau t = (ti,j)
of shape λ ` n as follows:

πt = ( π(ti,j) )

That is, π acts on the elements of the rows and columns of a λ-tabloid. This induces an
action on tabloids by defining

π{t} = {πt}
Although it is not immediately evident, this definition is well defined. With this definition
of a tabloid action, we give rise to an Sn-module.

Definition 5.25. (Permutation Module) Suppose that λ ` n. Let

Mλ = C{ {t1}, {t2}, · · · , {tk} }

where {t1}, · · · , {tk} is a complete list of λ-tabloids. Then Mλ is called the permutation
module corresponding to λ.

Example 5.23. If λ = (n), then

M (n) = C{1 2 · · · n}

with the trivial action, where 1 2 · · · n is a tabloid.
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Example 5.24. Consider λ = (1n). Each equivalence class {t} consists of a single tableau
and this tableau can be then identified with a permutation in one-line notation. Because
the action of Sn is preserved,

M (1n) ∼= CSn
and the regular representation presents itself.

Example 5.25. If λ = (n−1 1) then each λ-tabloid is uniquely determined by the element
in its second row, which is a number from 1 to n.

M (n−1 1) ∼= C{1,2, · · · ,n}

which is the defining representation.

Moreover, Mλ enjoy the general properties of modules.

Definition 5.26. Any G-module M is cyclic if there is a v ∈M such that

M = CGv

where Gv = {gv | g ∈ G}. We say that M is generated by v.

Proposition 5.3. If λ ` n then Mλ is cyclic and is generated by any given λ-tabloid. In
addition, dimMλ = n!

λ! , the number of λ-tabloids.

Theorem 5.9. Consider λ ` n with Young subgroup Sλ and tabloid {tλ}. Then V λ =
CSnSλ and Mλ = CSn{tλ} are isomorphic as Sn modules.

Proof: Let π1, π2, · · · , πk be transversal for Sλ. Define a map

θ : V λ →Mλ

by θ(πiSλ) = {πitλ} for i = 1, 2, · · · , k and linear extension. It is then a simple matter of
calculation to show that θ is the desired Sn-isomorphism of modules. �

5.9. Lexicographic Ordering. Now we need to find an ordering of partitions of λ such
that the Mλ have the nice property we discussed at the start of our discussion of Young
Tableaux. We will consider two possible important orderings on partitions n, one of which
will be a partial order.

Definition 5.27. (Partial Ordering) If S is a set, then a partial order on S is a relation
≤ such that

1. a ≤ a
2. a ≤ b and b ≤ a implies that a = b
3. a ≤ b and b ≤ c implies that a ≤ c
for all a, b, c ∈ S. We write (A,≤) and say that A is a partial ordered set, or poset. If we
have either a ≤ b or b ≤ a, then ≤ is a total order and (A,≤) is a totally ordered set.
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Pairs of elements, say a, b ∈ A, such that neither a ≤ b and b ≤ a hold are called
incomparable. The set {0, 1, 2, · · · , n} with the normal ordering is a totally ordered set
called the n-chain and is denoted by Cn. The particular partial order which will be of great
interest to us will be the following:

Definition 5.28. (Domination) Suppose that λ = (λ1, λ2, · · · , λl) and µ = (µ1, µ2, · · · , µm)
are partitions of n. Then λ dominates µ, written λD µ if

i∑
k=1

λi ≥
i∑

k=1

µi

for all i ≥ 1. If i > l,m, then we take λi to be zero.

In a visual sense, λ is great than µ in the domination order if the Ferrers diagram of λ is
short and fat while the one for µ is long and skinny. This concept is encoded in the Hasse
diagram for partitions.

Definition 5.29. (Hasse Diagram) If (A,≤) is a poset and b, c ∈ A, then we say that b is
covered by c (or c covers b), written b ≺ c (or c � b), if b < c and there is no d ∈ A with
b < d < c. The Hasse diagram of A consists of vertices representing the elements of A with
an arrow from vertex b up to vertex c if b is covered by c.

Hasse diagrams greatly resemble a lattice of subgroups or lattice of subfields.

Lemma 5.2. (Dominance Lemma for Partitions) Let tλ and sµ be tableaux of shape λ and
µ, respectively. If for each index i the elements of row i of sµ are all in different columns
in tλ, then λD µ.

Proof: By hypothesis, we can sort the entries in each column of tλ so that the elements
of rows 1, 2, · · · , i of sµ all occur in the first i rows of tλ. Thus,

λ1 + λ2 + · · ·+ λi = the number of elements in the first i rows oftλ

≥ number of elements of sµ in the first i rows of tλ

=µ1 + µ2 + · · ·+ µi

�

Definition 5.30. (Lexicographic Order) Let λ = (λ1, λ2, · · · , λl) and µ = (µ1, µ2, · · · , µm)
be partitions of n. Then λ < µ in the lexicographic order if for some index i,

λj = µj for j < i and λi < µi

This is a total ordering on partitions. The lexicographic ordering is then a refinement
of the dominance order in the following sense:

Proposition 5.4. If λ, µ ` n with λD µ, then λ ≥ µ.

Proof: If λ 6= µ, then find the first index i where they differ. Then
∑i−1

j=1 λj =
∑i−1

j=1 µj

and
∑i

j=1 λj >
∑i

j=1 µj , since λD µ, λi > µi. �
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5.10. Specht Modules. We can now construct all irreducible modules of Sn. These are
the Specht modules, Sλ.

Definition 5.31. Suppose that the tableau t has rowsR1, R2, · · · , Rl and columns C1, C2, · · · , Ck,
then

Rt = SR1 × SR2 × · · · × SRl
and

Ct = SC1 × SC2 × · · · × SCk
are the row-stabilizer and column-stabilizer of t, respectively.

Example 5.26. Suppose we have

t =
4 1 2
3 5

then we have
Rt = S{1,2,4} × S{3,5}

and
Ct = S{3,4} × S{1,5} × S{2}

Note in the previous example, the equivalence classes on the tabloids can be expressed
as {t} = Rtt, this is true in general. Moreover, these groups are associated with certain
elements of C[Sn]. In general, given a subset H ⊆ Sn, we can form a group algebra sum

H+ =
∑
π∈H

π

and
H− =

∑
π∈H

sgn(π)π

The group algebra is acting on the permutation modules Mλ. Now if t has columns
C1, C2, · · · , Ck, the the κt factors as

κt = κC1κC2 · · ·κCk
Now we will be able to pass from t to an element of the module Mλ using the following
definition.

Definition 5.32. (Polytabloid) If t is a tableau, then the associated polytabloid is

et = κt{t}

Example 5.27. Take λ = (3, 2). We can then compute κt = (e−(34))(e−(15)). Therefore,

et =
4 1 2
3 5

− 3 1 2
4 5

− 4 5 2
3 1

+
3 5 2
4 1

We now described what happens when we pass from t to πt.

Lemma 5.3. Let t be a tableau and π be a permutation. Then

1. Rπt = πRtπ
−1
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2. Cπt = πCtπ
−1

3. κπt = πκtπ
−1

4. eπt = πet

We can now fully define the Specht modules

Definition 5.33. (Specht Module) For any partition λ, the corresponding Specht Module,
Sλ, is the submodule of Mλ spanned by the polytabloids et, where t is the shape of λ.

But then using the previous lemma, we immediately arrive at

Theorem 5.10. The Sλ are cyclic modules generated by any given polytabloid.

Example 5.28. Suppose that we have λ = (n). Then e1 2 ··· n = 1 2 · · · n must be the

only polytabloid. Then S(n) carries the trivial representation. Moreover, Sn acts trivially.

Example 5.29. Let λ = (1n) and fix

t =

1
2
...
n

Then we have,

κt =
∑
σ∈Sn

(sgn(σ))σ

and et must be the signed sum of all possible n! permutations regarded as tabloids. Now
given any permutation π ∈ Sn, we have

eπt = πet =
∑
σ∈Sn

(sgn(σ))πσ{t}

but upon replacing πσ by τ , we have

eπt =
∑
τ∈Sn

(sgn(π−1τ))τ{t} = (sgn(π−1)
∑
τ∈Sn

(sgn(τ)τ{t} = (sgn(π))et

Then every polytabloid is a scalar multiple of et, where t is given as before. Therefore,

S(1n) = C{et}

with the action πet = (sgn(π))et. THis is the sign representation.

5.11. The Submodule Theorem. We will now show that the Sλ constitute a full set of
irreducible Sn-modules. Moreover, with a simple change of substitution of a bilinear form
for the inner product, these results here will be true for an field. First, recall that H− is
given by

H− =
∑
π∈H

sgn(π)π
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for any subset H ⊆ Sn. So if H = {π}, then we write π− for H−. Moreover, recall the
unique inner product on Mλ for which

〈{t}, {s}〉 = δ{t},{s}

Lemma 5.4. Let H ≤ Sn be a subgroup. Then

(1) If π ∈ H, then
πH− = H−π = sgn(π)H−

(2) For any u,v ∈Mλ

〈H−u,v〉 = 〈u, H−v〉
(3) If the transposition (bc) ∈ H, then we can factor

H− = k(e− (bc))

where k ∈ C[Sn].
(4) If t is a tableau with b, c in the same row of t and (bc) ∈ H, then

H−{t} = 0

Proof:

1. This follows similarly to the “proof” in Example 5.29.
2. Since our form is Sn-invariant,

〈H−u,v〉 =
∑
π∈H
〈sgn(π)πu,v〉 =

∑
π∈H
〈u, sgn(π)π−1v〉

Then replacing π by π−1 and given the fact this does not change the sign, the last sum
is equivalent to 〈u, H−v〉.

3. Consider the subgroup K = {e, (bc)} of H. Then we can find a transversal and write
H = ]ikiK. But then H− = (

∑
i k
−
i )(e− (bc)).

4. By hypothesis, (bc){t} = {t}. Then

H−{t} = k(e− (bc)){t} = k({t} − {t}) = 0

�

Corollary 5.5. Let t = tλ be a λ-tableau and s = sµ be a µ-tableau, where , λ, µ ` n. If
κt{s} 6= 0, then λD. Moreover, if λ = µ, then κt{s} = ±et.

Proof: Suppose that b and c are two elements in the same row of sµ. Then they cannot
be in the same column of tλ because then κt = k(e− (bc)) and κt{s} = 0 by the previous
lemma. Then by the dominance lemma, we have λD µ. Now if λ = µ, then it must be the
case that {s} = π{t} for some π ∈ Ct, by the same argument in the proof of the Dominance
Lemma. Then using the previous part we have

κt{s} = κtπ{t} = sgn(π)κt{t} = ±et

�
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Corollary 5.6. If u ∈Mµ and sh t = µ, then κtu is a multiple of et.

Proof: We are able to write u =
∑

i ci{si}, where si are µ-tableaux. By the previous
corollary, κtu =

∑
i±ciei. �

Theorem 5.11. (Submodule Theorem) Let U be a submodule of Mµ, then

U ⊇ Sµ or U ⊆ Sµ⊥

In particular, when the field is C, the Sµ are irreducible.

Proof: Consider u ∈ U and a µ-tableau t. Using the previous corollary, we have that
κtu = fet for some f ∈ k, where k is a field. There are two possible cases, depending on
the multiplies.

First, assume that there exists a u and a t with f 6= 0. Since u is in the submodule U ,
we have fet = κtu ∈ U . Therefore, et ∈ U as f is nonzero and Sµ ⊆ U because Sµ is
cyclic.

Now suppose that κtu = 0 and consider any u ∈ U and an arbitrary µ-tableau t,
applying the second part of the sign lemma,

〈u, et〉 = 〈u, κt{t}〉 = 〈κtu, {t}〉 = 〈0, {t}〉 = 0

Notice up till now, our field has been arbitrary. However, to get the final result, we
need our field to have stronger properties than an arbitrary field will allow, i.e. begin
algebraically closed or having special inner product properties.

Proposition 5.5. Suppose the field of scalars is C and θ ∈ Hom(Sλ,Mµ) is nonzero.
Then λD µ and if λ = µ, then θ is multiplication by a scalar.

Proof: Since θ 6= 0, there is some basis vector et such that θ(et) 6= 0. But because 〈·, ·〉
is a inner product with complex scalars, Mµ = Sλ ⊕ Sλ⊥. Therefore, we can extend θ to
an element of Hom(Mλ,Mµ) by setting θ(Sλ⊥ = 0. Then

0 6= θ(et) = θ(κt{t}) = κtθ({t}) = κt
∑
i

ci{si}

where the si are µ-tableaux. Then by Corollary 5.5, we have λD µ.
Now in the case where λ = µ, Corollary 5.6 implies that θ(et) = cet for some constant

c ∈ C. But then for any permutation π,

θ(eπt) = θ(π et) = πθ(et) = π(c et) = c eπt

But then θ is a multiplication by some scalar c ∈ C. �

Recall that our goal here was to verify the claim that the Specht modules, Sλ, form a
full set of irreducible Sn-modules. Here, we can finally show this. Moreover, notice how
simple the proof is now!

Theorem 5.12. (Specht Modules ∼ Set of Irreducibles)
The Specht Modules, Sλ, for λ ` n, form a complete list of irreducible Sn-modules over the
complex field.
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Proof: The Sλ are irreducible by the Submodule Theorem and the fact that Sλ∩Sλ⊥ = 0
for C. So thus far we have shown that we have the correct number of modules. However,
we need to show that these modules are pairwise equivalent. But if Sλ ∼= Sµ, then there
must be a nonzero homomorphism θ ∈ Hom(Sλ,Mµ), since Sµ ⊆ Mµ. Therefore, by
Proposition 5.5, λD µ. But similarly we have µD λ. Hence, λ = µ. �

Notice that our proof relies heavily on the fact that the field is C. For an arbitrary field
of characteristic p, the Specht modules need not be irreducible. However, the Submodule
Theorem gives us the quotient Sλ/(Sλ ∩ Sλ⊥) is irreducible. One can work with these
instead for Sλ when looking at p-modular representations of Sn. In any case, we have shown
that Sλ form the full set of irreducible Sn-modules. However, we have not demonstrated
the decomposition of the module.

Corollary 5.7. The permutation module decomposes as

Mµ =
⊕
λDµ

mλµS
λ

with diagonal multiplicity mµµ = 1.

Proof: This follows from Proposition 5.5. Suppose that Sλ appears in Mµ with a nonzero
coefficient, then λD µ. Now if λ = µ, we have that

mµµ = dim Hom(Sµ,Mµ) = 1

�

5.12. Standard Tableaux. Given an arbitrary set of polytabloids which generate Sλ, the
set will most likely not be independent. It would be more convenient to have some subset
which can form a basis. This would be especially useful for computing the matrices of the
representation or for computing the characters of the representation. This is done by using
standard tableaux.

Definition 5.34. (Standard Tableaux) A tableau t is standard if the rows and columns of
t are increasing sequences. The corresponding tabloid and polytabloids are also said to be
standard.

Though we will not prove it, as it turns out, we have already seen a basis forming set
for Sλ.

Theorem 5.13. (Sλ Basis) The set

{et | t is a standard λ− tableau}
is a basis for Sλ.

To show this, one needs to create a way of comparing tabloids. In fact, the comparison
is exactly what we did before with dominating partitions. In this manner it is simple
to show that the {et} set is an independent set. However, to show that it is a basis, it
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would remain to show that all the standard polytabloids of shape λ span Sλ. To do this,
take an arbitrary tableau t. We need to show that et is a linear combination of standard
polytabloids. Assume that the columns of t are increasing because if not then there must
be a σ ∈ Ct such that s = σt has increasing columns. Then from part 4 of Lemma 5.3 and
from part 1 of the Sign Lemma, it is the case that

es = σet = sgn(σ)et

This says that et is some linear combination of polytabloids whenever es is. Now if there is
a permutation, say π, such that in each tableau πt, a pair of adjacent, out-of-order elements
in a row has been eliminated and the element of the group algebra, g = e +

∑
π sgn(π)π,

must satisfy get = 0. But then et must have the form

et = −
∑
π

eπt

The process of eliminating the pair of adjacent out-of-order elements in a row is called
row descent. Now we have expressed et in terms of a polytabloid which is somehow closer
to being standard. After some finite number of iterations of this process, we can find
appropriate group elements g such that we can express et as a some linear combination of
polytabloids. These special group elements are called the Garnir elements.

Definition 5.35. (Garnir Elements) Let A and B be two disjoint sets of positive integers
and choose a permutation π such that

SA∪B =
⊎
π

π(SA × SB)

Then a corresponding Garnir element is

gA,B =
∑
π

sgn(π)π

As one would expect, the Garnir element is dependent on A and B. However, the Garnir
element also depend on the transversal as well.

Definition 5.36. Let t be a tableau and let A and B be subsets of the jth and (j + 1)st
columns of t, respectively. Then the Garnir element associated with t, A,B is

gA,B =
∑
π

sgn(π)π

where the π have been chosen so that the elements of A ∪ B are increasing down the
columns of πt.

While the Garnir elements allow us to introduce row descents, it adds the problem
that while inducing a row descent in one location, it can also result in descents elsewhere
as well. The question becomes to these extra descents help or hinder our progress to
“standardness”? In order to answer that question, one applies a partial ordering this time
to a column equivalence class, called the column tabloid, as one did before with rows. This
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finally allows one to put everything together and prove the major result of this section -
that the set

{et | t is a standard λ− tableau}
is a basis for Sλ.

5.13. Branching Rules. The results we have seen should be shocking. We have taken
a group and mapped it into some linear space. That is, we have created a representation
for a group. This allows us to study some of the properties of the group more easily than
having to study the structure of its binary operation or group table. However, if one recalls
Cayley’s Theorem, every groups binary operation creates a permutation of the group and
hence every possible group is a subgroup of some permutation group. So if we can study
groups using their representations, in a sense, we need only understand the representations
of the symmetric group to understand the representations of all groups.

This should come as no surprise as we have already said the same statement in our
discussion on Cayley’s Theorem. Surprisingly, to study these representations, it suffices
to consider ways to arrange numbers into rows and columns corresponding to a particular
representation! These diagrams, the Young Tableau, are easy to graphically represent,
simple to understand, and easy to manipulate. The matrices for the module Sλ in the
standard basis are known as Young’s natural representation. Furthermore, we need not
even compute all these matrices! As we have mentioned before, Sn has several generating
subsets, namely the (k k + 1) transpositions. To generate the whole representation, the
only computation needed is to find the matrices representing these transpositions. As a
short summary , we have

Theorem 5.14. Let fλ be the number of standard λ-tableaux. For any partition, λ,

1. {et | t is a standard λ-tableau} is a basis for Sλ.
2. dimSλ = fλ

3.
∑

λ`n(fλ)2 = n!

Of course the last part of the theorem follows from the fact that for any group G,

|G| =
∑
V

(dimV )2

where the sum is to be taken over all irreducible G-modules.
The other useful aspect of these Young diagrams is that they easily allow us to see

what happens when we restrict or induce an irreducible representation Sλ to Sn−1 or
Sn+1. In fact, through the construction of the Young diagrams, we have already provided
a path to easily demonstrate the induction/restriction. These inductions or restrictions
will correspond to adding or removing nodes (or squares) to the rows or columns of the
Ferrers diagram.

Definition 5.37. (Inner/Outer Corner) If λ is a diagram, then the inner corner of λ is
a node (i, j) ∈ λ whose removal leaves the Ferrers diagram of a partition. An partition
obtained by such a removal is denoted λ−. An outer corner of λ is a node (i, j) /∈ λ whose



94

addition produces a Ferrers diagram of a partition. Any partition obtained by such an
addition is denoted λ+.

Example 5.30. Take the partition λ = (5, 3, 3, 2). Then the Ferrers diagram of λ is

· · · · ·
· · ·
· · ·
· ·

Now if we denote the inner corners with Φ’s and the outer corners with χ’s, we have

· · · · Φ χ
· · · χ
· · Φ
· Φ χ
χ

which means that the possible λ− are

· · · ·
· · ·
· · ·
· ·

,

· · · · ·
· · ·
· ·
· ·

,

· · · · ·
· · ·
· · ·
·

while the possible λ+ are

· · · · · ·
· · · · ·
· · · ·
· ·

,

· · · · ·
· · · ·
· · ·
· ·

,

· · · · ·
· · ·
· · ·
· · ·

,

· · · · ·
· · ·
· · ·
· ·
·

Given these arrays it should come as no surprise that

S(5,3,3,2) ↓S12
∼= S(4,3,3,2) ⊕ S(5,3,2,2) ⊕ S(5,3,3,1)

while

S(5,3,3,2) ↑S14∼= S(6,3,3,2) ⊕ S(5,4,3,2) ⊕ S(5,3,3,3) ⊕ S(5,3,3,2,1)

In fact, we can extend this to more than this example. Since every standard tableau of
some shape λ ` n must consist of n in some inner corner with a standard tabluea of shape
λ− ` n− 1, we have

fλ =
∑
λ−

fλ
−

Which is essential to establish the general rule, known as the branching rule.
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Theorem 5.15. (Branching Rule) If λ ` n, then

1. Sλ ↓Sn−1
∼=
⊕
λ−

Sλ
−

2. Sλ ↑Sn+1∼=
⊕
λ+

Sλ
+

This should be regarded as an incredible result! One could then quickly teach even a
middle schooler to manipulate Young diagrams to tell one what the inductions/restrictions
of the Sλ modules are! We have taken very deep representation problems and turned them
into problems of drawing pictures.

Finally, we shall consider again Corollary 5.7,

Mµ =
⊕
λDµ

mλµS
λ

The only thing we have not shown is how to calculate the multiplicities of the Sλ. We
do this again by considering another type of tableau “shape”.

Definition 5.38. (Generalized Young Tableau) A generalized Young tableau of shape λ
is an array T obtained by replacing the nodes of λ with positive integers with repetitions
allowed. The type or content of T is the composition µ = (µ1, µ2, · · · , µm), where µi equals
the number of i’s in T . Let

Tλµ = {T |T has shape λ and content µ}
Example 5.31. The array

T =
3 3 4 1
5 1 4
1

has shape (4, 3, 1) and content (3, 0, 2, 2, 1).

Though we will not show it, for any given partition λ, the modules Mµ and C[Tλµ] are

isomorphic. But the multiplicity of Sµ in Mµ is dim Hom(Sλ,Mµ). So we can contract
homomorphisms from Mλ to Mµ in terms of generalized tableaux and then restrict this to
Sλ.

Definition 5.39. For each T ∈ Tλµ, the homomorphism corresponding to T is the map

θT ∈ Hom(Mλ,Mµ) given by

{t} 7→
∑
S∈{T}

S

and extension by using the cyclicity of Mλ. In fact, θ is also a homomorphism into C[Tλµ].

Then we consider yet another type of tableau.

Definition 5.40. (Semistandard Tableau) A generalized tableau is semistandard if its rows
weakly increase and its columns strictly increase. We let T 0

λµ denote the set of semistandard
λ-tableaux of type µ.
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Example 5.32. The tableau

T =
1 1 1 3
1 3 3
2 4

is semistandard.

These turn out to form a basis for Hom(Sλ,Mµ).

Theorem 5.16. The set
{θT |T ∈ T 0

λµ}
is a basis for Hom(Sλ,Mµ).

Using fairly trivial combinatorics, one can count the T 0
λµ. This number is called the

Kostka number.

Definition 5.41. (Kostka Numbers) The Kostka numbers are

Kλµ = |T 0
λµ|

Then we finally get a better formula for Corollary 5.7,

Theorem 5.17. The multiplicity of Sλ in Mµ is equal to the number of semistandard
tableaux of shape λ and content µ,

Mµ ∼=
⊕
λ

KλµS
λ
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6. Lie Representations

Introduction. After looking at general definitions and properties of representations, it is
natural to turn our attention to a specific type of representation, namely Lie representa-
tions. Lie Algebras are intimately connected with symmetries of special geometric objects,
namely Lie groups and ultimately many types of differentiable manifolds. Moreover, many
important objects in theoretical Physics, especially in relativity, quantum mechanics, and
string theory are Lie groups. Each Lie group has an associated Lie algebra that is used to
understand the group. Here we focus on representing this important algebra. Eventually,
we will show that we can represent these algebras using Weyl groups and Dynkin diagrams
that are clearly visually connected with symmetries of geometric figures. First, we will
discuss Lie groups to set the stage and because many of the concepts of Lie groups are
simplier to understand and we see the same concepts for Lie groups later in their algebras
and representations.

6.1. Lie Groups. We need to define what we mean when we say Lie group or Lie algebra.
However, we remind the reader of the definition of a manifold. A topological space X for
which every x ∈ X has a neighborhood that is locally homeomorphic to a Euclidean space
En for some n ∈ Z is called locally Euclidean. This simply means that when one looks
“closely enough” at the space, it looks like a typical Euclidean space. Then a (topological)
manifold is simply a topological space which is a locally Euclidean. Since the topological
space X is locally Euclidean, it comes with a built in metric and hence is a metric space.
Therefore, X is also Hausdorff. A smooth manifold is a manifold which it is possible to
do Calculus on. Specifically, a smooth manifold is a second countable Hausdorff space
that is locally homeomorphic to a linear space. Equivalently, a smooth manifold is a
manifold where the maps (often called charts) between X and En are smooth. Sometimes
differentiable manifold is used in place of smooth manifold when no confusion exists that
the smoothness is required, though we will make the distinction here between a smooth
and differentiable manifolds.

Definition 6.1. (Lie Group)
A Lie Group G is a group which is also a n-dimensional smooth manifold, i.e. the operations
G×G→ G : (g, h) 7→ gh and G→ G : g 7→ g−1 for all g, h ∈ G are smooth. (For complex
manifolds we require the operations be analytic.)

Most often when we say Lie group, we will mean a matrix Lie group, that is a set of n×n
matrices that is closed under products, closed under inverses, and closed under nonsingular
limits (meaning that if L is the set of matrices and Ai ∈ L, implies that given A1, A2, · · ·
and A = limi→∞Ai has an inverse then A ∈ L). But why the limit requirement for the
matrix set? In fact, this is what guarantees smoothness for the group. Although, we
will not go into the specifics of what exactly we meet by the action being smooth beyond
construction of tangent spaces. The following examples are more than just that, they are
some of the classic Lie groups are of great importance and one sees them time and time
again when studying Lie Theory.
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Example 6.1. The general linear group, denoted, GLn, is the group of invertible n × n
matrices under the operation of ordinary matrix multiplication. When the field is not clear,
it often written GL(n,C), that is if the field is C. Here, we will assume the entries are
complex. So in the case where n = 2

GL2 = GL(2,C) = {M =

(
a b
c d

)
| ad− bc 6= 0}

Example 6.2. The special linear group, denoted SLn or SL(n,C), is a subgroup of
GL(n,C) of all n× n matrices with determinant 1. In the case where n = 2, we have

SL2 = SL(2,C) = {M =

(
a b
c d

)
| ad− bc = 1}

Example 6.3. The orthogonal group, denoted O(n, F ), is the set of n × n orthogonal
matrices with entries in a field, in our case C. This is a subgroup of the general linear
group over the same field. This is often denoted

O(n,C) = {M ∈ GL(n, F ) | MTM = MMT = In}
where MT is the transpose of T and In is the n × n identity matrix. Furthermore, the
orthogonal group is not path-connected as one cannot connect matrices with positive de-
terminant to those with negative determinant without going through determinant zero,
which is not in O(n).

Example 6.4. The special orthogonal group, denoted SO(n, F ), is the subgroup of O(n,C)
of matrices that have determinant 1. Moreover, SO(3) is the group that represents all
possible rotations in 3-dimensional space. Furthermore, for all n, SO(n) is path-connected,
which we will not show.

Example 6.5. The unitary group, denoted U(n), is the set of all n× n unitary matrices
under the group operation of matrix multiplication. That is,

U(n) = {U ∈Mn | U∗U = UU∗ = In}
where Mn is the set of all n×n matrices and U∗ is the conjugate transpose of U . Of course
then the orthogonal group is the real analogue of the unitary group. The case of U(1) is
the the circle group, or {eiθ} for all possible θ. Of course, the unitary group is a subgroup
of GL(n,C).

Example 6.6. The special unitary group, denoted SU(n), is the subgroup of U(n) consist-
ing of all unitary matrices with determinant 1. The special unitary groups are commonly
found in mathematical physics as SU(2) is found in explaining the electroweak force inter-
action and SU(3) in the explanation of quantum chromodynamics.

Example 6.7. The symplectic group, denoted Sp(n), is the analogue of the orthogonal
group for Hn, the quaternions, and consists of all matrices of GL(n,H) which preserve the
hermitian form on Hn:

〈x, y〉 =

n∑
i=1

xiyi
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That is the matrices have the condition MM
T

= 1n, where M
T

is the conjugate transpose
of M and 1n is the n× n identity matrix. In the case where n = 1, we have

Sp(1) = {
(
a+ id −b− ic
b− ic a− id

)
| a2 + b2 + c2 + d2 = 1} = SU(2)

So Sp(1) consists of all unit quaternions. Moreover, Sp(n) is path-connected for all n.

6.2. Maximal Tori and Centers. As ideals and normal groups help us understand the
ring/group structure, we need some object in the Lie group that will help us to understand
the structure of the group. It turns out the two most useful subgroups of a Lie group for
this purpose are the center and maximal tori of a Lie group.

Definition 6.2. (Maximal Tori) The largest subgroup of a group G that is isomorphic to

Tk = S1 × S1 × · · · × S1

contained in G, where the product on the right is taken k times.

Notice that the maximal torus is an abelian group. One would then expect it to be
connected in some way to the center of the group. Indeed, the maximal torus can help us
find the center of a group. However, the center of a group need not contain its maximal
torus nor does the maximal torus need contain the center, see Example 6.9

Example 6.8. In the group SO(2) = S1, the maximal torus is S1 = T1. Therefore, SO(2)
is its own maximal torus.

Example 6.9. Here we find the maximal torus of SO(3). Consider an element of the
group SO(3) as a rotation in R3 with e1, e2, e3 being the standard basis vectors. Now
notice that

R′θ =

( cos θ − sin θ 0
sin θ cos θ 0

0 0 0

)
is an obvious T1 = S1 in SO(3). If T is a torus in G that contains T1 then any A ∈ T
commutes with all R′θ ∈ T1, as any torus is abelian. It is easy enough to show that if

AR′θ = R′θA for all R′θ ∈ T1

then A ∈ T1 and so T = T1 and T1 is then maximal. This can be done by showing that

A(e1), A(ee) ∈ (e1, e2)-plane

(this is because R′θ is a rotation leaving the e3 axis fixed). However, notice that an element
A ∈ Z(SO(3)) that commutes with all the elements of SO(3). Using the same argument
above, A must fix the basis vectors e1 and e2. Then A must be the identity vector 1. So
Z(SO(3)) = {1} and is contained in but clearly distinct from the maximal torus.

Proposition 6.1. (Maximal Tori) The maximal tori in SO(2m), SO(2m + 1), U(n),
SU(n), Sp(n) are as follows:



100

1. In SO(2m), the maximal torus Tm consist of all matrices Rθ1,θ2,··· ,θm, where

Rθ1,θ2,··· ,θm =



cos θ1 − sin θ1

sin θ1 cos θ1

cos θ2 − sin θ2

sin θ2 cos θ2

. . .

cos θm − sin θm
sin θm cos θm


where all blank entries are 0.

2. In SO(2m+ 1), Tm consists of all matrices Rθ1,θ2,··· ,θm, where

cos θ1 − sin θ1

sin θ1 cos θ1

cos θ2 − sin θ2

sin θ2 cos θ2

. . .

cos θm − sin θm
sin θm cos θm

1


3. In U(n), Tn consists of all matrices of the form Zθ1,θ2,··· ,θn.
4. In SU(n), Tn−1 consists of all matrices of the form Zθ1,θ2,··· ,θn, where θ1 +θ2 + · · ·+θn =

0.
5. In Sp(n), Tn consists of all matrices of the form Qθ1,θ2,··· ,θn.

Proposition 6.2. (Lie Centers) The centers of the classical Lie groups are as follows:

1. Z(SO(2m)) = {±1}
2. Z(SO(2m+ 1)) = {1}
3. Z(U(n)) = {ω1 | |ω| = 1}
4. Z(SU(n)) = {ω1 |ωn = 1}
5. Z(Sp(n)) = {±1}

Often the center is important because we wish to decompose the Lie group and this is
of course most often done using a normal subgroup. Notice that the center is a normal
subgroup. So a Lie group cannot be simple unless the center Z(G) is trivial, which of
course disqualifies all of the classical Lie groups except SO(2m + 1). To decide whether
SO(2m+ 1) has any other normal subgroups, one uses the concept of discreteness.

Definition 6.3. (Discrete) A subgroup H of a matrix Lie group G is called discrete if there
is a positive lower bound to the distance between any two members of H, the distance
between matrices (aij) and (bij) being√∑

i,j

|aij − bij |2
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Notice by the definition of the matrix distance, any finite subgroup of a Lie group G is
discrete. Moreover, it turns out for certain types of Lie groups, it suffices to consider only
the center for most discrete normal subgroups.

Theorem 6.1. If G is a path-connected matrix Lie group with a discrete normal subgroup
H, then H is contained in the center of Z(G) of G.

Proof: Since H is normal, BAB−1 ∈ H for each A ∈ H and B ∈ G. Thus, B 7→ BAB−1

defines a continuous map from G into discrete set H. Since G is path connected and a
continuous map sends paths to paths, the image of the map must be a single point of H.
The point is necessarily A because 1 7→ 1A1−1 = A. So each A ∈ H has the property that
BA = AB for all B ∈ G. That is, A ∈ Z(G). �

6.3. Exponential Map. Consider the Lie group SO(2) = S1. We can view this Lie group
as the image of the line Ri = {iθ | θ ∈ R} under the exponential function as

eiθ = cos θ + i sin θ

is a line in some sense. Moreover, this line is tangent to the circle at the identity. In fact,
every Lie group has some linear space with equal dimension as the tangent space at the
identity. But do we care? Certainly, it is interesting that the tangent space has the same
dimension and touches the Lie group at its identity. But does this do anything for us?
Indeed, the tangent space can be very informative about the properties of the Lie group.
The exponential function is the gateway from Lie groups to its tangent space. Furthermore,
the exponential function can be generalized to square matrices and maps the tangent space
of any matrix Lie group G into G. Many of the times, this mapping is onto G and the
structure of G is similar to the structure of the tangent space. This tangent space is called
the Lie algebra of G. The conjugation operation on G, which tells us how “far” from
commutativity the operation of G is, corresponds to the Lie bracket in the tangent space.

First, we consider the famous observation of Euler

eiθ = cos θ + i sin θ

This relationship is easily derived from comparison of the Taylor series for ex and those for
cosx and sinx. The exponential function maps the imaginary axis, Ri onto the circle, S1,
of points cos θ + i sin θ in the plane of complex numbers. Then the operations of addition
and negation on Ri correspond to multiplication and inverses on S1:

eiθ1eiθ2 = ei(θ1+θ2) &
(
eiθ
)−1

= e−iθ

Furthermore, as we have previously stated, the line of points iθ mapped onto S1 by the
exponential function can be viewed as the tangent to S1 at the identity, though the points
on the tangent line look like 1 + iθ (the constant 1 can be easily ignored). The power of
the complex numbers to map lines to curves and its ability to preserve the lengths of small
arcs proves essential in our study of Lie groups and algebras.

Now recall that operation in the tangent space if the Lie bracket. This originated
from the Norwegian mathematician Sophus Lie, credited with many of the original great
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discoveries in Lie Theory from his work on continuous groups. As we have seen before with
Galois Theory, it is often had to discern the properties of a group operation, especially
for larger or infinite groups where the Cayley table is difficult/impossible to write down.
The Lie algebra is the tangent space at the identity of the Lie group and reflects many
of the properties of the group. Being a linear space, it is often easier to work with than
the Lie group itself and can yield many of its properties. This is exactly what we did in
Galois Theory by taking group questions into field questions. This was precisely Lie’s idea
- to take group elements “infinitesimally close to the identity” (that is close to the tangent
space) to approximate the behavior of all group elements. The commutative part of the
group operation is reflected by the “commutative” part of the exponential function:

eXeY = eX+Y

The non-commutative properties of the group is reflected by the Lie bracket of the group.
Before calculating a few examples, we go through some of the properties of the exponential
function extended to matrices.

Definition 6.4. (Matrix Absolute Value) The absolute value of a matrix A = (aij) is
defined by

|A| =
√∑

i,j

|aij |2

Equivalently, for a real n× n matrix A, the absolute value is the distance from the origin

O in Rn2
to the point

(a1,1, a1,2, · · · , a1,n, a2,1, a2,2, · · · , a2,n, · · · , an,1, · · · , an,n)

For entries in the complex plane, we can view them as being in R2 and define the distance
similarly.

From this definition of absolute value, we able to define the distance between matrices.
If A and B are matrices, then the distance between A and B is |A − B|. We then get a
useful inequality on the distances.

Lemma 6.1. (Submultiplicative Property) For any two real n× n matrices A and B,

|AB| ≤ |A| |B|

Proof: If A = (aij) and B = (bij), we define AB =
(
abib

)
and have

|(ab)ij | =|ai,1b1,j + ai,2b2,j + · · ·+ ai,mbn,j |
≤|ai,1b1,j |+ |ai,2b2,j |+ · · ·+ |ai,nbn,j |
=|ai,1| |bi,j |+ |ai,2| |b2,j |+ · · ·+ |ai,n| |bn,j |

≤
√
|ai,1|2 + · · ·+ |ai,n|2

√
|b1,j |2 + · · ·+ |bn,j |2
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Then summing over both sides,

|AB|2 =
∑
i,j

|(ab)i,j |2

≤
(
|ai,1|2 + · · ·+ |ai,n|2

)(
|b1,j |2 + · · ·+ |bn,j |2

)
=
∑
i

(
|ai,1|2 + · · ·+ |ai,n|2

)∑
j

(
|bi,j |2 + · · ·+ |bn,j |2

)
=|A|2|B|2

�

Corollary 6.1. If A is a matrix, then |Am| ≤ |A|m.

Corollary 6.2. If A and B are matrices, then |A+B| ≤ |A|+ |B|.
Of course, the definition of the exponential function for matrices does very little if it

does not converge.

Theorem 6.2. (Exponential Convergence) If A is any n× n matrix, then

1 +
A

1!
+
A2

2!
+ · · ·+

where 1 is the n× n identity matrix, is convergent in Rn2
.

Proof: We only need to show that the series is absolutely convergent, which means we
need to show the convergence of

|1|+ |A|
1!

+
|A2|
2!

+ · · ·

This is a series of positive real numbers, each terms less than the next with the exception
of the first (by the submultiplicative property) to the corresponding terms of

1 +
|A|
1!

+
|A2|
2!

+ · · ·

But we know this sequence is convergent. �

But then once we know the matrix exponential is convergent, we can properly define it.

Definition 6.5. (Matrix Exponential) The exponential of any n× n matrix A is given by
the series

eA = 1 +
A

1!
+
A2

2!
+
A3

3!
+ · · ·

Remark 6.1. While the matrix exponential has many of the same properties as its real
and complex counterparts, it does not share all their same properties. Namely, the ma-
trix exponential does not share the addition formula because matrices to not necessarily
commute. So if A and B are matrices,

eA+B 6= eAeB
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However, this holds in special cases.

Theorem 6.3. If A and B are matrices and AB = BA, then

eA+B = eAeB

Proof: We want

1+
A+B

1!
+

(A+B)2

2!
+· · ·+(A+B)n

n!
+· · · =

(
1+

A

1!
+· · ·+An

n!
+· · ·

)(
1+

B

1!
+· · ·+Bn

n!
+· · ·

)
We can do this by expanding both sides and showing the coefficients of AlBm is the same
for both sides of the equation. However, if AB = BA then the calculation is exactly that
for ex+y = exey for real or complex numbers. Since it is correct for those, it is correct
commuting matrices. �

Theorem 6.4. If A is a matrix with complex entries, then det(eA) = etrace(A).

Proof: For any complex matrix A, there is an invertible complex matrix B and upper
triangular matrix T such that A = BTB−1. One can easily show using induction that

An = (BTB−1)n = BTnB−1

Then

eA =
∑
m≥0

Am

m!
= B

(∑
m≥0

Tm

m!

)
B−1 = BeTB−1

Then we only need to show that set(eT ) = etrace(T ) for T upper triangular as

det(eA) = det(BeTB−1) = det(eT ) = etrace(T ) = etrace(BTB−1) = etrace(A)

But we also know that trace(AB) = trace(BA) . But then trace(ABA−1) = trace(B).
Now suppose that

T =


t1,1 ∼ ∼ · · · ∼
0 t2,2 ∼ · · · ∼
0 0 t2,2 · · · ∼
...

. . .
...

0 0 · · · 0 tn,n


where the ∼ entries are arbitrary. We then know 3 things about T :

1. T 2 is upper triangular with the ith diagonal entry equivalent to t2i,i.
2. Tm is upper triangular with the ith diagonal entry equivalent to tmi,i.

3. eT is upper triangular with the ith diagonal entry equal to eti,i.

But then

det(eT ) = et1,1et2,2 · · · etn,n = et1,1+t2,2+···+tn,n = etrace(T )

�
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Example 6.10. Recall that every number a + bi = z ∈ C can be represented as a 2 × 2
matrix (

a −b
b a

)
Here we check the matrix exponential agrees with the standard complex exponential. Since
eiθ = cos θ + i sin θ, we have

ez = ex+iy = ex
( ∞∑
n=0

(−1)n

(2n)!
y2n + i

∞∑
n=0

(−1)n

(2n+ 1)!
y2n+1

)
So then suppose we have eiZ with Z being the matrix form of the complex number z =
x+ iy, (

x −y
y x

)
Notice that we can express Z as the sum of matrices X and Y

X =

(
x 0
0 x

)
, Y =

(
0 −y
y 0

)
Notice that XY = Y X, so we can use the addition formula. Then it will suffice to calculate
eX and eY separately.

eX = e

(
x 0
0 x

)
= 1 +

X

1!
+
X

2!
+ · · ·+ Xn

n!
+ · · ·

Now notice that

Xn =

(
xn 0
0 xn

)
But then

eX =

∞∑
i=0

Xi

i!
=

( ∑∞
i=0

xi

i! 0

0
∑∞

i=0
xi

i!

)
=

(
ex 0
0 ex

)
And now we calculate eY , observe that

Y n =



(
yn 0

0 yn

)
if n ≡ 0 mod 4(

0 −yn

yn 0

)
if n ≡ 1 mod 4(

−yn 0

0 −yn

)
if n ≡ 2 mod 4(

0 yn

−yn 0

)
if n ≡ 3 mod 4
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Notice then we can clump even and odd powers together. Then using the fact that

yi = y

(
0 −1
1 0

)
=

(
0 −y
y 0

)
We can write

eY =1 +
Y

1!
+
Y 2

2!
+ · · ·+ Y n

n!
+ · · ·

=

(
1 +

Y 2

2!
+ · · ·+ Y 2n

(2n)!
+ · · ·

)
+

(
Y

1!
+
Y 3

3!
+ · · ·+ Y 2n+1

(2n+ 1)!
+ · · ·

)
=

(
1 +

Y 2

2!
+ · · ·+ Y 2n

(2n)!
+ · · ·

)
+

(
0 −1
1 0

)(
y

1!
+
y3

3!
+ · · ·+ y2n+1

(2n+ 1)!
+ · · ·

)
= cos y +

(
0 −1
1 0

)
sin y

= cos y + i sin y

putting everything together, we have

eZ = eX+iY = eXeiY = ex
(

cos y + i sin y
)

Example 6.11. Here we give a list of the tangent spaces for the classic matrix groups.
Lie Group Tangent Space

SO(n) All n× n vectors such that X +XT = 0.
O(n) All n× n vectors such that X +XT = 0.

U(n) All n× n complex matrices with X +X
T

= 0.

SU(n) All n× n complex matrices with X +X
T

= 0 and trace(X) = 0.

Sp(n) All n× n quaternion matrices with X +X
T

= 0.

We have stated usefulness of the tangent space is that you need only look at the tangent
space around the identity in the group. So we will need to define what we mean by that.

Definition 6.6. (Matrix Path) In a space S of matrices, a path is a continuous function
t 7→ A(t) ∈ S, where t ∈ [a, b] ⊂ R and the entires ai,j(t) of A(t) are continuous functions
of t. The path is called smooth if the functions ai,j(t) are smooth. We can of course define
the derivative in the usual manner:

lim
∆t→0

A(t+ ∆t)−A(t)

∆t

Notice that by this definition, A′(t) is then the matrix with a′i,j(t) as its entries. Then

the tangent vectors at 1 are the matrices X with the form X = A′(0). Using a bit of
Physics language, we can think of the A′(t) then as “velocity vectors” that move through
a matrix space and go through the identity matrix 1 smoothly, which corresponds to the
group idemtity, e ∈ G.

Definition 6.7. (Identity Tangent Space) If G is any matrix group, we define its tangent
space at the identity, T1(G) to be the set of matrix of the form X = A′(0), where A(t) is
a smooth path in G with A(0) = 1.
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Now we show that the tangent space is a linear space.

Theorem 6.5. T1(G) is a vector space over R. That is for all X,Y ∈ T1(G), we have
X + Y ∈ T1(G) and rX ∈ T1(G) for r ∈ R.

Proof: Suppose A(t), B(t) ∈ G are smooth paths with 1 = A′(0) = X and 1 = B′(0) =
Y . Then X,Y ∈ T1(G). Then C(t) = A(t)B(t) is a smooth path in G with C(0) = 1. But
then C ′(0) ∈ T1(G). Finally, we compute C ′(0),

C ′(0) =
d

dt

(
A(t)B(t)

)
|t=0=

(
A′(t)B(t)+A(t)B′(t)

)
|t=0= A′(0)B(0)+A(0)B′(0) = X+Y

But then X,Y ∈ T1(G) implies that X + Y ∈ T1(G). Now consider the smooth path
D(t) = A(rt). We then have D(0) = A(0) = 1, then it’s the case D′(0) ∈ T1(G) and
D′(0) = rA′(0) = rX. But then if X ∈ T1(G) then rX ∈ T1(G). �

The vector sum in the tangent space in some way corresponds to the product operation in
G. However, this correspondence cannot be faithful as the vector sum is commutative and
the product inG is generally not. But we can improve the faithfulness of the correspondence
by focusing on smooth paths through the identity. That is the idea of the Lie bracket.

Theorem 6.6. (Lie Bracket) T1(G) is closed under the Lie bracket, that is if X,Y ∈ T1(G),
then [X,Y ] ∈ T1(G), where [X,Y ] = XY − Y X.

Proof: Suppose that A(0) = B(0) = 1 with A′(0) = X,B′(0) = Y , meaning that
X,Y ∈ T1(G). Now consider the path

Cs(t) = A(s)B(t)A(s)−1 for some fixed s

Then Cs(t) is a smooth path and Cs(0) = 1, so C ′s(0) ∈ T1(G). Moreover,

C ′s(0) = A(s)B′(0)A(s)−1 = A(s)Y A(s)−1

is a smooth function of s as A(s) is. Then A(s)Y A(s)−1 ∈ T1(G). Now let D(s) =
A(s)Y A(s)−1, then differentiating respect to s and using the fact that A(0) = 1

D′(0) =A′(0)Y A(0)−1 +A(0)Y (−A′(0))

=XY − Y X = [X,Y ]

as A′(0) = X and A(0) = 1. Then X,Y ∈ T1(G) implies [X,Y ] ∈ T1(G). �

So the tangent space of a Lie matrix group G is a vector space that is closed under [·, ·]
and is called the Lie algebra of G.

Definition 6.8. (Matrix Lie Algebra) A matrix Lie algebra is a vector space of matrices
that is closed under the Lie bracket [X,Y ] = XY − Y .

This is then later generalized to a bracket of arbitrary action so long as [·, ·] is bilinear,
anti commutative, and satisfies a special identity (called the Jacobi identity). As a final
note, though the Lie algebra is useful in generalizing the properties of a Lie group, they do
not complete the entire story nor do they associate with a unique Lie group. For example,
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both O(n) and SO(n) have the same tangent space at 1. Nevertheless, Lie algebras provide
valuable information about the structure about the “curved” objects Lie groups by looking
instead at a linear space.

6.4. Logarithmic Map. Though a Lie algebra may help inform us about a Lie group, it
will be of little use if we cannot transfer this information back into the world of Lie groups.
To do this we need to make use of an inverse function. Lie the classical exponential
function, the inverse of the matrix exponential is the matrix logarithm. Similar to the
matrix exponential, we will define the matrix logarithm through a power series. However,
the matrix logarithm has more convergence issues than its exponential counterpart. In fact,
the matrix logarithm converges only in a neighborhood of the identity. In this section, we
will show that there is a homeomorphism between a neighborhood of 1 in a matrix Lie group
G and a neighborhood of 0 in its Lie algebra g = T1(G). But then the matrix logarithm
must produce tangents to Lie groups. First, we need to define the matrix logarithm.

Definition 6.9. (Matrix Logarithm) If A is a square matrix, then the logarithm of A is

log(1 +A) = A− A2

2
+
A3

3!
− A4

4!
+ · · · (−1)nAn

n!
+ · · ·

The matrix logarithm is absolutely convergent, as one can easily confirm by comparing
it to the geometric series for |A| < 1. Then the log(1 + A) is a well-defined continuous
function in this neighborhood of 1. Now we need to show that the matrix logarithm is
really the inverse of the matrix exponential.

Theorem 6.7. For any matrix eX with distance at most 1 of the identity,

log(eX) = X

Proof: Since eX = 1 + X
1! + X2

2! + · · · and |eX − 1| < 1 and we can write

log(eX) = log

(
1 +

(
X

1!
+
X2

2!
+ · · ·

)
=

(
X

1!
+
X2

2!
+ · · ·

)
− 1

2

(
X

1!
+
X2

2!
+ · · ·

)2

+
1

3

(
X

1!
+
X2

2!
+ · · ·

)3

− · · ·

Now because the series is absolutely convergent, we can rearrange the terms

log(eX) = X +

(
1

2!
− 1

2

)
X2 +

(
1

3!
− 1

2
+

1

3

)
X3 − · · ·

But these are the same terms for the expansion of the real valued logarithm when |ex−1| <
1, hence their sum must too be zero as log ex = x in that case. But then we have log eX = X
as expected. �

Theorem 6.8. If A,B are matrices such that AB = BA and logA, logB, and log(AB)
are defined then

log(AB) = log(A) + log(B)
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Proof: Suppose that log(A) = X and log(B) = Y , then

eX = A , eY = B

Now because XY = Y X,

X = log
(
1 + (A− 1)

)
= (A− 1)− (A− 1)2

2!
+

(A− 1)3

3!
− · · ·

Y = log
(
1 + (B − 1)

)
= (B − 1)− (B − 1)2

2!
+

(B − 1)3

3!
− · · ·

the series commute because A and B do. It then follows that

AB = eXeY = eX+Y

Then taking the log of both sides yields

log(AB) = X + Y = log(A) + log(B)

�

Though we certainly hope it is the case that the logarithmic function maps G into T1(G),
it is not immediately obvious that any points, except 1, are mapped into T1(G). But we
finally have enough language to rigorously define a matrix group and prove that T1(G) is
mapped into G.

Definition 6.10. (Matrix Lie Grouo) A matrix Lie group is a group of matrices that is
closed under nonsingular limits. That is, if A1, A2, · · · , An, · · · is a convergent sequence of
matrices in G with limit A and set(A) 6= 0, then A ∈ G.

Theorem 6.9. If A′(0) is the tangent vector at 1 to a matrix Lie group, then eA
′(0) ∈ G.

That is, the exponential function maps the tangent space T1(G) into G.

Proof: Suppose that A(t) is a smooth path in G such that A(0) = 1 and that A′(0) is
the corresponding tangent vector at 1. Then using the derivative definition,

A′(0) = lim
∆t→0

A(∆t)− 1

∆t
= lim

n→∞

A( 1
n)− 1

1
n

where n is a natural number greater than some n0. Then we can compare the formula with
the definition of logA( 1

n),

n logA(
1

n
) =

logA( 1
n)

1
n

=
A( 1

n)− 1
1
n

−
A( 1

n)− 1
1
n

(
A( 1

n)− 1

2
−

(A( 1
n)− 1)2

3
+ · · ·

)
Then taking n0 large enough that |A( 1

n)− 1| < ε < 1
2 , the series in the parenthesis is less

than ε+ ε2 + ε3 + · · · < 2ε. Which means the sum tends to 0 as n→∞. Then then follows
the right side has the limit

A′(0)−A′(0)[0] = A′(0)



110

as n→∞. Then the left side has the same limit, so

A′(0) = lim
n→∞

n logA(
1

n
)

Now exponentiating each side yields

eA
′(0) =elimn→∞ n logA( 1

n
)

= lim
n→∞

en logA( 1
n

)

= lim
n→∞

(
elogA( 1

n
)

)n
= lim
n→∞

A(
1

n
)n

But because A( 1
n) ∈ G by assumption, so A( 1

n)n ∈ G because G is closed under products.

Then we have a convergent sequence of elements of G and the limit eA
′(0) must be nonsin-

gular because it has inverse e−A
′(0). Then eA

′(0) ∈ G, by the closure of G under nonsingular
limits. But then the exponential function maps T1(G) = g into G. �

To show the opposite direction, that log mapsG into T1(G), requires much more language
and careful construction, for which we will need limits.

Definition 6.11. (Sequential Tangent) X is a sequential tangent to G at 1 if there is a
sequence 〈Am〉 of members of G and a sequence 〈αm〉 of real numbers such that Am → 1
and Am−1

αm
→ X as m→∞.

So if A(t) is a smooth path in G with A(0) = 1, then the sequence of points Am = A( 1
m)

tends to 1 and

A′(0) = lim
m→∞

Am − 1
1
m

Then any ordinary tangent vector A′(0) is a sequential tangent vector. In fact, sometimes
it is easier to consider sequential tangents rather than considering smooth paths. In fact,
all sequential tangents are smooth.

Theorem 6.10. Suppose that 〈Am〉 is a sequence in a matrix Lie group G such that
Am → 1 as m→∞ and that 〈αm〉 is a sequence of real numbers such that

Am − 1

αm
→ X

as m → ∞. Then etX ∈ G for all real t. Therefore, X is the tangent at 1 to the smooth
path etX .

Proof: Let X = limm→∞
Am−1
αm

. We prove that eX ∈ G. Given that Am−1
αm

→ X as

m→∞, it follows that αm → 0 as Am → 1. Hence, 1
αm
→∞. Now set

am = closest integer to
1

αm
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Moreover, we have am(Am − 1)→ X as m→∞. Since am is an integer

log(Aamm =am log(Am)

=am(Am − 1)− am(Am − 1)

(
Am − 1

2
− (Am − 1)2

3
+ · · ·

)
since Am → 1, the series in the parenthesis tends to zero. Now since limm→∞ am(Am−1) =
X, we have

X = lim
m→∞

log(Aamm )

Then by the inverse property of the logarithm and the continuity of the exponent,

eX = lim
m→∞

Aamm

Since am is an integer, Aamm ∈ G by the closure of G under products. By the closure of G
under nonsingular limits,

eX = lim
m→∞

Aamm ∈ G

To prove that etX ∈ G for any real t, one replaces 1
αm

above by t
αm

. Now if

bm = nearest integer to
t

αm

Similarly, bm(Am − 1)→ tX as m→∞. Then consider the series of

log(Abmm ) = bm log(Am)

and then we find that
etX = lim

m→∞
Abmm ∈ G

by the closure of G under nonsingular limits. �

This is critical in our proof that the log maps a neighborhood of 1 in G onto a neighbor-
hood of 0 in T1(G). Moreover, this general idea was a central idea of von Neumann when
he showed that matrix Lie groups are smooth manifolds. We see this in the above proof in
the passing from 〈Am〉 to the curve etX .

Theorem 6.11. For any matrix Lie group G, there is a neighborhood Nδ(1) mapped into
T1(G) by log.

Proof: Suppose to the contrary that no Nδ(1) is mapped into T1(G) by log. Then we
are able to find A1, A2, · · · ∈ G with Am → 1 as m → ∞ and with each logAm /∈ T1(G).
Now G is contained in some Mn(C), so each logAm is in Mn(C)

logAm = Xm + Ym

where Xm is the component of logAm in T1(G) and Ym 6= 0 is the component in T1(G)⊥,
the orthogonal component of T1(G) in Mn(C). Moreover, Xm, Ym → 0 as m→∞ because
Am → 1 and the log is continuous.

Now consider the matrices Ym
|Ym| ∈ T1(G)⊥. All these matrices have absolute value 1 and

hence lie on a sphere L of radius 1 centered at 0 in Mn(C). By the boundedness of L, the
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sequence 〈 Ym|Ym|〉 has a convergent subsequence and the limit Y of this subsequence is also a

vector in T1(G)⊥ with length 1. Furthermore, Y /∈ T1(G). Taking a subsequence of limit
Y in place of our original sequence,

lim
m→∞

Ym
|Ym|

= Y

Finally, we need to consider the terms of the sequence

Tm = e−XmAm

Now each Tm ∈ G because −Xm ∈ T1(G) so e−Xm ∈ G by the exponentiation of tangent
vectors and the fact that Am ∈ G.

On the other hand, Am = eXm+Ym by the inverse property of log

Tm =e−XmeXm+Ym

=

(
1−Xm +

X2
m

2!
+ · · ·

)(
1 +Xm + Ym +

(Xm + Ym)2

2!
+ · · ·

)
=1 + Ym + higher-order terms

These higher-order terms include X2
m and other powers of Xm. These cannot be guaranteed

to be smaller than Ym. However, these powers of Xm are those in

1 = e−XmeXm

so they sum to 0. Therefore,

lim
m→∞

Tm − 1

|Ym|
= lim

m→∞

Ym
|Ym|

= Y

Then since each Tm ∈ G, it follows that the sequential tangent

limm→∞Tm − 1

|Ym|
= Y

which is in T1(G) by the smoothness of sequential tangents. But Y /∈ T1(G). �

Corollary 6.3. The log function gives a homeomorphism between Nδ(1) in G and logNδ(1) ∈
T1(G) = g.

Proof: The continuity of the log and its inverse gives the necessary bijection and all the
necessary continuity. �

We end with a few remarks about Lie groups and their algebras before focusing on the
algebra side of Lie group questions. Schreier’s Theorem tells us that any discrete normal
subgroup of a path-connected group lies in its center. The question remains if there are
any nondiscrete normal subgroups. We use normal subgroups to study the group structure
by breaking it apart. However, if there are only discrete normal subgroups, we are still left
with an infinite number of elements and hence a possible infinite structure left to break



113

down. So nondiscrete normal subgroups could be more useful but the hard part will be to
find them. In fact, Lie algebras will prove very useful in find such subgroups.

Theorem 6.12. If G is a path-connected matrix Lie group with discrete center and a
nondiscrete normal subgroup H, then g = T1(H) 6= {0}.

Corollary 6.4. If H is a nontrivial normal subgroup of G under the above conditions,
then T1(H) is a nontrivial ideal of T1(G).

So examining the tangent space gives us a way of “seeing” normal subgroups. That is,
we can hunt down the normal subgroups of G by hunting for ideals of g. This is one of the
many insights that Lie algebras offers to Lie group questions. Lastly, we will talk about a
deep result in Lie Theory: Campbell-Baker-Hausdorff. We know that any elements of G
have the form eX . Then the product of any two elements in G have the same form, that is
eZ for some Z. But we can say more about the properties of Z. This is Campbell-Baker-
Hausdorff Theorem. If

eXeY = eZ

then we can show that Z has the form

Z = X + Y +
1

2
[X,Y ] + higher-order terms

The genius of Campbell-Baker-Hausdorff is showing that all these higher-order terms are
composed of nested Lie brackets. Notice for a commutative Lie group, since the bracket is
always 0, we have the normal addition formula. However, the general case needs Campell-
Baker-Hausdorff. This proof took a decade to complete and over the last century many
more proofs have been given using various approaches, most highly technical and long.
However, after reading through several proofs, the author agrees with Stillwell that the
proof given b Eichler in 1968 is the most brilliant for its unique approach and brevity. For
a complete walkthrough through the proof, see Stillwell’s Naive Lie Theory, as we will not
prove it here.

6.5. Lie Algebras.

Definition 6.12. (Lie Algebra)
A Lie algebra is a vector space L over a field k with a binary operation L×L→ L given by
(x, y) 7→ [x, y], called the (Lie) bracket or commutator of x and y, that has the following
properties:

1. Bilinearity: That is, [ax+ by, z] = a[x, z] + b[y, z] for all a, b ∈ k and x, y, z ∈ L.
2. Anticommutativity: [x, x] = 0 for all x ∈ L.
3. Jacobian Identity: [[x, y], z] + [[z, x], y] + [[y, x], z] = 0 for all x, y, z ∈ L.

However, notice that property one and two of a Lie algebra gives
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[x+ y, x+ y] =0

[x, x+ y] + [y, x+ y] =0

[x, x] + [x, y] + [y, x] + [y, y] =0

[x, y] + [y, x] =0

[x, y] =[−y, x]

So if the char k 6= 2, one could replace property 2 with [x, y] = −[y, x]. Moreover, notice
that that the Lie bracket is not in general associative, that is [x, [y, z]] 6= [[x, y], z] for some
x, y, z ∈ L. Therefore, a Lie algebra is typically a non-associative algebra. We call a Lie
algebra L commutative [x, y] = 0 (that is x and y commute) for all x, y ∈ L. However,
in general Lie algebras are not commutative, nor are they associative. The definition of a
subalgebra is trite:

Definition 6.13. (Subalgebra)
A vector subspace H of a Lie algebra L is called a subalgebra of L if [x, y] ∈ H for all
x, y ∈ H. Moreover, H is a lie algebra with respect to the operation of L restricted to H.

Example 6.12. Any vector space L with bracket defined by [u, v] = 0 for all u, v ∈ L is
easily checked to be a trivial (Abelian) Lie algebra.

Example 6.13. The simplest nontrivial example of a Lie algebra is well known to physicists
as the (vector) cross product [u, v] = u × v for u, v ∈ R3. It is clear that [·, ·] is bilinear
and anti-commutative. We need check the Jacobi identity

[[x, y], z] =(x× y)× z
=(x · z)y − (y · z)x
=(z · x)y − (z · y)x

=[[z, y], x] + [[x, z], y]

where · is the usual dot product in R3. If we look at the standard basis e1, e2, e3 for R3,

[e1, e2] =e3

[e2, e3] =e1

[e3, e1] =e2

Furthermore, the bracket has the following properties:

1. If w = [u, v], then |w| = |u| |v| sin θ, where | · | is the vector norm and θ is the angle
between u and v.

2. w is orthogonal to both u and v. That is w × u = w × v = 0.
3. u, v, w form a standard triple of basis vectors that can be rotated to the standard basis

vectors for R3.
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4. If u = (u1, u2, u3) and v = (v1, v2, v3) for the standard orthogonal basis i, j, k ∈ R3, then
one can equally compute the bracket w = [u, v] as a determinant.

w = [u, v] = u× v = det

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
Example 6.14. Another typical way ones sees a Lie bracket defined is in Linear Algebra,
often called the commutator, [a, b] = ab− ba. It is easy to see when the algebra is commu-
tative, the commutator is trivial. The bracket can equally be defined when a, b ∈ Mn(k),
where n ∈ Z+ and k is a field. This Lie algebra, denoted gl(n, k)

Example 6.15. The center of a Lie algebra L, defined by Z(L) = {z ∈ L | [x, y] =
0 for all x ∈ L}, is an ideal of L. Moreover, L is abelian if and only if [L,L] = 0 as one
can easily check.

Example 6.16. Perhaps the most important introductory Lie algebra is the endomorphism
algebra. Take V as a finite dimensional vector space over a field k. Denote as usual End V
the set of all possible linear transformations from V → V . When viewed as a vector
space over k, End V has dimension n2. Now End V is a ring relative to the usual product
operation in End V . Now define a new operation in End V by [x, y] = xy − yx (the
commutator of Example 6.14). Under this new operation, End V is a Lie algebra over k.
This Lie algebra is denoted gl(k) for the general linear algebra because of its close relation
to the general linear group GL(V ) (all invertible endomorphisms of V ). Any subalgebra
of gl(k) is called a linear Lie algebra.1

The Lie algebra of Example 6.16 is of great importance as a result of the following
theorem

Theorem 6.13. (Ado’s Theorem)
Any finite dimensional Lie algebra L over a field k of characteristic 0 is isomorphic to a
subalgebra of some Lie algebra gl(n, k). (That is, it is a linear Lie algebra.)

Ideals of Lie Algebras. We have seem the usefulness of ideals when we studied poly-
nomials previously. Ideals give us a useful way of breaking an object apart into simpler
parts that are easier to study but still give us useful information about the structure of
the original object. We again will want to pay particularly close attention to ideals in our
study of Lie algebras.

Definition 6.14. (Lie algebra Ideal)
A subspace of I of a Lie algebra L is called an ideal if [x, y] ∈ I for all x ∈ L and y ∈ I.
Moreover, a Lie ideal is a subalgebra of the Lie group L.

Lemma 6.2. (Ideals are Subalgebras)
If I is an ideal of a Lie algebra L, then I is a subalgebra of L.

1See Appendix XXXX for more important examples of Lie algebras.
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Proof: Since I is an ideal of L, [x, y] ∈ I for all x ∈ L and y ∈ I. If we take x ∈ I, then
clearly x ∈ L. But then for all x, y ∈ I, [x, y] ∈ I. Hence, I is a subalgebra of L. �

Furthermore, it follows the Jacobian identity property of Lie algebras that all ideals
are necessarily two-sided; i.e., there is no difference between right and left ideals for Lie
algebras.

Example 6.17. The two easiest ideals to identify are the trivial vector subspaces 0 and
the whole Lie algebra L. These are called the trivial ideals.

Example 6.18. The center of a Lie algebra is an ideal. That is, if L is a Lie algebra, then
Z(L) = {z ∈ L | [x, z] = 0 for all x ∈ L}. Notice if the Lie algebra is commutative then the
ideal composed by the center is a trivial ideal.

As with ring ideals, the product of two Lie ideals is again a Lie ideal. However, it is not
as easy to see as in the ring case.

Theorem 6.14. (Products of Lie ideals are Ideals)
Let L be a Lie algebra and i, J two ideals of L. Then the Lie product

[I, J ] = Span{[x, y] |x ∈ I, y ∈ J}

is an ideal of L. Moreover, [L,L] ⊂ L is an ideal of L.

Proof: Suppose L is a Lie algebra with two ideal I, J . First, observe that [I, J ] is a
subspace of L. Moreover, since [x, y] = −[y, x], we have [I, J ] = [J, I]. Now suppose that
x ∈ I and y ∈ J with a ∈ L. Then applying the Jacobi identity,

[[x, y], a] + [[y, a], x] + [[a, x], y] = 0

But since [[y, a], x] ∈ [J, I] = [I, J ] and [[a, x], y] ∈ [I, J ], it must be the case that [[x, y], a] ∈
[I, J ]. Now any element u ∈ [I, J ] has the form u =

∑
cij [xi, yi], where xi ∈ I and yj ∈ J

and the cij are scalars. Then for any v ∈ L, we have

[u, v] = [
∑

cij [xi, yj ], v] =
∑

cij [[xi, yj ], v]

where [[xi, yj ], v] ∈ [I, J ]. Hence, we have [u, v] ∈ [I, J ] and therefore [I, J ] is an ideal in
L. �

We construct the definition of a ring being simple similarly, (note the nonabelian condi-
tion is to avoid importance being given to the one dimensional algebra since if L is simple
then Z(L) = 0 and L = [L,L]):

Definition 6.15. (Simple Lie Algebra)
If L is a Lie algebra with no nontrivial ideals and [L,L] 6= 0, then L is simple.

As with rings and groups previously, we use ideals to break apart Lie algebras into
manageable pieces which can be studied to understand the structure of the entire algebra.
As before, we do this by creating equivalence classes through a quotient.
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Definition 6.16. (Quotient Lie Algebra)
Let L be a Lie algebra and I an ideal of L. Take a coset space L/I = {x+ I |x ∈ L} with
multiplication defined by [x + I, y + I] = [x, y] + I. The coset is called the quotient Lie
algebra of L by I.

6.6. Lie Homomorphisms. Naturally, to observe the properties of the entire Lie algebra,
we need a way of relating the structure of its ideals or other well understood Lie algebras
to the entire Lie algebra in question. To do this, we examine the properties of the ho-
momorphism from the quotient Lie algebra or an alternate algebra and the Lie algebra in
question.

Definition 6.17. (Lie Homomorphism)
If L and H are Lie algebras, then a linear map ϕ : L→ H is called a Lie homomorphism if

ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L

We again have the normal properties of morphisms; that is, a given morphism ϕ :
L → H is called a monomorphism if ker (ϕ) = 0 and an epimorphism if im (ϕ) = H. A
morphism which is both a monomorphism and an epimorphism is called an isomorphism.
An isomorphism from a Lie algebra L to itself is called an automorphism. Moreover,
observe that ker (ϕ) is an ideal of L and im (ϕ) is a subalgebra of H. We remind the
reader that there is a natural injection between the homomorphisms and ideals of a Lie
algebra. The correspondence constructed by associating ϕ with ker ϕ. The associated
ideal I is called the canonical map ϕ : L → L/I, defined by x 7→ x + I. Now we observe
important properties of Lie homomorphisms that immediately follow:

Theorem 6.15. (Lie Mappings)

1. If L and H and are Lie algebras and ϕ : L→ H is a homomorphism of Lie algebras, then
L/ker ϕ ∼= im ϕ. If I is an ideal of L in ker ϕ, then there is a unique homomorphism
ψ : L/I → H that makes the following diagram commute, where π is the canonical map:

L L′

L/I

ϕ

π
ψ

2. If I and H are ideals of a Lie algebra L such that I ⊂ J then J/I is an ideal of L/I
and (L/I)(J/I) ∼= L/J .

3. If I and J are ideals of a Lie algebra L, there is a natural isomorphism between (I+J)/J
and I/(I ∩ J).

Proof:

1. Since the ker is an ideal, we can create the quotient ring L/ker ϕ. Let K = ker ϕ. Now
we create a mapping ψ : L/K → im ϕ given by x+K 7→ ϕ(x). First, we check that ϕ is
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well defined. Suppose that x+K = x′ +K, then (x− x′) +K = K so x− x′ ∈ K. But
then ψ(x+K) = ψ(x′). Moreover, this shows that ψ is injective. Surjectivity should be
clear from the definition of ψ. Now

ψ(x+K)ψ(y +K) = ϕ(x)ϕ(y) = ϕ(xy) = ψ(xy +K)

and ψ is a homomorphism. Furthermore, ψ is also linear. But then ψ is an isomorphism
of Lie algebras.

2.

Example 6.19. If L is an orthogonal Lie algebra such that sx = −xts for all x, s ∈ L and
g is an orthogonal matrix in that g is invertible and gtsg = s. We show that the mapping
x 7→ gxg−1 is an automorphism of L.

sgxg−1 =(g−1)tsxg−1

=− (g−1)txtsg−1

=− (g−1)txtgts

=− (gxg−1)s

so the map x 7→ gxg−1 is a linear automorphism of L. Now we need only show that it
preserves the operation.

[gxg−1, gyg−1] = gxyg−1 − gyxg−1 = g[x, y]g−1

6.7. Solvability and Nilpotent Lie Algebras. In order to study Lie algebras, we break
it into its smallest parts via quotients of ideals (as previously mentioned). But when can
we break apart Lie algebras in such a way? As we did with rings, we use the concept of
simplicity.

Definition 6.18. (Solvable)

If L is a Lie algebra, define a sequence of ideals of L by L(0) = L, L(1) = [L,L], L(2) =

[L(1), L(1)], · · · , L(i) = [L(i−1), L(i−1)]. Then L is a solvable Lie algebra if L(n) = 0 for some
nonnegative integer n.

This definition of course immediately implies that all simple Lie algebras are nonsolvable.
Moreover, an Abelian Lie algebra is immediately solvable as L(i) = [L(i−1), L(i−1)] = 0 for
any nonnegative integer i. The structure of a solvable Lie algebra is like that of a solvable
ring or field:

Theorem 6.16. (Solvable Lie Algebras)
Let L be a Lie algebra, then

1. If L is solvable then so are all subalgebras of L.
2. If L is solvable then all homomorphic images of L are solvable.
3. If I is a solvable ideal of L with L/I solvable, then L must be a solvable Lie algebra.
4. If I, J are solvable ideals of L then so is I + J .

Proof: Suppose that L is a Lie algebra:
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1. Suppose that K is a subalgebra of L, then it must be that K(i) ⊂ L(i). Since there is
an i0 such that L(i0) = 0 for all elements in L and all elements of K are in L, K(i0) = 0.
(However, this does not mean that a smaller i such that this holds does not exist for
K).

2. Suppose that ϕ : L → M is a epimorphism from L to a Lie algebra M . We will apply
induction. First, consider the case where L(0) = 0. This implies L is Abelian and since
ϕ is a homomorphism, M must be Abelian as well; hence, M (0) = 0. Moreover, suppose
that L(1) = 0. Then we have

0 = ϕ(L(1)) = ϕ([L,L]) = [ϕ(L), ϕ(L)] = [M,M ] = M (1)

Now assume the statement is true for all i up to some j ∈ Z+. Now observe that if
L(j+1) = 0, then

0 = ϕ(L(j+1)) = ϕ([L(j), L(j)]) = [ϕ(L(j)), ϕ(L(j))] = [M (j),M (j)] = M (j+1)

by induction, the homomorphic image of a solvable Lie algebra is solvable.
3. Suppose that I is a solvable ideal of L such that L/I is solvable. Then (L/I)(n) = 0 for

some n. Consider the typical canonical homomorphism π : L → L/I, then π(L(n)) = 0

by the previous part. Hence, L(n) ⊂ ker π = I. Since I is solvable, there is an m
such that I(m) = 0. Applying the previous part again and using the obvious fact that
(L(i))(j) = L(i+j), we obtain that L(n+m) = 0.

4. Assume that I, J are solvable ideals of L. By the Second Isomorphism Theorem, there
is an isomorphism between (I+J)/J and I/(I ∩J). However, notice that I/(I ∩J) is a
homomorphic image of I. By one of the previous parts, I/(I ∩J) must then be solvable
since I is solvable. However, then (I+J)/J must be solvable since it is the holomorphic
image of I/(I ∩ J). Since J is solvable and (I + J)/J is solvable, by the previous part,
I + J must be solvable. �

Notice the previous theorem seems to build on itself into a proof that if I and J are
solvable ideals of a Lie algebra then I + J is a solvable ideal. This becomes useful as it
allows us to prove the existence of a maximal solvable ideal.

Theorem 6.17. (Maximal Solvable Ideal)
If L is a Lie algebra, there exists a unique solvable ideal of L.

1. Existence: Every Lie algebra has a solvable (trivial) ideal. That is, {0} ⊂ L is both an
ideal and solvable. If there is

2. Uniqueness: Suppose that S, S′ are distinct maximal solvable ideals of a LIe algebra L.

Proof: L.T.R. �

Example 6.20. We show that L is solvable if and only if there exists a chain of subalgebras
L = L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lk = 0 such that Li+1 is an ideal of Li and each quotient
Li/Li+1 is abelian. First, assume that L is solvable. Now the derived series

L = L(0) ⊃ L(1) ⊃ · · · ⊃ L(k) = 0
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with L(m+1) = [L(m), L(m)] is an ideal of L(m) and L(m)/L(m+1) is abelian. Now assume
that there is a chain of subalgebras

L = L0 ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Lk = 0

such that Li+1 is an ideal of L and that each quotient Li/Li+1 is abelian. Now if I is an
ideal of L and L/I is abelian, then I ⊆ [L,L] because L/I is abelian then

[x, y] ∈ I
for all x, y ∈ L. That is, that [L,L] ⊂ I. Then we have by induction that L(m) ⊂ Lm.
Finally, we then have

L(m+1) = [L(m), L(m)] ⊆ Lm+1

By the induction hypothesis, L(k) = 0 and L is solvable.

This maximal solvable ideal is called the radical of L. This is also how we define the
notion of semisimplicity of a Lie algebra,

Definition 6.19. (Radical/Semisimple)
If L is a Lie algebra, then there is a maximal solvable ideal K, called the radical of L and
is denoted Rad L. If K is the trivial ideal, i.e. Rad L = 0, then L is called semisimple.

Of course, any simple Lie algebra L automatically fits the requirements for being semisim-
ple as L has no ideal expect for 0 and L. Moreover, using the idea of Theorem 6.17,
L/Rad L is semisimple.

While solvable Lie algebras are useful to study the properties of there exist more recent
useful types of Lie algebras which merit special attention. Moreover, this property is closely
related to the solvability of a Lie algebra. In fact, it is a stronger property.

Definition 6.20. (Nilpotent)
Let L be a Lie algebra and define a sequence given by L0 = L,L1 = [L,L], L2 = [L,L1],
· · · , li = [L,Li−1]. If there is an i such that Li = 0 then L is called nilpotent.

Similar to solvable Lie algebras, all abelian Lie algebras are necessarily nilpotent. One
should notice that L0 = L = L(0) and L1 = [L,L] = L(1). Furthermore, we have L(i) ⊂ Li.
This then implies that if a Lie algebra L is nilpotent it is necessarily solvable. However, the
converse does not hold. Since the definition of nilpotency is so close to that of solvability,
one expects them to have similar properties. In fact, they do.

Theorem 6.18. (Nilpotency) Let L be a Lie algebra, then

1. If L is nilpotent then so are all subalgebras of L.
2. If L is nilpotent then so are all homomorphic images of L.
3. If L/Z(L) is nilpotent and not zero then L is nilpotent.
4. If L is nilpotent and not zero then Z(L) is nontrivial.

Proof: This proof is similar to that of Theorem 6.16 and follows from the ring homo-
morphism theorems. �
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Of course we can rephrase the condition for L to be nilpotent as ad x1 ad x2 · · · ad xn(y) =
0 for some n for all xi, y ∈ L. Then in particular, it’s the case that (ad x)n = 0 for all
x ∈ L.

Definition 6.21. (Ad-Nilpotent) If L is a Lie algebra and x ∈ L, we call x ad-nilpotent if
ad x is a nilpotent endomorphism.

Therefore, we can rephrase the above result as: “if L is nilpotent then all the elements
of L are ad-nilpotent.” However, one wonders if the converse holds. Indeed, luckily the
converse does hold. However, first we need a lemma.

Lemma 6.3. Let x ∈ gl(V ) be a nilpotent endomorphism, then ad x is also nilpotent.

Proof: Let λx and ρx be endomorphisms given by λx(y) = xy and ρx(y) = yx, i.e. left
and right translation, respectively. Both λx and ρx are nilpotent because x is nilpotent.
Now λx and ρx commute as

(λxρx)(y) = λx(ρx(y)) = λx(yx) = xyx

(ρxλx)(y) = ρx(λx(y)) = ρx(xy) = xyx

Now in End (End (V )), indeed any ring, the sum and difference of two commuting nilpo-
tents is nilpotent. But then ad x = λx − ρx is clearly nilpotent. �

Example 6.21. Here we show that L is solvable/nilpotent if and only if ad L is solv-
able/nilpotent. First, notice that ad : L → ad L is a homomorphism, then we know that
ad L ∼= L/Z(L) because ker ad = Z(L). Then [Z(L), Z(L)] = 0, so Z(L) is a solvable
ideal. But we know that L is solvable if and only if ad L is solvable.

Example 6.22. We will show that the sum of nilpotent ideals of a Lie algebra L is again
a nilpotent ideal and that L possesses a unique maximal nilpotent ideal. Suppose that I, J
are nilpotent ideals of L, Im = 0, and Jn = 0.

[I + J, I + J ] ⊂ [I, I] + [J, J ] + [I, J ] ⊂ [I, I] + [J, J ] + I ∩ J
Then one can show by induction that

(I + J)k ⊂ Ik + Jk + I ∩ J
Now if x > max(m,n), then Ix = 0, Jx = 0 and (I + J)x ⊂ I ∩ J

(I + J)x+y = [I + J, · · · , [I + J, I ∩ J ], · · · ] ⊂ Iy ∩ J + I ∩ Jy

but then (I + J)x+y = 0 and I + J is a nilpotent ideal of L. �

Example 6.23. If L is a nilpotent and K is a proper subalgebra of L, then NL(K)
properly includes K. Why? Assume this isn’t so. Let L0 = L,L1 = [L,L], · · · , Ln = 0 be
a descending central series of L. It is clear that K is proper subalgebra of L. But then
there must be a n such that Ln+1 ⊂ K. However, this contradicts the fact that K is a
proper subalgebra.
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Example 6.24. If L is nilpotent then L must has some ideal of codimension 1. To see
why this is so. Let L be a nilpotent Lie algebra. Then [L,L] � L and we have a natural
homomorphism π : L → L/[L,L]. Clearly, L/[L,L] is a nonzero abelian algebra. It then
must have a subspace I of codimension 1. Call this subspace I ′. Because L/[L,L] is
abelian, I ′ is an ideal of L/[L,L]. Then π−1(I ′) is an ideal of L with codimension 1.

Theorem 6.19. (Lie Eigenvectors) Let L be a subalgebra of gl(V ) and V be of finite
dimension. If L consists of nilpotent endomorphisms and V 6= 0, then there exists nonzero
v ∈ V for which Lv = 0.

Proof: We prove this by induction. The base cases where dim L = 0 and dim L = 1
are trivial. Assume the statement of the theorem is true for all Lie algebras of dimension
less than L. If K is any proper subalgebra of L, then according to Lemma 6.3, K acts
as a Lie algebra of nilpotent linear transformations on the vector space L, through the
adjoint. Hence, it also acts similarly on the vector space L/K. By the induction hypothesis,
dim K < dim L, there is a vector x + K 6= K ∈ L/K that is killed by the image of K in
gl(L/K). Therefore, [y, x] ∈ K for all y ∈ K but x /∈ K. This is equivalent to K ⊂ NL(K),
the normalizer of K in L.

Since V is finite dimensional, there must be a maximal proper subalgebra of L, even
if is the trivial subalgebra. If we let K be the maximal proper subalgebra of L, since
K ⊂ NL(K), it must be the case that NL(K) = L. Then K is an ideal of L. We
have two cases, dim L/K = 1 or dim L/K > 1. If dim L/K > 1, then the inverse
image of any 1-dimensional subalgebra of L/K, which obviously must exist, would be a
proper subalgebra which contains K, which would contradict the fact that K is maximal.
Therefore, dim L/K = 1 and we can write L = K + Fz for any z ∈ L−K.

Finally, W = {v ∈ V |Kv = 0} contains more than the zero vector. Because K is an
ideal, if x ∈ L, y ∈ K, and w ∈ W then yxw = xyw − [x, y]w = 0. So simply choose
z ∈ L−K then the nilpotent endomorphism z acting on W has an eigenvector, i.e. zv = 0.
But since z ∈ L ⊂ gl(V ), there is a vector v in L such that Lv = 0. �

Theorem 6.20. (Engel’s Theorem) If all elements of L are ad-nilpotent, then L is nilpo-
tent.

Proof: Suppose that L is a Lie algebra such that x is ad-nilpotent for all x ∈ L. There-
fore, ad L ⊂ gl(L). If L = 0, the result is trivial. Assume L 6= 0. Then by Theorem 6.19,
there is a nonzero x ∈ L such that [L, x] = 0. This means that x commutes with all of
L and then Z(L) 6= 0. Since the center is a normal subgroup, L/Z(L) exists and must
consist of all ad-nilpotent elements. Moreover, L/Z(L) must have dimension less than L.
It follows easily from induction on dim L that L/Z(L) must be nilpotent. But if L/Z(L)
is nilpotent then L is nilpotent. �

From Engel’s Theorem, we can make a powerful statement about an important concept
in Lie algebras, flags.



123

Definition 6.22. (Flag) If V is a finite dimensional vector space then a flag in V is a
chain of subspaces 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V , with dim Vi ⊂ Vi−1 for all i. This is
equivalent to saying that there is a basis of V relative to which al the matrices of L are in
n(n, F ).

Corollary 6.5. (n(n, F ) Basis) If L is a Lie algebra with all its elements ad-nilpotent,
then there exists a flag (Vi) in V stable under L with xVi ⊂ Vi−1 for all i. (There exists a
basis of V relative to which the matrices of L are all in n(n, F ).)

Proof: Suppose v ∈ V is nonzero and is killed by L. We know such a v ∈ V exists
by Engel’s Theorem. Set V1 = Fv and W = V/V1. Notice that the induced action of L
on W is by nilpotent endomorphisms. Then by induction on dim V , W must have a flag
stabilized by L, the inverse image in V will work. �

Engel’s Theorem holds many applications but an important one which we shall see is
the following.

Lemma 6.4. Let L be nilpotent and K an ideal of L. If K 6= 0 and K ∩ Z(L) 6= 0.
Moreover, Z(L) 6= 0.

Proof: L acts on K through the adjoint representation. Therefore, by Engel’s Theorem
yields a x ∈ K that is nonzero and is killed by L. Therefore, x ∈ K ∩ Z(L). �

Example 6.25. Suppose that L is a Lie algebra and K is an ideal of L with L/K being
nilpotent with ad x |K for all x ∈ L. Because L/K is nilpotent for all x ∈ L, ad x is a
nilpotent endomorphism in End L/K. That is to say, there must be an n ∈ Z+ such that
(ad x)n(y) ∈ K for all y ∈ L. However, ad x |K is nilpotent. This implies that there is
an m ∈ Z+ such that (ad x)m(ad x)n(y) = (ad x)m+n(y) = 0. This shows that ad x is a
nilpotent endomorphism in gl(L). Applying Engel’s Theorem yields that L is nilpotent.

6.8. Semisimple Lie Algebras. Though we have obtained many results thus far, we have
not made much probes. Much of this results from the fact that we are allowing F to be an
arbitrary field. From now on, we shall focus on fields F with characteristic 0. Moreover,
we will also make the assumption that F is algebraically closed (usually to guarantee the
existence of the eigenvalue we seek). We will focus on Lie algebras that are composed
of simple Lie algebras. So if we can take this larger Lie algebra and break it up into its
simple parts, we can understand the larger object through these components. The power
of Engel’s Theorem is it allows us to find a common eigenvector for a Lie algebra that
consists of nilpotent endomorphisms. We now prove a similar theorem.

Theorem 6.21. Let L be a solvable subalgebra of gl(V ) and V be a finite dimensional. If
V is nonzero then V contains a common eigenvector for all endomorphisms in L.

Proof: We shall prove this using induction on dim L. If dim L = 0, then the result
follows trivially. Now we follow closely the ideas of Engel’s Theorem. We follow the
following plan:
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1. Find an ideal of codimension 1.
2. Show through induction that there is a common eigenvalue for K.
3. Verify that L stabilizes a space consisting of such eigenvalues.
4. Find in that space an eigenvalue for a single z ∈ L satisfying L = K + Fz.

Now we proceed along our path.

1. Since L is solvable and of positive dimension, L properly contains [L,L]. Therefore,
as L/[L,L] is abelian, any subspace is automatically an ideal. Now take a subspace of
codimension 1. Its inverse image K is an ideal of codimension 1 in L.

2. Now we use induction to find a common eigenvector v ∈ V for K. If K = 0 then L is
abelian of dimension 1 and an eigenvalue for a basis vector of L completes the proof.
So for x ∈ K, xv = λ(x)v, where λ : K → F is some linear function. Fix this function
λ and let W be the subspace

W = {w ∈ V |xw = λ(x)w for all x ∈ K}
Note that W is nonzero.

3. We need to show that L leaves W invariant. First, we need to test if xw is in W . Take
an arbitrary y ∈ K. Examine

yxw = xyw − [x, y]w = λ(y)xw − λ([x, y])w

If this is to be in W , we need to show that λ([x, y]) = 0. Fix w ∈ W and x ∈ L. Let
n > 0 be the smallest integer for which w, xw, · · · , xnw are linearly independent. Now
let Wi be the subspace of V spanned by w, xw, · · · , xi−1w (or the set W0 = 0). Then
dim Wn = n and Wn = Wn+1 for i ≥ 0 and x maps Wn into Wn. Each y ∈ K leaves
each Wi invariant. Now relative to the basis w, xw, · · · , xn−1w of Wn, y ∈ K can be
represented by a upper triangular matrix whose diagonal entries are all equal to λ(y).
This follows from

yxiw ≡ λ(y)xiw mod Wi

We prove this statement by induction on i. If i = 0, the statement is obvious. Now we
write

yxiw = yxxi−1w = xyxi−1w − [x, y]xi−1w

By the induction hypothesis, yxi−1w = λ(y)xi−1w + w′, where w′ ∈ Wi−1. Now by
construction, x maps Wi−1 into Wi, therefore it must be the case that

yxiw ≡ λ(y)xiw mod Wi

holds for all i. Finally, because of the way y ∈ K acts on Wn, traceWn(y) = nλ(y). But
this is true for elements of K of the form [x, y] with y ∈ K and x of the form xv = λ(x)v.
However, both x, y stabilize Wn. Therefore, [x, y] acts on Wn as the commutator of two
endomorphisms of Wn, which implies its trace is 0. Then nλ([x, y]) = 0. Because
char F = 0, this forces λ([x, y]) = 0.

4. Write L = K+Fz. Since F is algebraically closed, we can find an eigenvector v0 ∈W of
z, for some eigenvalue z. But then v0 is obviously a common eigenvalue for L. Moreover,
λ can be extended to a linear function on L such that xv0 = λ(x)v0 for all x ∈ L. �
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We then get the following powerful corollaries.

Corollary 6.6. (Lie’s Theorem) Let L be a solvable subalgebra of gl(V ) with dim V = n <
∞. Then L stabilizes some flag in V . Equivalently, the matrices of L relative to a suitable
basis of V are upper triangular.

Proof: This follows immediately from 6.21 with induction applied to dim V . �

Corollary 6.7. Let L be a solvable Lie algebra. Then there exists a chain of ideals of L,

0 = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln = L

such that dim Li = i.

Proof: Let L be any solvable Lie algebra and φ : L → gl(V ) a finite dimensional rep-
resentation of L. Then φ(L) must be solvable. Then it must stabilize a flag from Lie’s
Theorem. If φ is the adjoint representation, a flag of subspaces is just a chain of ideals of
L, each of codimension 1 in the next. �

Corollary 6.8. Let L be a solvable Lie algebra. Then x ∈ [L,L] implies that adL x is
nilpotent. In particular, [L,L] is nilpotent.

Proof: Find a flag of ideals as described in Corollary 6.7. Relative to some basis
{x1, x2, · · · , xn} of L, for which {x1, x2, · · · , xn} spans Li, the matrices of ad L must be
in t(n, F ). Therefore, the matrices of [ad L, ad L] = adL[L,L] lie in n(n, F ), the derived
algebra of t(n, F ). Therefore, adL x is nilpotent for x ∈ [L,L] and ad[L,L] x is nilpotent.
Therefore, by Engel’s Theorem, [L,L] is nilpotent. �

6.9. Jordan-Chevalley Decomposition. The reader should be familiar with the Jordan
canonical form. For a single endomorphism, x over an algebraically closed field, we can
express x as matrix as a sum of blocks

a 1
a 1

. . .
. . .

1
a


We can use this to create a very useful decomposition for the endomorphism matrices.

Why? The a-diagonal commutes with a nilpotent matrix with 1’s above the diagonal and
zero everywhere else. But given the Jordan canonical form, x must be the sum of a diagonal
and a nilpotent matrix which commute! But let’s be more precise.

Definition 6.23. (Semisimple) Let x ∈ End V , where V is a finite dimensional vector
space. Then x is semisimple if the roots of its minimal polynomial over a field F , with
arbitrary characteristic, are all distinct.
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Of course, we could have also just then said that x is semisimple if and only if x is
diagonalizable. But if two semisimple endomorphisms commute, then we can diagonalize
them simultaneously. This means that their sum/difference must be semisimple.

Proposition 6.3. Let V be a finite dimensional vector space over F with x ∈ End V .
Then we have

1. There exist unique xs, xn ∈ End V satisfying the condition: x = xs + xn, where xs is
semisimple, xn is nilpotent, and xs, xn commute.

2. There exist polynomials p(T ), q(T ) in one indeterminate, without a constant term, such
that xs = p(x), xn = q(x). In particular, xs and xn commute with any endomorphism
commuting with x.

3. If A ⊂ B ⊂ V are subspaces and x maps b into A, then x+ s and xn also map B into
A.

Proof: Let a1, · · · , ak, with multiplicities m1, · · · ,mk, be the distinct eigenvalues of x,
so the characteristic polynomial is

Π (T − ai)mi

If Vi = ker (x − ai · 1)mi , then V is a direct sum of the subspaces V1, · · · , Vk, each stable
under x. On Vi, x clearly has characteristic polynomial (T − ai)

mi . Now applying the
Chinese Remainder Theorem for the ring F [T ] to locate a polynomial p(T ) satisfying the
congruences, with mapirwise relatively prime moduli:

p(T ) ≡ ai mod (T − ai)mi , p(T ) ≡ 0 mod T.

Now set q(T ) = T − p(T ). Each of p(T ), q(T ) has a zero constant term, since p(T ) ≡ 0
mod T . Now set xs = p(x) and xn = q(x). Since they are polynomials in x, xs, xn and
commute with each other, as well as with all endomorphisms which commute with x. They
also must stabilize all subspaces of V stabilized by x, in particular the Vi. Hence, we
have shown (2). The congruence p(T ) ≡ ai mod (T − ai)mi shows that the restriction of
xs − ai · 1 to Vi is zero for all i. Hence, xs acts diagonally on Vi with single eigenvalue
ai. By definition, xn = x − xs., so xn is nilpotent. But because p(T ) and q(T ) have no
constant term, we have shown (3). We only need to show (1) at this point. Let x = s+ n
be another such decomposition. Then we have xs − s = n − xn. But because of (2), all
the endomorphisms in sight commute. Sums of commuting semisimple/nilpotent endo-
morphisms are again semisimple/nilpotent, whereas only 0 can be both semisimple and
nilpotent. Therefore, s = xs and n = xn. �

The decomposition x = xs + xn is called the (additive) Jordan-Chevalley decomposi-
tion of x. This is also sometimes called the Jordan decomposition. The xs is called the
semisimple part of x and xn is called the nilpotent part of x.

Corollary 6.9. Let x ∈ End V , with V being finite dimensional and x = xs + xn being its
Jordan decomposition. Then ad x = ad xs + ad xn is the Jordan decomposition of ad x in
End(End V ).
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Proof: We know that ad xs and ad xn are semisimple and nilpotent. Moreover, they
must commute (as [ad x, ad xn] = ad [xs, xn] = 0. Then the result follows from (2) of
Proposition 6.3. �

Corollary 6.10. Let U be a finite dimensional F -algebra. Then der U contains the semisim-
ple and nilpotent parts off all its elements in End U.

Proof: If δ ∈ der U, suppose that σ, υ ∈ End U be its semisimple and nilpotent parts,
respectively. It is sufficient to show that σ ∈ der U. If a ∈ F , set

Ua = {x ∈ U | (δ − a · 1)kx = 0}
for some k that depends on x. Then U is the direct sum of those Ua for which a is an
eigenvalue of δ or σ. Also, σ acts on Ua as a scalar multiplication by a. It is easily checked
by induction that for a, b ∈ F that Ua,Ub ⊂ Ua+b using the formula

n∑
i=0

(
n

i

)(
(δ − a · 1)n−i

)
·
(
(δ − b · 1)iy

)
for x, y ∈ U (which can be shown by induction on n). Now if x ∈ Ua and y ∈ Ub, then
σ(xy) = (a+ b)xy as xy ∈ Ua+b, which could be 0. Moreover,

(σx)y + x(σy) = (a+ b)xy

By the directness of the sum

U =
∐
a

Ua

if follows that σ is a derivation. �

6.10. Cartan’s Criterion. Ultimately, our goal is to represent a Lie algebra. Though
we will eventually focus having to only look at simple diagrams which classify the Lie
algebras, as we did in the Representation Theory section, we want to do be thinking of the
simplest parts of a Lie algebra - that is, the semisimple parts. Ultimately, there is a deep
connection between solvability and simplicity. Here, we develop a criterion for solvability
of a Lie algebra based on the trace of special endomorphisms of the Lie algebra. This is
called the Cartan criterion.

Lemma 6.5. Let A ⊂ B be two subspaces of gl(V ) with V being a finite dimensional vector
space. Let

M = {x ∈ gl(V ) | [x,B] ⊂ A}
Suppose that x ∈M satisfied trace (xy) = 0 for all y ∈M , then x is nilpotent.

Proof: Let x = s + n, where s = xs and n = xn, be the Jordan decomposition of x.
Now fix a basis v1, · · · , vm of V relative to which s has diagonal matrix with a1, · · · , am
along the diagonal. Let E be the vector subspace of F over the prime field Q spanned by
the eigenvalues a1, · · · , am. We need to show that s = 0. Equivalently, we can show that
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E = 0. Because E has finite dimension over Q, it suffices to that the dual space E∗ is 0.
That is, any linear function f : E → Q is 0.

Now given any f , let y be the element of gl(V ) whose matrix relative to our given
basis is a diagonal matrix with f(a1), · · · , f(am) along the diagonal. Now if {eij} is the
corresponding basis of gl(V ),

ad s(eij) = (ai − aj)eij , ad y(eij) =
(
f(ai)− f(aj)

)
eij

Now let r(T ) ∈ F [T ] be a polynomial with a constant term satisfying r(ai − aj) = f(ai)−
f(aj) for all pairs i, j. Such a r(T ) exists, as we can show from Lagrange interpolation.
Moreover, there is no ambiguity in the assigned values because if ai− aj = ak − al then by
the linearity of f , we have f(ai)− f(aj) = f(ak)− f(al). Then ad y = r ad s.

By Lemma 6.9, we know that ad s is the semisimple part of ad x. We can then write
it as a polynomial in ad x without constant term. Therefore, ad y is a polynomial in
ad x without a constant term. By assumption, ad x send B into A. Then we also have
ad y(B) ⊂ A. Using the assumption that trace(xy) = 0, we obtain∑

aif(ai) = 0

The left side is a Q-linear combination of elements of E. Now applying f , we obtain∑
f(ai)

2 = 0

But the numbers f(ai) are rational. Therefore, all the f(ai) must be 0. Then f must
identically be 0 as ai spans E. �

Theorem 6.22. (Cartan’s Criterion) Let L be a subalgebra of gl(V ) with V begin a finite
dimensional vector space. Suppose then that the trace(xy) = 0 for all x ∈ [L,L] and y ∈ L.
Then L is solvable.

Proof: It suffices to prove that [L,L] is nilpotent or that all x ∈ [L,L] are nilpotent
endomorphisms by Engel’s Theorem and Lemma 6.3. Now applying Lemma 6.3 with V
given, A = [L,L] and B = L, we have

M = {x ∈ gl(V ) | [x, L] ⊂ [L,L]}

We also have l ⊂ M . Now if [x, y] is a generator of [L,L] and if z ∈ M , then using the
identity

trace([x, y]z) = trace(x[y, z])

(this identity only holds for x, y, z which are endomorphisms in a finite dimensional vector
space) we know that trace([x, y]z) = trace(x[y, z]) = trace([y, z]x). But by the definition
of M , [y, z] ∈ [L,L], so the right side is 0 by hypothesis. �

Corollary 6.11. Let L be a Lie algebra such that trace(ad x, ad y) = 0 for all x ∈ [L,L]
and y ∈ L, then L is solvable.
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Proof: We can apply Cartan’s Criterion to the adjoint representation of L, which tells
us that ad L is solvable. But then because ker ad = Z(L) is solvable, L is solvable. �

6.11. Killing Form. Similarly to the previous section, we can develop a criterion, this
time not for solvability, but rather semisimplicity.

Definition 6.24. (Killing Form) Let L be a Lie algebra. Let x, y ∈ L. Now define

κ(x, y) = trace(ad x, ad y)

Then κ is a symmetric bilinear form on L, called the Killing form. Furthermore, κ is
associative in the sense that

κ([x, y], z) = κ(x, [y, z])

Lemma 6.6. Let I be an ideal of L. If κ is the Killing form of L and κI the killing form
of I view as a Lie algebra, then κI = κ |I×I .

Proof: First, if W is a subspace of a finite dimensional vector space V and ϕ is an
endomorphism of V mapping V into W , then trace(φ) = trace(φ |W ). Now if x, y ∈ I,
then ad xad y is an endomorphism of L mapping L into I, so its trace κ(x, y) coincides
with the trace of κI(x, y) of ad xad y |I= adI xadI y. �

Example 6.26. If L is nilpotent then the Killing form of L is zero. Because L is nilpotent,
there must be an n ∈ Z+ such that L2n+1 = 0. Then we have

(ad x ad y)n ∈ L2n+1 = 0

for all x, y ∈ L. But ad x ad y is a nilpotent endomorphism of L. Then it is the case that

κ(x, y) = trace(ad x ad y) = 0

Definition 6.25. (Nondegenerate) A symmetric bilinear form β(x, y) is called a nonde-
generate if its radical S is 0, where

S = {x ∈ L |β(x, y) = 0 for all y ∈ L}

Theorem 6.23. Let L be a Lie algebra. Then L is semisimple if and only if its Killing
form is nondegenerate.

Proof: Suppose that rad L = 0. Let S be the radical of κ. By definition, trace(ad x, ad y) =
0 for all x ∈ S and y ∈ L. According to Cartan’s Criterion, adLS is solvable. Therefore, S
is solvable. But when S is an ideal of L, S ⊂ rad L = 0 and κ is nondegenerate.

Now suppose that S = 0. To prove that L is semisimple, it suffices to prove that every
abelian ideal I of L is included in S. Suppose that x ∈ I and y ∈ L. Then ad x ad y
maps L → L → I and (ad x ad y)2 maps L into [I, I] = 0. This means that ad x ad y is
nilpotent. Therefore, trace(ad y ad y) = κ(x, y). Then I ⊂ S = 0. �
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A Lie algebra is said to be the direct sum of of ideal I1, · · · , It provided that L =
I1 + · · ·+ It. This forces [Ii, Ij ] ⊂ Ii ∩ Ij = 0 if i 6= j. We write

L = I1 ⊕ · · · ⊕ It
Theorem 6.24. Let L be semisimple. Then there exist ideal L!, · · · , Lt of L which are
simple as Lie algebras, such that

L = L1 ⊕ · · · ⊕ Lt
Every simple ideal of L coincides with one of the Li. Moreover, the Killing form of Li is
the restriction of κ to Li × Li.

Proof: Let I be an arbitrary ideal of L. Then I⊥ = {x ∈ L |κ(x, y) = 0 for all y ∈ I}
is also an ideal because of the associativity of κ. Applying Cartan’s Criterion to the
Lie algebra I yields that the ideal I ∩ I⊥ of L is solvable (therefore, it is 0). But since
dim I + dim I⊥ = dim L, we must have

L = I ⊕ I⊥

Now we apply induction to the dim L to obtain a decomposition into a direct sum of
simple ideals. If L has no nonzero proper ideal, then L is simple already. Otherwise, let
L1 be a minimal nonzero ideal. Then we have L = L1 ⊕ L⊥1 . Moreover, any ideal of L1 is
also an ideal of L, so L1 is semisimple. By induction, it splits into a direct sum of simple
ideals, which are also ideals of L. Then the corresponding decomposition of L follows.

Now we prove uniqueness. If I is any simple ideal of L, then [I, L] is also an ideal of
I. This ideal is also nonzero as Z(L) = 0. This forces [I, L] = I. However, [I, L] =
[I, L1]⊕ · · · ⊕ [I, Lt]. So all but one of the summands must be 0. Suppose that [I, Li] = I.
Then I ⊂ Li and I = Li because of Lemma 6.6. �

Corollary 6.12. If L is semisimple, then L = [L,L] and all ideals and homomorphic
images of L are semisimple. Moreover, each ideal of L is a sum of certain simple ideals of
L.

The nondegeneracy of the Killing form has many implications. The following gives an
important structural aspect of semisimple Lie algebras.

Theorem 6.25. If L is semisimple then ad L = der L. (Every derivation of L is an inner
derivation.)

Proof: If L is semisimple, then Z(L) = 0. Therefore, L → ad L is an isomorphism of
Lie algebras. In particular, M = ad L itself has a nondegenerate Killing form, following
from Theorem 6.23. If D = der L, [D,M ] ⊂M . Then by Lemma 6.6, κM is the restriction
to M ×M of the Killing form κD of D. In particular, if I = M⊥ is the subspace of D
orthogonal to M under κD, then the non degeneracy of κM forces I ∩M = 0. Both I and
M are ideals of D, so we have [I,M ] = 0. If δ ∈ I, this forces ad δx = 0 for al lx ∈ L,
given the fact that

[δ, ad x] = ad δx for all x ∈ L, δ ∈ der L
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Therefore, δx = 0 for all x ∈ L because δ = 0 and ad x is injective. But then I = 0 and
der L = M = ad L. �

Example 6.27. We will show that L is solvable if and only if [L,L] is in the radical of
the Killing form. First, suppose that [L,L] is in the radical of the Killing form. Then for
x ∈ [L,L] and y ∈ L, we have

κ(x, y) = trace(ad x ad y) = 0

But then L is solvable. Now on the other hand, suppose that L is solvable. By Lie’s
Theorem, L must have some basis x1,x2, · · · ,xn such that for all x ∈ L, ad x is an upper
triangular matrix relative to the chosen basis. Therefore,

ad[x, y] = ad x ad y − ad y ad x

is a upper triangular matrix. Furthermore, we also know that ad[x, y] ad z is an upper
triangular matrix for all x, y, z ∈ L. That finally yields that trace(ad[x, y] ad z) = 0 then
[L,L] ⊂ rad(L).

6.12. Reducibility of Representations and the Casimir Element. We will not bother
to restate all the definitions for G-modules (though here they will be L-modules), G-
homomorphisms, or reducibility that we defined in the sections 5.3 and 5.4. If one lacks
these definitions or has forgotten them, go to these sections now.

Moreover, the theorems of those sections, especially Schur’s Lemma, still hold. So given a
representation ϕ : L→ gl(V ) be irreducible, then the only endomorphisms of V commuting
with all ϕ(x) for all x ∈ L are scalar.

Definition 6.26. (Dual) Let V be a finite dimensional L-module. Then the dual vector
space V ∗ becomes an L-module, called the dual or contragredient, if we define for all
f ∈ V ∗, v ∈ V , and x ∈ L

(x · f)(v = −f(x · v)

One can check that the dual is an L-module. Before we used Cartan’s trace criterion
to determine conditions for solvability to prove that every semisimple Lie algebra L has a
nondegenerate Killing form. As before, a semisimple representation ϕ : L → gl(V ) is said
to be faithful, or injective, representation of L. We can define a symmetric bilinear form

β(x, y) = trace(ϕ(x)ϕ(y))

on L. The form β is associative, as the reader can check. Moreover, the form β is also
nondegenerate. We know that ϕ(S) ∼= S is solvable and then S = 0. In fact, the form β is
the Killing form in the special case ϕ = ad.

Now if we suppose that L is semisimple and β is any nondegenerate symmetric associative
bilinear form on L and x1, x2, · · · , xn is a basis of L, then there is a uniquely determined
dual basis y1, y2, · · · , yn relative to β satisfying

β(xi, yi) = δij
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If x ∈ L, we can write [x, xi] =
∑

j aijxj and [x, yi] =
∑

j bijyj . Using the associativity
of β, we compute

aik =
∑
j

aijβ(xj , yk) = β([x, xi], yk) = β(−[xi, x], yk) = β(xi,−[x, yk]) = −
∑
j

bkjβ(xi, yj) = −bki

Now if ϕ : L→ gl(V ) is any representation of L, we write

cϕ(β) =
∑
i

ϕ(xi)ϕ(yi) ∈ End V

where the xi, yi run over dual bases relative to β. Using the identity in End V

[x, yz] = [x, y]z + y[x, z]

and the fact that aik = −ki for x ∈ L. Then we obtain

[ϕ(x), cϕ(β)] =
∑
i

[ϕ(x), ϕ(xi)]ϕ(yi)+
∑
i

ϕ(xi)[ϕ(x), ϕ(yi)] =
∑
i,j

aijϕ(xj)ϕ(yi)+
∑
ij

bijϕ(xi)ϕ(yj) = 0

In other words, cϕ(β) is an endomorphism of V commuting with ϕ(L).

Definition 6.27. (Casimir Element) Let ϕ : L → gl(V ) be a faithful representation with
nondegenerate trace form β(x, y) = trace(ϕ(x)ϕ(y)). Having a fixed basis x1, x2, · · · , xn of
L, we write cϕ for cϕ(β) and call this the Casimir element of ϕ. Its trace is∑

i

trace(ϕ(xi)ϕ(yi)) =
∑
i

β(xi, yi) = dim L

In the case that ϕ is also irreducible, Schur’s Lemma implies that cϕ is a scalar. Then cϕ
is independent of the basis of L chosen. However, in the case where ϕ is no longer faithful,
we need to make several small changes. Because the ker ϕ is an ideal of L, it is the sum of
certain simple ideals. Now let L′ denote the sum of the remaining simple ideals. Then the
restriction of ϕ to L′ is a faithful representation of L′. Then the resulting element of End V
is again called the Casimir element of ϕ and again denoted cϕ. Furthermore, it commutes
wotj ϕ(L) = ϕ(L′). Often, it is convenient to assume that we have a faithful representation
of L, which is equivalent to studying the representations of certain semisimple ideals of L.
If L is simple, the only one dimensional module on which L acts trivially or the module 0
will fail to be faithful.

6.13. Weyl’s Theorem and Jordan Decomposition Preservation.

Lemma 6.7. Let ϕ : L → gl(V ) be a representation of a semisimple Lie algebra of L.
Then ϕ(L) ⊂ sl(V ). In particular, L acts trivially on any one dimensional L-module.

Proof: This is easily shown using L = [L,L] together with the fact that sl(V ) is the
derived algebra of gl(V ). �

Theorem 6.26. (Weyl’s Theorem) Let ϕ : L→ gl(V ) be a finite dimensional representa-
tion of a semisimple Lie algebra. Then ϕ is completely reducible.
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Proof: First, we prove the special case where V has an L-submodule W with codimension
1. Because L acts trivially on V/W , by the preceding lemma, we can denote this module
F with the short exact sequence

0→W → V → F → 0

Then using induction on dim W , we reduce this to the case where W is an irreducible
L-module, as follows. Suppose that W ′ is a proper nonzero submodule of W . That then
yields the short exact sequence

0→W/W ′ → V/W ′ → F → 0

By induction, there must exist a 1-dimensional L-submodule of V/W ′, say W̃/W ′, com-
plementary to W/W ′, i.e. the sequence splits. But then we get yet another short exact
sequence

0→W ′ → W̃ → F → 0

But this is the same as the original short exact sequence with the exception that dim W ′ <
dim W , then induction yields a 1-dimensional submodule X complementary to W ′ in
W̃ : W̃ = W ′ ⊕X. But then V/W ′ = W/W ′ ⊕ W̃/W ′. It follows that V = W ⊕X, since
the dimensions add up to dim V and since W ∩X = 0.

Now assume that W is irreducible and without loss of generality that L acts faithful on
V . Then let c = cϕ be the Casimir element of ϕ. Since c commutes with ϕ(L), c is an
L-module endomorphism of V . In particular, c(W ) ⊂ W and ker c is an L-submodule of
V . Because L acts trivially on V/W , that is ϕ(L) send V to W , c must likewise act as
a linear combination of products on the elements of ϕ(x). Then c has trace 0 on V/W .
However, c also acts as a scalar on the irreducible L-submodule W by Schur’s Lemma.
Since this scalar cannot be 0 as this would force tracev(c) = 0, it follows that ker c is a
1-dimensional L-submodule of V which intersects W trivially This is the complement of
W .

Now we consider the general case. Let W be a nonzero submodule of V :

0→W → V → V/W → 0

Now let Hom(V,W ) be the space of linear maps V → W viewed as an L-module. Let V
be the subspace of Hom(V,W ) consisting of those maps whose restriction to W is a scalar
multiplication Now say that f |W= a · 1W then for x ∈ L, w ∈W

(x · f)(w) = x · f(w)− f(x · w) = a(x · w)− a(x · w) = 0

Therefore, x ·f |W= 0. Let W be the subspace of V consisting of those f whose restrictions
to W is zero. The preceding calculation shows that W is also an L-submodule and that
L maps V into W. Moreover, V/W has dimensions one since each f ∈ V is determined
module W by the scalar f |W . But then this brings us to the case where

0→W→ V→ F → 0

From the first part of the proof, we know that V has a 1-dimensional submodule com-
plementary to W. Let f : V → W span t. Then after multiplication by a nonzero scalar,
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we can assume that f |W= 1W . But then saying that L kills f is just to say that

0 = (x · f)(v) = x · f(v)− f(x · v)

or that f is an L-homomorphism. Therefore, ker f is an L-submodule of V . But since f
maps V into W and acts as 1W on W , we conclude that

V = W ⊕ ker f

�

Weyl’s theorem can be considered the fundamental theorem for representations of semisim-
ple Lie algebras L. This theorem has many broad reaching applications and implications.
One such is showing that the abstract Jordan decomposition in Proposition 6.3 is compat-
ible with various linear representations of L.

Theorem 6.27. Let L ⊂ gl(V ) be a semisimple linear Lie algebra with V being finite di-
mensional. Then L contains the semisimple and nilpotent parts in gl(V ) of all its elements.
In particular, the abstract and usual Jordan decompositions in L coincide.

Proof: First, observe that the second implication of the theorem follows from the first as
the Jordan decomposition is unique. To it will suffice to show the first part. Let x ∈ L be
arbitrary with Jordan decomposition x = xs+xn in gl(V ). We need to show that xs, xn are
in L. Now since ad x(L) ⊂ L, from P(3) of Proposition 6.3, we know that ad xs(L) ⊂ L
and that ad xn(L) ⊂ L, where ad = adgl(V ). That is to say, xs, xn ∈ Ngl(V )(L) = N , which
is a Lie subalgebra of gl(V ) with L as an ideal. It cannot be the case that N = L as
L ⊂ sl(V ) but the scalars lie in N but not in L. Therefore, we need to show that xs, xn are
in smaller subalgebras than N , which are equal to L. Assume that W is any L-submodule
of V and define

LW = {y ∈ gl(V ) | y(W ) ⊂W
∧

trace(y |W ) = 0}

But since L = [L,L], we know that L lies in all such LW . Let L′ be the intersection of N
with all such LW . Clearly, L′ is a subalgebra of N that includes L as an ideal. Moreover,
if x ∈ L then xs, xn also lie in LW and therefore in L′.

We only need to show now that L = L′. But since L′ is a finite dimensional L-module,
Weyl’s Theorem says we can write L′ = L⊕M for some L-submodule M . But [L,L′] ⊂ L
because L′ ⊂ N . Then the action of L on M is trivial. Let W be any irreducible L-
submodule of V . If y ∈ M then [L, y] = 0. Then by Schur’s Lemma, this implies that y
acts on W as a scalar. On the other hand, trace(y |W ) = 0 as y ∈ LW . Therefore, y acts on
W a zero. Then V can be written as a direct sum of irreducible L-submodules by Weyl’s
Theorem. So y = 0 meaning that M = 0 and L = L′. �

Corollary 6.13. Let L be a semisimple Lie algebra with ϕ : L→ gl(V ) a finite dimensional
representation of L. If x = s + n is the abstract Jordan decomposition of x ∈ L, then
ϕ(x) = ϕ(s) + ϕ(n) is the usual Jordan decomposition of ϕ(x).
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Proof: The algebra ϕ(L) is spanned b the eigenvectors of adϕ(L)ϕ(s), since L has this
property relative to ad s. Therefore, adϕ(L)ϕ(s) is semsimple. Similarly, adϕ(L)ϕ(n) is
nilpotent and commutes with adϕ(L)ϕ(s). Thus, ϕ(x) = ϕ(s) + ϕ(n) is the abstract Jor-
dan decomposition of ϕ(x) in the semisimple Lie algebra of ϕ(L). Then using the above
theorem, we obtain the desired result. �

6.14. Weights and Maximal Vectors. Here we will present several important concepts
in the representations of Lie algebras via creating the representations for sl(2, F ), where
F is an algebraically closed field. But why sl(2, F )? In fact, sl(2, F ) appears in many
other Lie algebras in one form or another. One can often take representations of other Lie
algebras and “rephrase” them in terms of representations of sl. So throughout this section,
when we refer to a Lie algebra L, we mean sl(2, F ). First, recall that sl(2, F ) has a basis

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
and notice [h, x] = 2x, [y, h] = 2y, and [x, y] = h. Now let V be an arbitrary L-module.
Because h must be semisimple, h must act diagonally on V . Because F is algebraically
closed, all possible eigenvalues lie in F . Then we can decompose V as a direct sum of
eigenspaces

Vλ = {v ∈ V |h · v = λv}
with λ ∈ F . When λ is not an eigenvalue for the endomorphism of V representing h,
Vλ = {0}. But when Vλ is nonzero, we call λ a weight of h ∈ V and call Vλ a weight space.

Definition 6.28. (Weight Space) Let V be a representation of a Lie algebra L over a field
F . A weight on L over F is a linear map, λ : L→ F such that λ([x, y]) = 0 for all x, y ∈ L.
Then the weight space of the representation V with weight λ is the subspace

Vλ = {v ∈ V | r · v = λrv for all r ∈ L}
If V happens to be the direct sum of its weight spaces, i.e. if

V =
⊕
λ∈L∗

Vλ

then V is called a weight module.

Lemma 6.8. If v ∈ Vλ, then x · v ∈ Vλ+2 and y · v ∈ Vλ−2.

Proof: Notice that

h · (x · v) = [h, x] · v + x · h · v = 2 · x · v + λx · v = (λ+ 2)x · v
This holds similarly for y. �

Lemma 6.8 tells us that x, y are represented by nilpotent endomorphisms of V . Now
because V is finite dimensional and the sum is direct,

V =
⊔
λ∈F

Vλ
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there must be a Vλ 6= 0 with Vλ+2 = 0. For any λ, we call any such nonzero vector v ∈ Vλ
a maximal vector of weight λ. We will now classify all the irreducible modules for sl(2, F ).
Accordingly, assume that V is an irreducible L-module. Then choose a maximal vector,
say v0 ∈ Vλ and set v−1 = 0 and vi = 1

i!y
i · v0 for i ≥ 0.

Lemma 6.9. For all i ≥ 0,

1. h · vi = (λ− 2i)vi
2. y · vi = (i+ 1)vi+1

3. x · vi = (λ− i+ 1)vi−1

Proof:

1. This follows from repeated use of the previous lemma.
2. This follows from the definition.
3. We use induction on i. If i = 0, this is evident since v−1 = 0. Then

ix · vi =x · y · vi−1

=[x, y] · vi−1 + y · x · vi−1

=h · vi−1 + y · x · vi−1

=(λ− 2(i− 1))vi−1 + (λ− i+ 2)y · vi−2

=(λ− 2i+ 2)vi−1 + (i− 1)(λ− i+ 2)vi−1

=i(λ− i+ 1)vi−1

But division by i yields the necessary result. �

From the lemma, we know that the nonzero vi are linearly independent. Now because
V is finite dimensional, if we let m be the smallest integer for which vm 6= 0 and vm+1 = 0,
vm+i = 0 for all i > 0. Then combining all the parts from our lemma, the subspace of V with
basis (v0, v1, · · · , vm) is an L-submodule that is not the zero subspace. But because V is an
irreducible L-module by assumption, the subspace must be all of V . Furthermore, relative
to the ordered basis (v0, v1, · · · , vm), the matrices of the endomorphisms representing x, y, h
can be written down explicitly with h yielding a diagonal matrix while x, y yield an upper
and lower triangular nilpotent matrix, respectively.

Furthermore, (3) implies that for i = m+ 1, ix · vi = 0 while the right side is (λ−m)vm.
Since vm 6= 0, we can then conclude that λ = m. This says that the weight of a maximal
vector is nonnegative integers that is less than the dim V . Such a λ is called the highest
weight of V . If each weight µ occurs with multiplicity 1, that is dim Vµ = 1 if Vµ 6= 0,
since V determines λ uniquely (λ = dim V − 1), the maximal vector v0 is the only possible
one in V with the exception of nonzero scalar multiples.

Theorem 6.28. Let V be an irreducible module for L = sl(2, F ), then

1. Relative to h, V is the direct sum of weight spaces Vµ, µ = m,m−2, · · · ,−(m−2),−m,
where m+ 1 = dim V and dim Vµ = 1 for each µ.

2. V has, up to nonzero scalar multiples, a unique maximal vector whose weight, called the
heightest weight of V , is m.
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3. The action of L on V is given explicitly by the formulas from Lemma 6.9 - if the basis
is chosen in the prescribed fashion. In particular, there exists at most one irreducible
L-module, up to isomorphism, of each possible dimension m+ 1, with m ≥ 0. �

Corollary 6.14. Let V be any finite dimensional L-module with L = sl(2, F ). Then
the eigenvalues of h on V are all integers and each occurs along with its negative with
equal multiplicity. Moreover, in any decomposition of V into direct sums of irreducible
submodules, the number of summands is precisely dim V0 + dim V1.

Proof: If V = 0, then there remains nothing more to show. So suppose that V is nonzero
and finite dimensional. Using Weyl’s Theorem, we write V as a direct sum of irreducible
submodules. Then the first assertion is clear. The second follows from the observation that
each of the irreducible L-modules has a unique occurrence of either weight 0 or weight 1,
but not both. �

We have shown the properties of the irreducible submodules of sl(2, F ). However, we
have not answered the question if there are modules with highest weightm = 0, 1, 2, · · · . We
can construct some of these easily. For example, the trivial module with dimension 1, the
natural representation with dimension 2, the adjoint representation with dimension 3. But
Lemma ?? actually allows us to go further. We can use the lemma to define an irreducible
representation of L on an m+1 dimensional vector space over F with basis (v0, v1, · · · , vm),
called V (m). Moreover, there is deep symmetry in this V (m). Let ϕ : L → gl(V (m)) be
the irreducible representation of highest weight m. We define an automorphism of V (m)
by

τ = eϕ(x)eϕ(−y)eϕ(x)

Assuming that m > 0 makes the representation faithful as L is simple. Then conjugating
ϕ(h) by τ produces the same effect as applying

ead ϕ(x)ead ϕ(−y)ead ϕ(x)

to ϕ(h). But because ϕ(L) ∼= L, we can calculate this action explicitly. We then conclude
that

τϕ(h)τ−1 = −ϕ(h) or τϕ(h) = −ϕ(h)τ

So τ sends the basis vector vi with weight m − 2i to the basis vector vm−i with weight
−(m − 2i). Furthermore, if V is any finite dimensional L-module, then τ interchanges
positive and negative weight spaces.

6.15. Root Space Decompositions. If L is a nonzero semisimple Lie algebra, it will
be our goal to further explore the structure that L must have. We will approach this via
its adjoint representation. The most powerful tool in this approach will be the Killing
form. So first, suppose that L consists entirely of nilpotent, that is ad-nilpotent, elements.
Then by Engel’s Theorem, L too must be nilpotent. If L is not entirely nilpotent, then we
can find some x ∈ L with semisimple part xs in the abstract Jordan decomposition being
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nonzero. Then L has some nonzero subalgebra with the span of xs consisting of semisimple
elements. Such a subalgebra is called toral.

Definition 6.29. (Toral) Let L be a finite dimensional semisimple Lie algebra. Then the
toral subalgebra T is the subalgebra consisting of all semisimple elements of L.

The toral algebra comes from the corresponding concept of Lie groups is the maximal
torus. In fact, the toral is the corresponding Lie algebra of the maximal torus. Just as with
a maximal torus, we use the toral to understand the properties of the larger structure. We
start with the following, not surprising, lemma.

Lemma 6.10. A toral subalgebra of L is abelian.

Proof: Let T be toral. We need show that adT x = 0 for all x ∈ T . But because ad x is
diagonalizable, ad x being semisimple and F being algebraically closed. This amounts to
showing that adT x has no nonzero eigenvalues. Suppose to the contrary that [x, y] = ay
with a 6= 0 for some nonzero y ∈ T . Then adT y(x) = −ay is itself an eigenvector of
adT y with eigenvalue 0. ON the other hand, we can write x as some linear combination
of eigenvectors of adT y, with y being semisimple. Then after applying adt y to x, all
that remains is a combination of eigenvectors which belong to nonzero eigenvalues, if any.
However, this is a contradiction. �

Example 6.28. The maximal toral subalgebra, T , of sl(n, F ) is the set of all diagonal
matrices with trace 0.

Now fix some maximal toral subalgebra T of L, that is a toral subalgebra that is not
properly included in any other. Because T is abelian, adL T is a commuting family of
semisimple endomorphisms of L. Now that means that adL T is also diagonalizable. That
is, L is the direct sum of the subspaces

Lα = {x ∈ L | [t, x] = α(h)x for all t ∈ T}
where α ranges over T ∗. Notice that L0 is simply CL(T ), the centralizer of H. Because of
the previous lemma, it must include T . Then the set of all nonzero α ∈ T ∗ for which Lα 6= 0,
is denoted by Φ. The elements of Φ are called the roots of L relative to T . Moreover, the
number of such roots is finite. In this notation, we have a root space decomposition, also
called the Cartan decomposition:

L = CL(T )
⊕ ⊔

α∈Φ

Lα

This space and the reason for its name (including why the roots are finite in number) will
appear later. It will be our goal to prove that T = CL(T ) and then give some properties
of the roots, or at least describe them.

Proposition 6.4. For all α, β ∈ H∗, [Lα, Lβ] ⊂ Lα+β. If x ∈ Lα, then ad x is nilpotent.
If α, β ∈ H∗ and α+ β 6= 0, then Lα is orthogonal to Lβ, relative to the Killing form κ of
L.
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Proof: The first part of the proposition follows quite trivially from the Jacobi Identity.
Moreover, the second statement of the proposition follows from the first. We then only
need show the final statement of the proposition. First, find t ∈ T for which (α+β)(t) 6= 0.
Then if x ∈ Lα and y ∈ Lβ, associativity of the form allows us to write κ([t, x], y) =
−κ([x, t], y) = −κ(x, [t, y]) or α(t)κ(x, y) = −β(t)κ(x, y) or (α + β)(t)κ(x, y) = 0. This
then forces κ(x, y) = 0. �

Corollary 6.15. The restriction of the Killing form to L0 = CL(T ) is nondegenerate.

Proof: We know from Theorem 6.24 that κ is nondegenerate. On the other hand, L0 is
orthogonal to all Lα for all α ∈ Φ from the previous proposition. If z ∈ L0 is orthogonal
to L0 as well, then κ(z, L) = 0, forcing z = 0. �

To prove that the toral subalgebra is it its own centralizer (when it is maximal), we need
the following basic lemma.

Lemma 6.11. If x, y are commuting endomorphisms of a finite dimensional vector space
with y nilpotent, then xy is nilpotent. In particular, trace(xy) = 0.

Proposition 6.5. Let T be a maximal toral subalgebra of L. Then T = CL(T ).

Proof:

1. C contains the semisimple and nilpotent parts of its elements: To say that x ∈ CL(T )
is equivalent to ad x maps the subspace T of L into the subspace 0. But then by the
Jordan-Chevalley decomposition, (ad x)s = ad xs and (ad x)n = ad xn.

2. All semisimple elements of C lie in T : If x is semisimple and centralizes T , then T +Fx,
which must be a abelian subalgebra of L, is toral. The sum of commuting semisimple
elements is again semisimple. But by the maximality of T , T + Fx = T , so x ∈ T .

3. The restriction of κ to T is nondegenerate: Let κ(t, T ) = 0 for some t ∈ T . We need to
show that t = 0. If x ∈ C is nilpotent, then the fact that [x, T ] = 0 and the fact that
ad x is nilpotent together imply with the above lemma that trace(ad x, ad y) = 0 for
all y ∈ T or κ(x, T ) = 0. But then (1) and (2) imply that κ(t, C) = 0. Then t = 0, the
restriction of κ to C being nondegenerate by 6.15.

4. C is nilpotent: If x ∈ C is semisimple, then by x ∈ T by (2) and adC x is nilpotent.
On the other hand, if x ∈ C is nilpotent, then adC x is of course nilpotent. Let x ∈ C
be an arbitrary element. Then x = xs + xn. Since both xs, xn ∈ C, adC x is the sum of
commuting nilpotents and is therefore itself nilpotent. But then by Engel’s Theorem,
C is nilpotent.

5. T ∩ [C,C] = 0: Since κ is associative and [T,C] = 0, κ(T, [C,C]) = 0, we can then apply
(3) to complete the fact that T ∩ [C,C] = 0.

6. C is abelian: If not, then [C.C] 6= 0. Since C is nilpotent, by (4), we have Z(C)∩[C,C] 6=
0. Then z 6= 0 lie in the intersection. Then by (2) and (5), z cannot be semisimple.
Its nilpotent part n is therefore nonzero and lies in C by (1). But then it also lies in
Z(C) by the Jordan-Chevalley decomposition. Then the preceding lemma implies that
κ(n,C) = 0, contradicting Corollary 6.15.
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7. C = H: If this is not the case, then C contains a nonzero nilpotent element, x, by (1)
and (2). Then by the preceding lemma and (6), κ(x, y) = trace(ad x, ad y) = 0 for all
y ∈ C, contradicting Corollary 6.15. �

Corollary 6.16. The restriction of κ to H is nondegenerate.

But this corollary lets us identify T with T ∗. But ϕ ∈ T ∗ corresponds to the unique
element tϕ ∈ H that satisfy ϕ(t)− κ(tϕ, t) for all t ∈ T . Particularly, Φ corresponds to the
subset {tα |α ∈ Φ} of T .

6.16. Orthogonality/Integrality Properties. Here our goal will be to obtain more pre-
cise information about the root space decomposition by examining the Kiling form. We
already know that κ(Lα, Lβ) = 0 if α, β ∈ H∗ then α + β 6= 0. Moreover, κ(H,Lα) = 0
for all α ∈ Φ, then by Proposition kasdfkjasbjdglakjlsdg, the restriction of κ to H is
nondegenerate.

Proposition 6.6. 1. Φ spans H∗.
2. Let α ∈ Φ, x ∈ Lα, y ∈ L−α, then [x, y] = κ(x, y)tα.
3. If α ∈ Φ, then [Lα, L−α] is 1-dimensional with basis tα.
4. α(tα)− κ(tα, tα) 6= 0 for α ∈ Φ.
5. If α ∈ Φ and xα is any nonzero element of Lα, then there exists yα ∈ L−α such that
xα, yα, hα = [xα, yα] span a 3-dimensional simple subalgebra of L isomorphic to sl(2, F )
via

xα 7→
(

0 1
0 0

)
, yα 7→

(
0 0
1 0

)
, hα 7→

(
1 0
0 −1

)
6. hα = 2tα

κ(tα,tα) ; hα = −hα.

Proof:

1. If Φ fails to span H∗, then by duality there exists nonzero h ∈ H such that α(h) = 0 for
all α ∈ Φ. But this implies that [h, Lα] = 0 for all α ∈ Φ. Since [h,H] = 0, this forces
[h, L] = 0 or h ∈ Z(L) = 0. But this is impossible.

2. Let α ∈ Φ. If −α /∈ Φ, that is L−α = 0, then κ(Lα, Lβ) = 0 for all β ∈ H∗. Therefore,
κ(Lα, L) = 0, contradicting the non degeneracy which is absurd.

3. Let α ∈ Φ, x ∈ Lα, and y ∈ L−α. Let h ∈ H be arbitrary. The associativity of κ
implies:

κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y) = κ(tα, h)κ(x, y) = κ(κ(x, y)tα, h) = κ(h, κ(x, y)tα)

This implies that H is orthogonal to [x, y]− κ(x, y)tα, forcing [x, y] = κ(x, y)tα.
4. From (3), we have that tα spans [Lα, L−α], provided that [Lα, L−α] 6= 0. Let 0 6= x ∈ Lα.

If κ(x, L−α) = 0, then κ(x, L) = 0. But this is impossible as κ is nondegenerate.
Therefore, we can find 0 6= y ∈ L−α for which κ(x, y) 6= 0. But then by (3), we have
[x, y] 6= 0.

5. Suppose that α(tα) = 0, so that [tα, x] = 0 = [tα, y] for all x ∈ Lα, y ∈ L−α. Then as in
(4), we can then find a x, y satisfying κ(x, y) 6= 0. Modifying one or the other by a scalar,
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we can assume that κ(x, y) = 1. Then [x, y] = tα by (3), it follows that the subspace
S of L spanned by x, y, tα is a 3-dimensional solvable algebra, S ∼= adL S ⊂ gl(L).
In particular, adL s is nilpotent for all s ∈ [S, S], so adL tα is both semisimple and
nilpotent, that is to say adL tα = 0. This then implies that tα ∈ Z(L) = 0, contrary to
the assumption on tα.

6. Given 0 6= xα ∈ Lα, find yα ∈ L−α such that

κ(xα, yα) =
2

κ(tα, tα)

This is possible given (5) and the fact that κ(xα, L−α) 6= 0. Now set hα = 2tα
κ(tα,tα) . Then

we have [xα, yα] = hα by (3). Moreover, we have

[hα, xα] =
2

α(tα)
[tα, xα] =

2α(tα)

α(tα)
xα = 2xα

Similarly, [hα, yα] = −2yα. So xα, yα, hα spans a 3-dimensional subalgebra of L with
the same multiplication table as sl(2, F ).

7. Recall that tα is defined by κ(tα, h) = α(h) for all h ∈ H. This shows that tα = −t−α
and because of how hα is defined, the assertion follows. �

Let α be a root. in light of Proposition 6.6 (2), −α is also a root. Now let Sα ∼= sl(2, F )
be the subalgebra of L constructed in Proposition 6.6 (5). Using Weyl’s Theorem and
the orthogonality properties, we actually have a full description of of all finite dimensional
Sα-modules. So now fix a α ∈ Φ. Then consider the subspace M of L spanned by H along
with all root spaces of the form Lcα for all c ∈ F ∗. This is an Sα-submodule of L. The
weights of hα on M are integers 0 and 2c = cα(hα) for nonzero c with Lcα 6= 0. Then all c
here must be integral multiplies of 1

2 . Then Sα acts trivially on ker α which is a subspace of
codimension 1 in T complementary to Fhα. Furthermore, Sα is an irreducible Sα-module
of M . Then considered together, ker α and Sα must exhaust the occurrences of the weight
0 for hα. Then the only even weights occurring in M are 0 and ±2. Then it must be the
case that twice a root is not a root, i.e. if α is a root then 2α is not a root. This also
implies that 1

2α is also not a root. Therefore, 1 cannot occur as a weight of hα in M . It
must then be the case that

M = H ⊕ Sα
Because dim Lα = 1, Sα is uniquely determined as the subalgebra of L generated by Lα
and L−α and the only multiplies of a root α which are also themselves roots must be ±α.

Now let K =
∑
Lβ+iα. Each root space is 1-dimensional and non of the β+ iα can be 0.

Then K is an Sα-submodule of L with a 1-dimensional weight space for the distinct integral
weights β(hα) + 2i with i ∈ Z and β + iα ∈ Φ. Now both 1 and 0 can occur as weights in
this form. This implies then that K is irreducible. The the highest weight is β(hα) + 2q
and the lowest weight is β(hα)−2r if q, r are the largest integer for which β+ qα, β− rα is
a root, respectively. The weights on K then form an arithmetic progression with difference
2. Then the roots β + iα form a string, the α string through β. Finally, notice that if
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α, β, α+β ∈ Φ, then ad Lα maps Lβ onto Lα+β. That is, [Lα, Lβ] = Lα+β. We summarize
our results here.

Proposition 6.7. Let L be a nonzero semisimple Lie algebra, then

1. If α ∈ Φ then dim Lα = 1. In particular, Sα = Lα + L−α + Tα, where Tα = [Lα, L−α]
and for given nonzero xα ∈ Lα, there exists a unique yα ∈ L−α satisfying [xα, yα] = hα.

2. If α ∈ Φ, then the only scalar multiplies of α which are roots are α and −α.
3. If α, β ∈ Φ then β(hα) ∈ Z and β − β(hα)α ∈ Φ. The numbers β(hα) are called the

Cartan integers.
4. If α, β, α+ β ∈ Φ, then [Lα, Lβ] = Lα+β.
5. Let α, β ∈ Φ and β 6= ±α. Let r, q be the largest integers for which β − rα and β + qα

are roots, respectively. Then all β + iα ∈ Φ for −r ≤ i ≤ q and β(hα) = r − q.
6. L is generated as a Lie algebra by the root spaces Lα. �

6.17. Root Systems. Similarly to Young Tableaux, we can create diagrams to help us
identify and classify most Lie algebras. To do this we look at vector spaces over R. Fix a
Euclidean space E. Geometrically, a reflection in E is an invertible linear transformation
leaving pointwise fixed a hyperplane and sending any orthogonal vector to the plane to its
negative - that is, some subspace of E of codimension 1 and any normal defining it. So
these reflections are orthogonal in the sense that they preserve the inner product on E. We
can take any nonzero vector α and determine along with a reflecting hyperplane

Pα = {β ∈ E | (β, α) = 0}
a reflection σα . We can explicitly write a formula representing the reflection

σα(β) = β − α2(β, α)

(α, α)

Notice that −α determines the same reflection. Moreover, the reflection fixes all the points
of Pα.

Lemma 6.12. Let Φ be a finite set which spans E. Suppose all reflections σα(α ∈ Φ) leave
Φ invariant. If σ ∈ GL(E) leaves Φ invariant, fixes pointwise a hyperplane P of E, and
sends some nonzero α ∈ Φ to its negative, then σ = σα and P = Pα.

Proof: Let τ = σσα = σσ−1
α . Then τ(Φ) = Φ and τ(α) = α and τ acts as the identity

on the subspace of Rα as well as on the quotient E/Rα. So all the eigenvalues of τ are
1. Therefore, the minimal polynomial of τ divides (T − 1)l where l = dim E. But since
Φ is finite, not all the vectors β, τ(β), τ2(β), · · · , τk(β) for β ∈ Φ and k ≥ card Φ can be
distinct. So Φ spans E and forces τk = 1. Then the minimal polynomial of τ divides T k−1.
Then this shows that τ has a minimal polynomial

T − 1 = gcd(T k − 1, (T − 1)l

Definition 6.30. (Root System) A subset Φ of the Euclidean space E is called a root
system in E if Φ has the following:
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1. Φ is finite, spans E, and does not contain 0.
2. If α ∈ Φ then the only multiples of α ∈ Φ are ±α.
3. If α ∈ Φ then the only reflection σα leaves Φ invariant.

4. If α, β ∈ Φ then 2(β,α)
(α,α) ∈ Z.

Of course not all these axioms for a root system are needed. Both condition (2) and
condition (3) imply that Φ = −Φ. We call l = dim E from above the rank of the root
system Φ.

Remark 6.2. In the definition of root system, sometimes condition (2) is omitted in the
definition of a root system. When this is the case, what we have defined as a root system
is known as a reduced system, which makes sense because given a reflection α we only get
±α.

Suppose that Φ is a root system in E and let W be the subgroup of GL(E) generated by
the reflections σα(α ∈ Φ). But then by axiom (3), W is a permutation on the set Φ. Then
we can identify W with a subgroup of the symmetric group on Φ. But since Φ is finite, W
is also finite. This group W has a special name: the Weyl group, which we shall return to
later.

Definition 6.31. (Weyl Group) Suppose that Φ is a root system in E and let W be the
subgroup of GL(E) generated by the reflections σα(α ∈ Φ). Then W is called

Lemma 6.13. Let Φ be a root system in E with Weyl group W. If σ ∈ GL(E) leaves Φ

invariant, then σσασ
−1 = σσ(α) for all α ∈ Φ and 2(β,α)

(α,α) = 2(σ(β),σ(α)
(σ(α),σ(α)) for all α, β ∈ Φ.

Proof: First, observe that

σσασ
−1(σ(β)) = σσα(β) ∈ Φ

since σα(β) ∈ Φ. But this is equivalent to

σ(β − 2(β, α)

(α, α)
α) = σ(β)− 2(β, α)

(α, α)
σ(α)

But since σ(β) runs over Φ as β runs over Φ, we conclude that σσασ
−1 leaves Φ invari-

ant while leaving pointwise the hyperplane σ(Pα) and sending σ(α) to −σ(α). Then by
Lemma 6.12, σσασ

−1 = σσ(α). Then comparing the equation above with the equation

σσ(α)(σ(β)) = σ(β)− 2(σ(β),σ(α))
(σ(α),σ(α)) σ(α), we get the second assertion. �

Since the Weyl group and root systems are what we will use to classify the representations
of Lie algebras in a way, we need to know when such representations are unique. Here,
there is a natural notion of isomorphisms between Φ and Φ′ with respective Euclidean
spaces E and E′. We say that (Φ,E) are (Φ′,E′) called isomorphic if there is a vector space
isomorphism (though not necessarily an isometry) φ : E→ E′ sending Φ to Φ′ such that

2(φ(β), φ(α))

(φ(α), φ(α))
=

2(β, α)

(α, α)
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for each pair of roots α, β ∈ Φ. It then follows that σφ(α)(φ(β)) = φ(σα(β)). Therefore,

an isomorphism of root systems induces a natural isomorphism σ 7→ φ ◦ σ ◦ φ−1 of Weyl
groups. So in view of the previous lemma, any automorphism of Φ is the same thing as an
automorphism of E leaving Φ invariant. We then regard W as a subgroup of aut Φ.

Definition 6.32. (Dual) Let Φ be a root system for a Euclidean space E. Then

Φv = {αv |α ∈ Φ}

is the dual or inverse of Φ. Moreover, Φv is a root system in E whose Weyl group is
canonically isomorphic to W.

Example 6.29. When l ≤ 2, we can represent Φ pictorially. When l = 1, there is only
one possible Φ show below.

Figure 4. A representation of the root system Φ, where l = 1.

This root system is called A1. This root system has a Weyl group of order 2. As a Lie
algebra, it belongs to sl(2, F ).

Example 6.30. If we consider a root system of rank 2, we have 4 possible root systems.
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In the definition of a root system, axiom (4) limits the possible angles between pairs of
roots. We can use the formula ‖α‖‖β‖ cos θ = (α, β). Then we have

2(β, α)

(α, α)
= 2
‖β‖
‖α‖

and
2(β, α)

(α, α)

2(α, β)

(β, β)
= 4 cos2 θ

the last number is a nonnegative integers. Moreover, we know that 0 ≤ cos2 θ ≤ 1. Since
2(β,α)
(α,α) and 2(α,β)

(β,β) have the same sign, the only possibilities are when α 6= ±β and ‖β‖ ≥ ‖α‖.
2(β,α)
(α,α)

2(α,β)
(β,β) θ ‖β‖2

‖α‖2

0 0 π
2 undetermined

1 1 π
3 1

-1 -1 2π
3 1

1 2 π
4 2

-1 -2 3π
4 2

1 3 π
6 3

-1 -3 5π
6 3

Lemma 6.14. Let α, β be non proportional roots. If (α, β) > 0 then α − β is a root. If
(α, β) < 0 then α+ β is a root.

Proof: The second part follows from the first when one applies to −β in place of β. So

we only need to show the first. Since (α, β) is positive if and only if 2(α,β)
(β,β) . Now either

2(α,β)
(β,β) or 2(β,α)

(α,α) is 1. If 2(α,β)
(β,β) = 1 then σβ(α) = α − β ∈ Φ. Similarly, if 2(β,α)

(α,α) = 1 then
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β − α ∈ Φ. Therefore, σβ−α(β − α) = α− β ∈ Φ. �

In addition, take a pair of non proportional roots α, β. Consider all roots of the form
β + zα with z ∈ Z, called the α-string through β. Let r, q ∈ Z+ be the largest integers for
which β − rα ∈ Φ and β + qα ∈ Φ. If some β + zα /∈ Φ for −r ≤ z ≤ q, we can find p < s
in this interval such that β + pα ∈ Φ

β + (p+ 1)α /∈ Φ , β + (s− 1)α ∈ Φ , β + sα ∈ Φ

Then the previous lemma implies that both (α, β + pα) ≥ 0 and (α, β + sα) ≤ 0. But this
isn’t possible since p < s and (α, α) > 0. Then the α-string through β is unbroken from
β − rα to β + qα. So σα just adds or subtracts a multiple of α to any root, so the string is
invariant under σα. Geometrically, σα reverses the string. Now since σα(β + qα) = β − rα
and the left side is β − 2(β,α)

(α,α) α− qα, we know that r− q = 2(β,α)
(α,α) and so every root strings

have length at most 4.

6.18. Simple Roots and the Weyl Group.

Definition 6.33. (Base) A subset ∆ of Φ is called a base if:

1. ∆ is a basis of E.
2. Each root β can be written as β =

∑
kαα with α ∈ ∆ with integral coefficients kα all

nonnegative or all nonpositive.

The roots in ∆ are called simple.

Given axiom (1) for a base, card ∆ = l and the expression for β must be unique.

Definition 6.34. (Height) Given a root β in a base ∆, we define the height, relative to
∆, by

ht β =
∑
α∈∆

kα

If all the kα are nonnegative, then we call β positive and write β � 0. If all the kα are
nonpositive, we call kα negative and write β ≺ 0.

The collection of positive roots, relative to ∆ is denoted Φ+ and the collection of negative
roots, relative to ∆ is denoted Φ−. Clearly, it is the case that

Φ− = −Φ+

Now if α, β are positive roots and α + β is a root, then α + β must also be positive.
Moreover, ∆ defines a partial order on E that is compatible with the notation α ≺ 0. So
now define β � α if and only if α− β is a sum of positive (equivalently simple roots) or if
β = α. It is important to note that this definition in no way implies existence.

Lemma 6.15. If ∆ is a base of Φ, then (α, β) ≤ 0 for all α 6= β in ∆ and α− β is not a
root.

Proof: Suppose that (α, β) > 0. Because α 6= β and α 6= −β, then Lemma 6.14 gives
that α− β is a root. But then this contradicts axiom (2) of a base. �
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Definition 6.35. (Regular/Singular) Given a Euclidean space E and a vector γ ∈ E, we
call γ regular if γ ∈ E−

⋃
α∈Φ Pα. Otherwise, γ is called singular.

Definition 6.36. (Decomposable/Indecomposable) We call α ∈ Φ+(γ) decomposable if
α = β1 + β2 for some βi ∈ Φ+(γ). Otherwise, α is called indecomposable.

Theorem 6.29. Let γ ∈ E be regular. Then the set ∆(γ) of all indecomposable roots in
Φ+(γ) is a base of Φ and every base is obtainable in this manner.

Proof: We prove this in steps:

1. Each root in Φ+(γ) is a nonnegative Z-linear combination of ∆(γ): Otherwise there
is some α ∈ Φ+(γ) cannot be written as such. Choose α so that (γ, α) is as small as
possible. Obviously, α itself cannot be in ∆(γ), so α = β1 + β2 with βi ∈ Φ+(γ). Then
(γ, α) = (γ, β1) + (γ, β2). But each of the (γ, βi) is positive, so β1 and β2 must each
be a nonnegative Z-linear combination of ∆(γ), whence α is also. This contradicts the
assumption that α is minimal.

2. If α, β ∈ ∆(γ), then (α, β) ≤ 0 unless α = β: Otherwise, α− β is a root, since β cannot
be −α, either α − β or β − α is in Φ+(γ). If the first, α = β + (α − β), meaning α is
decomposable. If the second, β = α + (β − α) is decomposable. This contradicts the
assumption.

3. ∆(γ) is a linearly independent set: Suppose∑
α

rαα = 0

for all α ∈ ∆(γ) and rα ∈ R. Separating the indices α for which rα > 0 from those for
which rα < 0, we are then able to rewrite this as∑

sαα =
∑

tββ

for all sα, tβ > 0, the sets of α’s and β’s being disjoint. Now call ε =
∑
sαα. Then

(ε, ε) =
∑
α,β

sαtβ(α, β) ≤ 0

This then forces ε to be 0. Then 0 = (γ, ε) =
∑
sα(γ, α), forcing all the sα to be 0.

Similarly, all the tβ must also be 0. Moreover, this shows that any set of vectors lying
strictly on one side of a hyperplane in E and forming pairwise obtuse angles must be
linearly independent.

4. ∆(γ) is a base of Φ: Since Φ = Φ+(γ) ∪ −Φ+(γ), we have axiom (2) satisfied from the
first step. It then follows that ∆(γ) spans E. Then by step 3, we have axiom (1).

5. Each base ∆ has the form ∆(γ) for some regular γ ∈ E: Given ∆, we choose a γ ∈ E
such that (γ, α) > 0 for all α ∈ ∆. Then from axiom (2), γ is regular and Φ+ ⊂ Φ+(γ)
and Φ− ⊂ −Φ+(γ). But since Φ+ = Φ+(γ), ∆ consists of indecomposable elements, i.e.
∆ ⊂ ∆(γ). But we have card δ = card ∆(γ). Therefore, ∆ = ∆(γ). �
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Definition 6.37. (Weyl Chambers) The hyperplanes Pα for all α ∈ Φ partition E into
finitely many regions, the connected components of E −

⋃
α Pα and are called the (open)

Weyl chambers of E.

Each of the regular γ ∈ E belong then to one Weyl chamber, denoted C(γ). Then saying
that C(γ) = C(γ′) is to say that γ, γ′ lie on the same side of each hyperbplane Pα for all
α ∈ Φ, i.e. that Φ+(γ) = Φ+(γ′) or ∆(γ) = ∆(γ′). But then the Weyl chambers are in a
natural one-to-one correspondence with bases. Writing C(∆) = C(γ) if ∆ = ∆(γ), this is
called the fundamental Weyl chamber relative to ∆. Moreover, C(∆) is an open convex set
of all γ ∈ E which satisfy the inequality (γ, α) > 0 for all α ∈ ∆.

The Weyl group always sends one Weyl chamber into another. Said differently, σ(C(γ)) =
C(σγ), if σ ∈W and γ is regular. However, W permutes bases: σ sends ∆ to σ(∆), again
a base. These two actions of W are in fact compatible with the above correspondence
between Weyl chambers and bases. It is the case that

σ(∆(γ)) = ∆(σγ)

Now if we let ∆ be a fixed base of Φ. We then obtain several useful lemmas of the
behavior of simple roots.

Lemma 6.16. If α is a positive but not simple root, then α− β is a root (not necessarily
positive) for some β ∈ ∆.

Proof: If (α, β) ≤ 0 for all β ∈ ∆, it is the case that ∆ ∪ {α} is a linearly independent
set (see step (3) in our previous proof). But this is impossible as ∆ already has a basis of
E. Then (α, β) > 0 for some β ∈ ∆ and then α− β ∈ Φ. Then we write

α =
∑
γ∈∆

kγγ

for all kγ ≥ 0 and some kγ > 0 for all γ 6= β. Subtracting β from α yields a Z-linear combi-
nation of simple roots with at least one positive coefficient. This forces all the coefficients
to be positive, due to the uniqueness of the expression. �

Corollary 6.17. Each β ∈ Φ+ can be written in the form α1 +α2 + · · ·+αk, where αi ∈ ∆,
though not necessarily distinct, in such a way that each partial sum α1 + · · ·+αi is a root.

Proof: This follows trivially from induction on ht β and the previous lemma. �

Lemma 6.17. Let α be simple. Then σα permutes the positive roots other than α.

Proof:

6.19. Irreducible Root Systems.

Definition 6.38. (Irreducible) Φ is called irreducible if it cannot be partitioned into the
union of two proper subset such that each root in one set is orthogonal to each root in the
other.
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Example 6.31. Notice that A1, A2, B2, G2 are irreducible but A1 ×A1 is not.

Suppose that ∆ is a base of Φ. Then Φ is irreducible if and only if ∆ cannot be partitioned
in the way just stated. Why? In one direction, let Φ = Φ1∪Φ2 with (Φ1,Φ2) = 0. Unless ∆
is wholly contained in Φ1 and Φ2, this induces a similar partition of ∆. However, ∆ ⊂ Φ1

implies that (∆,Φ2) = 0 or (E,Φ2) = 0, because ∆ spans E. Conversely, suppose that let
Φ be irreducible but ∆ = ∆1 + ∆2 with (∆1,∆2) = 0. Each root is conjugate to a simple
root. Therefore, Φ = Φ1 ∪ Φ2, Φi is the set of roots having a conjugate in ∆i. Recalling
that (α, β) = 0 implies that σασβ = σβσα. Because W is generated by the σα for all α ∈ ∆.
Using the formula for the reflection, we know that Φi lies in the subspace Ei of E spanned
by ∆i and we see that (Φ1,Φ2) = 0. This forces Φ1 = ∅ or Φ2 = ∅, then ∆1 = ∅ or ∆2 = ∅.

Lemma 6.18. Let Φ be irreducible. Relative to the partial ordering ≺, there is a unique
maximal root β. If β =

∑
kαα for all α ∈ ∆ then all kα > 0.

Proof: Let β =
∑
kαα for all α ∈ ∆ be maximal in the ordering, β � 0. If

∆1 = {α ∈ ∆ | kα > 0}

and

∆2 = {α ∈ ∆ | kα = 0}
then ∆ = ∆1∪∆2 is partition of ∆. No suppose that ∆2 is nonempty. Then (α, β) ≤ 0 for
all α ∈ ∆2. Since Φ is irreducible, at least one of the α′ ∈ ∆1, then (α, β) < 0. This implies
from Lemma 6.13 that β+α is a root, contradicting the maximality of β. Therefore, ∆2 is
empty and all kα > 0. This also shows that (α, β) ≥ 0 for all α ∈ ∆ with (α, β) > 0 for at
least one α ∈ ∆ for which (α, β) > 0. It then follows that (β′, β) > 0 and β − β′ is a root,
unless β = β′. But if β − β′ is a root then either β ≺ β′ or β′ ≺ β, which is impossible.
Therefore, β is unique. �

Lemma 6.19. Let Φ is irreducible. Then W acts irreducibly on E. In particular, the
W-orbit of a root α spans E.

Proof: The span of W-orbit of a nonzero root is W-invariant subspace of E. Then the
second statement of the theorem follows from the first. It suffices to prove the first. Let
E′ be a nonzero subspace of E invariant under W. The orthogonal complement E′′ of E′ is
also W-invariant, and

E = E′ ⊕ E′′

It is trivial that for all α ∈ Φ, either α ∈ E′ or E ⊂ Pα since σα(E′) = E′. Therefore,
α /∈ E′ implies that α ∈ E′′. So each the roots lie in one subspace or the other. This then
partitions Φ into orthogonal subsets, forcing one or the other to be empty. Since Φ spans
E, we can conclude that E′ = E. �

Lemma 6.20. Let Φ be irreducible. Then at most two root lengths occur in Φ and all roots
of a given length are conjugate under W.
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Proof: Suppose that α, β are roots. Then not all σ(α) can be orthogonal to β for all
σ ∈ W because σ(α) span E, from Lemma 6.19. Now if (α, β) 6= 0, we know that the
possible ratios of squared root lengths of α, β are 1, 2, 3, 1

2 , and 1
3 . This implies the first

assertion as the presence of three root lengths would yield a ratio of 3
2 . Now suppose that

α, β have equal length. Upon replacing one of these by W-conjugate, we can assume them
to be nonorthogonal and distinct. Then we have

2(α, β)

(β, β)
=

2(β, α)

(α, α)

Therefore, we have

(σασβσα)(β) = σασβ(β − α) = σ(−β − α+ β) = α

�

If Φ is irreducible with two distinct root lengths, one often refers to long and short roots.
If all the roots are of equal length, they are conventionally called long.

Lemma 6.21. Let Φ be irreducible with two distinct root lengths. Then the maximal root
β of Lemma 6.18 is long.

Proof: Let α ∈ Φ. It suffices to show that (β, β) ≥ (α, α). We may replace α by a
W-conjugate lying in the closure of the fundamental Weyl chamber, relative to ∆. Since
β − α � 0 by Lemma 6.18, we have (γ, β − α) ≥ 0 for any γC(∆). Applying the to the
cases γ = β and γ = α, yields (β, β) ≥ (β, α) ≥ (α, α). �

6.20. Cartan Matrix, Coxeter Graphs, and Dynkin Diagrams.

Definition 6.39. (Cartan Matrix) Fix an ordering (α1, α2, · · · , αl) of the simple roots.

Then the matrix

(
2(αi,αj)
(αj ,αj)

)
is called the Cartan matrix of Φ. The entries of the matrix

are called the Cartan integers.

Example 6.32. For systems of rank 2, the matrices are

A1 ×A1 =
2 0
0 2

, A2 =
2 −1
−1 2

, B2 =
2 −2
−1 2

, G2 =
2 −1
−3 2

The matrix depends on the chosen ordering of the simple roots. However, this selection
does not have serious implications. The most important feature the Cartan matrix is that it
is independent of the choice of ∆, due to the fact that W acts transitively on the collection
of bases. Moreover, the Cartan matrix is nonsingular since ∆ is a basis of E. Indeed, ∆
characterizes the Cartan matrix entirely.

Proposition 6.8. Let Φ′ ⊂ E′ be another root system with base ∆′ = {α1, · · · , αl}. If

2(αi, αj)

(αj , αj)
=

2(α′i, α
′
j)

(α′j , α
′
j)
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for 1 ≤ i and j ≤ l, then the bijection αi 7→ α′i extends uniquely to an isomorphism
φ : E→ E′ mapping Φ onto Φ′ and satisfying

2(φ(α), φ(β)

(φ(β), φ(β))
=

2(α, β)

(β, β)

for all α, β ∈ Φ. Therefore, the Cartan matrix of Φ determines Φ up to isomorphism.

Proof: Since ∆, respectively ∆′, is a basis of E, and again respectively E′, there is a
unique vector space isomorphism φ : E→ E′ sending αi to α′i for all 1 ≤ i ≤ l. If α, β ∈ ∆,
the hypothesis insures that

σφ(α)(φ(β)) = σα′(β
′) = β′−2(β′, α′)

(α′, α′)
α′ = φ(β)−2(β, α)

(α, α)
φ(α) = φ

(
β−2(β, α)

(α, α)
α

)
= φ(σα(β))

That is, the following diagram commutes for all α ∈ ∆:

E φ−−−−→ E′

σα

y yσφ(α)
E −−−−→

φ
E′

The respective Weyl groups W,W′ are generated by simple reflections. So it follows that
the map σ 7→ φ ◦ σ ◦ φ−1 is an isomorphism of W onto W′, sending σα to σφ(α) for all
α ∈ ∆. But for each β ∈ Φ is conjugate under W to a simple root. This forces

φ(β) = (φ ◦ σ ◦ φ−1)(φ(α)) ∈ Φ′

It then follows that φ maps Φ onto Φ′. Then the formula for a reflection shows that φ
preserves all Cartan integers. �

Therefore, it is theoretically possible to recover Φ from a knowledge of the Cartan
integers. In fact, we can do this algorithmically. We can do this by considering the root
strings. Begin with the roots of height 1 - that is, the simple roots. For any pair αi 6= αj ,
the integer r for the αj-string through αi is 0. Then the integer q equals

−2(αi, αj)

(αj , αj)

This allows us to write a list of all roots α of height 2, i.e all the integers
2(α,αj)
(αj ,αj)

. Then

for each root α of height 2, the integer r for the αj-string through α can be determined
easily because the αj can be subtracted at most once and then q is found because we have

r−q =
2(α,αj)
(αj ,αj)

. Once this process is repeated a sufficient number of times, all positive roots

are obtained. This is guaranteed by Lemma 6.16.
If α, β are distinct positive roots, we have

2(α, β)

(β, β)

2(β, α)

(α, α)
= 0, 1, 2, or 3
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Definition 6.40. (Coxeter Graph) The Coxeter graph of Φ be a graph having l vertices,
the ith joined to the jth for i 6= j by

2(αi, αj)

(αj , αj)

2(αj , αi)

(αi, αi)

edges.

Example 6.33. We have the following examples of a few Coxeter graphs:

A1 ×A1

A2

B2

G2

The Coxeter graph determines the numbers
2(αi,αj)
(αj ,αj)

in the case that all roots have equal

length because
2(αi, αj)

(αj , αi)
=

2(αj , αi)

(αi, αi)

If more than root length occurs, the graph fails to tell us which of a pair of vertices should
correspond to a short simple root and which to a long simple root. However, one can show
that the Coxeter graph completely determines the Weyl group completely as it determines
the orders of products of generators of W. If double/triple edges occur in the Coxeter
graph of Φ, we add an arrow pointing to the short of the two roots. This allows us to
recover the Cartan integers. The resulting figure is the Dynkin diagram of Φ, which will
depend on the numbering of the simple roots.

Example 6.34. Given the diagram

F4

we are able to recover the Cartan matrix
2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2


Recall that Φ is irreducible if and only if Φ (or ∆) cannot be partitioned into two proper

orthogonal subsets. It is then apparent that Φ is irreducible if and only if its Coxeter graph
is connected. In general, there will be a number of connected components of the Coxeter
graph. Let

∆ = ∆1 ∪ · · · ∪∆t

be the corresponding partition of ∆ into mutually orthogonal subsets. If Ei is the span of
∆i, it is clear that E = E1 ⊕ · · · ⊕Et. The Z-linear combination of ∆i, which are the roots
of a set, say Φi. This forms a root system in Ei, whose Weyl group is the restriction to Ei
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of the subgroup of W generated by all σα for all α ∈ ∆i. Finally, each Ei is W-invarient
since α /∈ ∆i implies that σα acts trivially on Ei. It then follows that each root lies in one
of the Ei, that is

Φ = Φ1 ∪ · · · ∪ Φt

Proposition 6.9. Φ decomposes uniquely as the union of irreducible root systems Φi in
subspaces Ei of E such that E = E1 ⊕ · · ·Et, i.e. the orthogonal direct sum.

But this shows that it is sufficient to classify the irreducible root systems. This is
equivalent to classifying the connected Dynkin diagrams.

Theorem 6.30. If Φ is an irreducible root system of rank l, its Dynkin diagram is one of
the following (l vertices in each case):

Al for l ≥ 1 :
l 5 4 3 2 1

Bl for l ≥ 2 :
1 l-4 l-3 l-2 l-1 l

Cl for l ≥ 3 :
1 l-4 l-3 l-2 l-1 l

Dl for l ≥ 4 :
1 l-5 l-4 l-3 l-2

l-1

l

E6 :

1 3 4 5 6

2

E7 :

1 3 4 5 6

2

7

E8 :

1 3 4 5 6

2

7 8

F4 :
1 2 3 4

G2 :
1 2
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Where the double loop in Bl is directed to the right while the Cl is directed to the left.
The corresponding Cartan matrices are...

Al :


2 −1 0 · · · · · · 0
−1 2 −1 0 · · · · · 0
0 −1 2 −1 0 · · · · 0
· · · · · · · · · ·
0 0 0 0 · · · · −1 2



Bl :


2 −1 0 · · · · · · 0
−1 2 −1 0 · · · · · 0
· · · · · · · · · ·
0 0 0 · · · · −1 2 −2
0 0 0 · · · · 0 −1 2



Cl :


2 −1 0 · · · · · · 0
−1 2 −1 · · · · · · 0
0 −1 2 −1 · · · · · 0
· · · · · · · · · ·
0 0 0 · · · · −1 2 −1
0 0 · · · · · 0 −2 2



Dl :



2 −1 0 · · · · · · 0
−1 2 −1 · · · · · · 0
· · · · · · · · · ·
0 0 · · · −1 2 −1 0 0
0 0 · · · · −1 2 −1 −1
0 0 · · · · 0 −1 2 0
0 0 · · · · 0 −1 0 2



E6 :


2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0
0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2



E7 :



2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2



E8 :



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2
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F4 :


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2


G2 :

(
2 −1
−3 2

)
Though we will not go through the lengthy proof of this, it can be found in the Humphrey

reference. The steps of the proof are as follows: Let E be a Euclidean space of arbitrary
dimension and U = {ε1, · · · , εn} a set of n linearly dependent unit vectors which satisfy
(εi, εj) ≤ 0 for i 6= j and 4(εi, εj)

2 = 0, 1, 2, or 3 for i 6= j. Such a set is called admissible.
We then show...

1. If some of the εi are discarded, the remaining ones still form an admissible set, whose
graph is obtained from Γ by omitting the corresponding vertices and all incident edges.

2. The number of pairs of vertices in Γ connected by at least one edge is strictly less than
n.

3. Γ contains no cycles.
4. No more than three edges can originate at a given vertex of Γ.
5. The only connected graph Γ of an admissible set U which can contain a triple edge is

the Coxeter graph of G2.
6. Let {ε1, · · · , εk} ⊂ U have subgraph

which is a simple chain in Γ. If U′ = (U − {ε1, · · · , εk}) ∪ {ε}, where ε =
∑k

i=1 εi, then
U′ is admissible.

7. Γ contains no subgraph of 3 possible special forms.
8. Any connected graph Γ of an admissible set has one of 4 possible forms.
9. The only connected Γ of a certain type from the previous step is the Coxeter graph Dn

or the Coxeter graph En for n = 6, 7, or 8.

6.21. Root System Automorphisms. Our goal here is to give a complete description
of aut Φ for each root system Φ. We know that W is a normal subgroup of autΦ. Now let

Γ = {σ ∈ aut Φ |σ(∆) = ∆}

with ∆ a fixed base of Φ. Evidently, Γ is a subgroup of aut Φ. If τ ∈ Γ ∩W, then τ = 1
from the simple transitivity of W. If τ ∈ aut Φ, then τ(∆) is another base of ∆, so there
exists σ ∈W such that στ(∆) = ∆. Therefore, τ ∈ ΓW. It then follows that aut Φ is the
semi direct product of Γ and W.

Now for each τ ∈ aut Φ and α, β ∈ Φ, we have

2(α, β)

(β, β)
=

2(τ(α), τ(β))

(τ(β), τ(β)
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Therefore, each τ ∈ Γ determines an automorphism of the Dynkin diagram of Φ. If τ acts
trivially on the diagram, then τ = 1 because ∆ spans E. However, each automorphism of
the Dynkin diagram obviously determines an automorphism of Φ. So Γ may be identified
with the group of diagram automorphisms.

Type Number of Positive Roots Order of W Structure of W Γ

Al
(
l+1
2

)
(l + 1)! Ll+1 Z/2Z, l ≥ 2

Bl, Cl l2 2ll! (Z/2Z)l o Ll 1

Dl l2 − l 2l−1l! (Z/2Z)l−1 o Ll

{
L3, if l = 4

Z/2Z, if l > 4

E6 36 27 · 34 · 5 Z/2Z
E7 63 210 · 34 · 5 · 7 1
E8 120 214 · 35 · 52 · 7 1
F4 24 27 · 32 1
G2 6 22 · 3 D6 1

When the Dynkin diagram and Coxeter graph coincide, the term graph automorphism
may also be used.

6.22. Weights. Here, our final goal will be to describe the representations of semisimple
Lie algebras that depend on only their root system. This is the simplest case and was our
purpose in developing the theory of root systems.

Definition 6.41. (Weights) Let Λ be the set of all λ ∈ E for which 2(λ,α)
(α,α) ∈ Z for all

α ∈ Φ. The elements of Λ are called weights. But 2(λ,α)
(α,α) depends only on the linearity of

λ, Λ is a subspace of E including Φ.

Definition 6.42. (Root Lattice) Let Λr be the subgroup of Λ generated by Φ. Λr is a
lattice in E: it is the Z-span of an R-base of E (any set of simple roots). Fixing a base

∆ ⊂ Φ, define λ ∈ Λ to be dominant if all the integers 2(λ,α)
(α,α) for α ∈ ∆ are nonnegative.

We say it is strongly dominant if these integers are positive.

If we let ∆+ be the set of all dominant weights. Then ∆+ is the set of all weights lying
in the closure of the fundamental Weyl chamber C(∆), while Λ ∩ C(∆) is the set of all
strongly dominant weights.

Suppose that ∆ = {α1, α2, · · · , αl}, then the vectors 2αi
(αi,αi)

form a basis of E. Now let

λ1, λ2, · · · , λl be the dual basis relative to the inner product on E:

2(λi, αj)

(αj , αj)
= δij

Now since all 2(λi,α)
(α,α) are nonnegative integers for all α ∈ ∆, the λi are dominant weights.

Definition 6.43. (Fundamental Dominant Weights) The λi from above are called the
fundamental dominant weights relative to ∆.
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Note that σiλj = λj − δijαi. Now if λ ∈ E then

2(λ−
∑
miλi, α)

(α, α)

for each simple root α. This implies that

(λ−
∑

miλi, α) = 0

or simply that λ =
∑
miλi. Therefore, Λ is a lattice with basis λi for 1 ≤ i ≤ l and λ ∈ ∆+

if and only if all mi ≥ 0.
The lattice Λ/Λr is actually the fundamental group of Φ (see Definition 7.4). From well

known properties of such groups, we know that Λ/Λr must be finite.
Because the Weyl group W preserves the inner product on E, it must leave Λ invariant.

Lemma 6.22. Each weight is conjugate under W to one and only one dominant weight.
if λ is dominant, then σλ ≺ λ for all σ ∈ W and if λ is strongly dominant, then σλ = λ
only when σ = 1.

Lemma 6.23. Let λ ∈ Λ+. Then the number of dominant weights µ ≺ λ is finite.

Proof: Since λ+ µ ∈ Λ+ and λ− µ is a sum of positive roots

0 ≤ (λ+ µ, λ− µ) = (λ, λ)− (µ, µ)

Thus, µ lies in the compact set

{x ∈ E | (x, x) ≤ (λ, λ)}
whose intersection with the discrete set Λ+ is finite. �

Lemma 6.24. δ =
∑l

j=1 λj, so δ is a (strongly) dominant weight.

Proof: Since σiδ = δ − αi, (δ − αi) = (σ2
i δ, σiαi) = (δ,−αi), or 2(δ, αi) = (αi, αi), or

2(δ,αi)
(α,α) = 1 for 1 ≤ i ≤ l. But then

δ =
∑
i

2(δ, αi)

(αi, αi)
λi

and the lemma follows. �

Lemma 6.25. Let µ ∈ Λ+, υ = σ−1µ for all σ ∈W. Then (υ + δ, υ + δ) ≤ (µ+ δ, µ+ δ),
with equality only if υ = µ.

Proof:

(υ + δ, υ + δ) =
(
σ(υ + δ), σ(υ + δ)

)
= (µ+ σδ, µ+ σδ) = (µ+ δ, µ+ δ)− 2(µ, δ − σδ)

Since µ ∈ Λ+ and δ − σδ is a sum of positive roots, the right side is

≤ (µ+ δ, µ+ δ)
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with equality if and only if (µ, δ− σδ) = 0. But if µ− υ is a sum of positive roots and δ is
strongly dominant, so µ = υ. �

Definition 6.44. (Saturated) A subset Π of Λ is called saturated if for all λ ∈ Π, α ∈ Π,

and i between 0 and 2(λ,α)
(α,α) , the weight λ − iα also lies in Π. We say that a saturated set

Π has highest weight λ ∈ Λ+ if λ ∈ Π and µ ≺ λ for all µ ∈ Π.

Notice that any saturated set is automatically stable under W, since σαλ = λ− 2(λ,α)
(α,α) α

and W is generated by reflections.

Example 6.35. The set consisting of 0 alone is saturated with highest weight 0.

Example 6.36. The set of all Φ of all roots of a semisimple Lie algebra, including 0, is
saturated. If Φ is irreducible, there is a unique highest root relative to the fixed base ∆ of
Φ, so Π has this root as its highest weight.

Lemma 6.26. A saturated set of weights having highest weight λ must be finite.

Proof: This follows from Lemma 6.23. �

Lemma 6.27. Let Π be saturated with heights weight λ. If µ ∈ Λ+ and µ ≺ λ then µ ∈ Π.

Proof: Suppose that

µ′ = µ+
∑
α∈∆

kαα ∈ Π

for kα ∈ Z+. We need to show how to reduce any of the kα by one left over in Π. Then we
hope to arrive at the conclusion that µ ∈ Π. We start at the fact that λ is such a µ′. Now
assuming that µ′ 6= µ, some kα is positive. Starting with

(
∑
α

kαα,
∑
α

kαα) > 0

we know that (
∑

α kαα, β) > 0 for some β ∈ ∆ with kβ > 0. In particular,
2(
∑
α kαα,β)
(β,β)

is positive. Now since µ is dominant, 2(µ,β)
(β,β) . Therefore, 2(µ′,β)

(β,β) . From the definition of a

saturated set, it is possible to subtract β once from µ′ without leaving Π. then this reduces
kβ by 1. �

Lemma 6.28. Let Π be saturated with highest weight λ. If µ ∈ Π, then (µ + δ, µ + δ) ≤
(λ+ δ, λ+ δ), with equality only if µ = λ.

Proof: From Lemma 6.25, it is sufficient to show that the case when µ is dominant.
Write µ = λ− π, where π is a sum of positive roots. Then

(λ+δ, λ+δ)−(µ+δ, µ+δ) = (λ+δ, λ+δ)−(λ+δ−π, λ+δ−π) = (λ+δ, π)+(π, µ+δ) ≥ (λ+δ, π) ≥ 0

follows because µ + δ and λ + δ are dominant. Of course equality holds only if π = 0
because λ+ δ is strongly dominant. �
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7. Topology

Introduction. Some of most important questions in Mathematics are those which are
not easily defined: what numbers do this, what are the properties of things that look like
this, why do these do this? For example, example the symmetries of shapes that look like
squares. Group theory turned out to be very efficient at answering many of these questions,
i.e. the dihedral group. However, there are many other ways to answer these types of
questions. Topology originally grew out of attempts to generalize the problems of Analysis.
However, Algebraic Topology seeks to find properties of topological spaces which classify
them up to homeomorphism by looking at the deeper fundamental properties of a space:
connectedness, compactness, Hausdorffness, et cetera. These investigations often involve
careful examinations of the symmetries of the space. Of course, these spaces need not be
abstract mathematical creations. To understand crystals, one needs only to understand
the structural symmetries within the crystal to understand some of its more fundamental
properties, similar to understanding aspects like compactness of a topological spaces help
to classify it. But why is this important?

In the late 20th century, physicists noticed that when certain chemical compounds where
at extremely low temperatures, their electrical resistance dropped to zero - not near zero,
exactly zero. These compounds are called superconductors. In fact, many important power
delivery systems and internet cables around the world are delivered through such medium.
Understanding these materials would help to find a room temperature superconductor. To
examine these questions with Topology, we study the physical structure of the space. The
reader is of course familiar that there are three common phases of matter: solids, liquids,
and gases. Each of these phases of matter have various levels of symmetry. Though high
school textbooks suggest much more perfect structures than are actually typically found
in nature. Based on the amount of kinetic energy in the system, the particles exhibit more
or less symmetry that we identify with the object being solid, liquid, or gas.

However, the story is not that simple. These three phases of matter are not exhaustive.
For example, glass is not a solid but rather a supercooled liquid - it flows slowly over time.
Take silly putty which acts as a solid over short periods but a liquid over long periods
of time or over saturated liquids, which at the slightest disturbance cause solids to drop
from the liquid. Furthermore, water mixed with corn starch acts like a solid when forces
are applied over a short period of time but as a liquid when applied over a long period of
time. These examples alone shows that there are some substances whose structure is time
dependent. In fact, there are many substances that don’t fit the standard solid, liquid,
gas model: liquid crystals, supercooled liquids, spin glasses, gels, foams, superconductors,
polymers, colloids, etc. Our goal here is to examine these local structure and properties of
some of these substances to explain their global behavior. First, we will need to introduce
ways to look at mappings between spaces and paths in those spaces. Then we use this to
establish a fundamental (with some pun intended) property of the space which we will use
to classify these substances later. Finally, before talking about the properties of matter we
are interested in, we will talk about manifolds because much of the physical structure of
these objects form a manifold.
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7.1. Homotopy. To see if two spaces are the same, we can see if we can continuously
deform one space into another. Imagine taking a ball with a hole in it and sticking ones
finger into the hole and stretching it out a bit. Then one has a larger circle which one can
then stretch out in all directions to infinity, flattening it out as one goes. The result is
the plane, which should be of no surprise given stereographic projection; given the missing
point to be the north pole of the unit sphere, a point on the sphere (x, y, z) and a point on
the plane (X,Y ), then their relationship is given by

(X,Y ) =

(
x

1− z
,

y

1− z

)
(x, y, z) =

(
2X

1 + (X2 + Y 2)
,

2Y

1 + (X2 + Y 2)
,
(X2 + Y 2)− 1

1 + (X2 + Y 2)

)
The stereographic projection is a classic example of a homeomorphism, here between

the plane and the punctured sphere. However, do the properties of a space restrict the
types of maps which are homeomorphisms between two topological spaces? Of course,
the answer is yes. In general, it is very difficult to resolve the question whether two gen-
eral topological spaces are homeomorphic. Necessary conditions come easily and cheaply
while sufficient conditions are sparse and difficult to find. However, there are three major
fields of study in topology which create sufficient conditions for topological spaces to be
homeomorphic. Each topological space comes a variety of groups associated with it: ho-
mology groups, cohomology groups, homotopy groups, and cohomotopy groups. Should
two spaces be homeomorphic their corresponding associated groups are also homeomorphic.
This provides important necessary conditions which also reveal many of the properties of
the space. Homotopy is the study of the types of continuous maps from one topological
space to another. Of course, one would be interested in this because the properties of a
given topological spaces restricts the types of mappings that might send it into another
topological space.

Definition 7.1. (Homotopy)
If f and f ′ are continuous maps of the topological space X into the topological space Y ,
we say that f is homotopic to f ′ if there is a continuous map F : X × I → Y such that

F (x, 0) = f(x) and F (x, 1) = f ′(x)

for each x ∈ X. The map F is called a homotopy between f and f ′. If f is homotopic to
f ′, we write f ' f ′. If f ′ is a constant map, we say that f is nulhomotopic.

Example 7.1. Take the homotopy in Figure 5. The top red line is the result of applying a
composition of homomorphisms such that [0, 1] 7→ [7π

10 , π] and then applying the continuous

map f(x) = 1 − x2 + x3. Similarly, we send [0, 1] 7→ [7π
10 , π] for the bottom line but then

applying the mapping g(x) = (1−x2 +x3)2 = f(x)2. So notice then that both the top and
bottom line are homeomorphic with [0, 1]. Simple define a map h(x) = 3π

10x+ 7π
10 , which is

obviously a continuous map from [0, 1] → [7π
10 , π]. Then the top line is homeomorphic to

[0, 1] under the mapping (f ◦ h)(x) and the bottom line is homeomorphic to [0, 1] under
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the mapping (g ◦ h)(x). Moreover, these spaces are homotopic since the continuous map

F (x, t) = f(x)
3
2
t+1/2 for all x in our domain and t ∈ [0, 1] serves as a homotopy between

the spaces.

Figure 5. An example of a homotopy between two topological spaces.
Both lines are equivalent to [0, 1] as topological spaces and the dotted lines
are intermediate steps of the homotopy.

Example 7.2. Any map f : S1 → X, where X is a topological space, is null-homotopic
when f is extendable to the unit disk, D2, that agrees with f on the boundary of D2.

Example 7.3. If f, g : X → R2 are maps, then a homotopy between them is given by

F (x, t) = (1− t) f(x) + t g(x)

called the straight-line homotopy.

However, if f is a path that is in the topological space X, we get an even stronger
relation - path homotopy.

Definition 7.2. (Path Homotopic)
Two paths f and f ′, mapping the interval I = [0, 1] into the topological space X are said
to be path homotopic if they have the same initial point x0 and the same final point x1

and if there is a continuous map F : I × I → X such that

F (s, 0) =f(s) and F (s, 1) = f ′(s)

F (0, t) =x0 and F (1, t) = x1

for each s ∈ I and each t ∈ I. We call F a path homotopy between f and f ′. We write
f 'p f ′.

This definition says two things:

1. F is a continuous function that deforms f to f ′. Moreover, F is a homotopy between f
and f ′.

2. The path ft given by ft(s) = F (s, t) is a path from x0 to x1. Moreover, the initial and
final points of the paths f, f ′ remain fixed throughout the deformation.
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Now while these definitions and examples seem interesting enough, they have yet to
prove themselves more useful than an ordinary homeomorphism. But indeed, they are
surprisingly useful. We can turn these homotopies into a groupoid then they will begin to
be of some use. First, we show that they form an equivalence class and them create an
operation on the classes to form the groupoid.

Lemma 7.1. The relations ' and 'p form equivalence classes.

Proof: We need only show this for ' as 'p is just a special case of '. Let f, f ′ be paths
and [f ], [f ′] denote their equivalence class.

1. Reflexivity: It is trivial that f ' f as F (x, t) = f(x) is the required homotopy.
2. Symmetry: Let F be the homotopy given by the fact that f ' f ′. Then the required

homotopy necessary for f ′ ' f is G(x, t) = F (x, 1 − t). It is also clear if F is a path
homotopy then so is G.

3. Transitivity: Suppose that f ' f ′ and f ′ ' f ′′. Let F be the homotopy between f and
f ′ and F ′ be the homotopy between f ′ and f ′′. Now the required homotopy between f ′

and f ′′ is

G(x, t) =

{
F (x, 2t) for t ∈ [0, 1

2 ]
F ′(x, 2t− 1) for t ∈ [1

2 , 1]

G is well defined as G(x, 1
2) = F (x, 1) = F ′(x, 1) = f ′(x). Moreover, since it is continu-

ous at t = 1
2 and given that F and F ′ are continuous, G is continuous. Then G is truly

the required homotopy. It is again simple to check that if F and F ′ are path homotopies
than so is G. �

Now we can induce an operation on path-homotopy classes that will allow us to form
the groupoid.

Definition 7.3. (Path Products)
If f is a path in X from x0 to x1 and if g is a path in X from x1 to x2, we define the
product f ∗ g to be the path h given by the equations

h(s) =

{
f(2s), for s ∈ [0, 1

2 ]

g(2s− 1), if s ∈ [1
2 , 1]

The function h is well-defined and continuous and is a path in X from x0 to x2, whose first
half path is f and whose second half path is g. The product operations on a well-defined
operation in path homotopy classes, defined by the equation

[f ] ∗ [g] = [f ∗ g]

The operation ∗ satisfies the property of a groupoid, which we will now show.

Theorem 7.1. The operation ∗ satisfies all the properties of a groupoid: associativity,
right and left identities, and the existence of inverses.
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Proof:

1. Associativity: We describe f ∗ g is a bit of a different way. Suppose [a, b], [c, d] ∈ R are
intervals. Then there is a map ρ : [a, b]→ [c, d] with form ρ(x) = mx+ k that carries a
to c and b to d. This map ρ is called the positive linear map of [a, b] to [c, d]. Then we
can describe f ∗ g as follows: If t ∈ [0, 1

2 ] then it is the positive linear map of [0, 1
2 ] to

[0, 1], then followed by f and if t ∈ [1
2 , 1] it is the positive linear map of [1

2 , 1] to [0, 1]
followed by g.

Now suppose that f, g, h ∈ X and the products f ∗ (g ∗ h) and (f ∗ g) ∗ h are defined
when f(1) = g(0) and g(1) = h(0). If we assume this, then we can define the triple
product above as follows: let a, b ∈ I so that 0 < a < b < 1. Now define a path ka,b ∈ X
so that on [0, a] it is the positive linear map of [0, a] to I followed by f and on [a, b] it
is the positive linear map [a, b] to I followed by g and finally on [b, 1] it is the positive
linear map [b, 1] to I followed by h. Of course, the path ka,b depends on the choice of
a, b. However, notice its path homotopy does not depends on the choice of a or b. It
only remains to show that if c, d are any pair of points in I with 0 < c < d < 1, then
kc,d must be path homotopic to ka,b.

Suppose that p : I → I is a map with p(a) = c, p(b) = d, and p(1) = 1. Then when
restricted to [0, a], [a, b] and [b, 1], p is the positive linear map of these intervals onto
[0, c], [c, d], and [d, 1], respectively. But then it follows that kc,d ◦ p must be ka,b. But
then p is a path in I from 0 to 1 and so is the identity map i : I → I. Therefore, there
must be a path homotopy P in I between p and i. Finally, kc,d ◦ P is a path homotopy
in X between kc,d and ka,b.

2. Right/Left Identity: Let e0 denote the constant path in I at 0 and let i : I → I denote
the identity map. Then e0 ∗ i is a path in I from 0 to 1. However, because I is convex,
there is a path homotopy G in I between i and e0 ∗ i. Then f ◦G is a path homotopy
in X between the paths f ◦ i = f and

f ◦ (e0 ∗ i) = (f ◦ e0) ∗ (f ◦ i) = ex0 ∗ f

Similarly, an argument can be demonstrated to show that if e1 is the constant path at
1, then i ∗ e1 is path homotopic in I to the path i, showing that [f ] ∗ [ex1 ] = [f ].

3. Inverses: First, note the reverse of the path i is i(s) = 1 − s. Then i ∗ i is a path in I
that is a path that both begins and ends at 0, and so it the constant path e0. However,
because I is convex, there is a path homotopy H in I between e0 and i ∗ i. Then f ◦H
is a path homotopy between f ◦ e0 = ex0 and

(f ◦ i) ∗ (f ◦ i) = f ∗ f

A similar argument shows that i∗ i is path homotopic in I to e1, showing that [f ]∗ [f ] =
[ex1 ]. �

It would seem that ∗ is a group from the above. Why does it only form a groupoid? This
is because [f ]∗ [g] is not defined for every pair of classes. For example, what if f(1) 6= g(0),
the case where the start of one path is not the end of the other.
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7.2. Fundamental Group. Though certainly not developed homotopy very deeply, it
clearly presents itself as a powerful tool for studying topological spaces. However, we can
still do better. Recall that path-homotopy classes result in only a groupoid, we can improve
this to form a group. If X is a topological space, simply choose a point x0 ∈ X as a base
point and only observe paths whose initial and final points are x0, i.e. all loops at x0. Then
our original groupoid satisfies all the properties of a group and is known as the fundamental
group.

Definition 7.4. (Fundamental Group)
Let X be a topological space; let x0 be a point of X. A path in X that begins and ends
at x0 is called a loop based at x0. The set of path homotopy classes of loops based at x0

with operation ∗ is called the fundamental group of X relative to the base point x0. It is
denoted π1(X,x0). This is also known as the first homotopy group of X and is denoted
π1(X,x0).

There are groups πn(X,x0) for all n ∈ Z but discussing these homotopy groups are
well beyond the scope of our discussion but the interested reader can look into homotopy
theory for such discussions. For example, one could read Cornell professor Allen Hatcher’s
wonderful free book Algebraic Topology.

Remark 7.1. As with splitting fields, one cannot simply say, “the fundamental group of
X”, but rather one says, “the fundamental group of X relative to the base point x0”. A
base point must be specified except in special circumstances.

Example 7.4. If f is any loop in Rn at some point x0, then the straight-line homotopy is
a path homotopy between f and some constant path at x0. Therefore, π1(Rn, x0) is trivial
(consisting of the identity alone). Indeed, this is also true for any convex region in Rn as
one can see with a bit of thought.

Example 7.5. The fundamental group of the the circle is Z. Though we won’t prove
this until later, we can show this using some thought. Any loop at x0 ∈ S1 that does not
loop around the whole circle can be deformed back to the point x0 and hence are trivial.
Consider a loop which goes around the circle n times counter-clockwise. This loop can
only be deformed back to the n − 1st loop without breaking the loop or stretched to the
n+ 1st loop without changing the loop. For example, a loop which goes around the circle
can only be squished back to the 1st loop or stretched to a loop that goes around the circle
twice without changing the loop. Therefore, any loop that wraps around the unit circle i
times is equivalent to to a loop which goes around bic times. But then there is a distinct
loop for each n ∈ Z and nonnegative. Similarly, there are as many loops that go clockwise,
i.e. the negative direction. Hence, the fundamental group of the circle is Z.

Example 7.6. The fundamental group of the sphere is trivial since every loop on the
surface of the sphere can be deformed back to the base point x0.

The first thing one observes about the fundamental group is that it depends on the
choice of base point x0 ∈ X. How “fundamental” can this group be if it depends on the
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choice of base point? How dependent is the group on the choice of base point? Here we
will clarify these questions more.

Definition 7.5. (Fundamental Group Mappings)
Let α be a path in X from x0 to x1. Define a map

α̂ : π1(X,x0)→ π1(X,x1)

by the equation
α̂([f ]) = [α] ∗ [f ] ∗ [α]

It is clear that α̂ is well defined as ∗ is. Then if f is any loop at x0 then α ∗ (f ∗ α) is
a loop based at x1. Therefore, α̂ maps π1(X,x0) to π1(X,x1) as desired and only depends
on the path-homotopy class of α. Moreover, α̂ is an isomorphism between π1(X,x0) and
π1(X,x1).

Theorem 7.2. The map α̂ is a group isomorphism.

Proof: This can be done through simple computation.

α̂([f ]) ∗ α̂([g]) =([α] ∗ [f ] ∗ [α]) ∗ ([α ∗ [g] ∗ [α])

=[α] ∗ [f ] ∗ [g] ∗ [α]

=α̂([f ] ∗ [g])

which shows that α̂ is a homomorphism. Now let β denote the path α, the reverse of α.
Then β̂ is the inverse of α̂. Given [h] ∈ π1(X,x1) then

β̂([h]) =[β] ∗ [h] ∗ [β] = [α] ∗ [h] ∗ [α]

α̂(β̂([h])) =[α] ∗ ([α] ∗ [h] ∗ [α]) ∗ [α] = [h]

It is trivial to show also that β̂(α̂([f ])) = [f ] for all [f ] ∈ π1(X,x0). �

It then immediately follows that in any path connected topological space that the choice
of base point x0 is irrelevant in some sense.

Corollary 7.1. If X is a path connected topological space and x0 and x1 are two points of
X then π1(X,x0) is isomorphic to π1(X,x1).

One can study some properties of topological spaces using the fundamental group through
its path components that contain x0. But usually one restricts the majority of the funda-
mental groups usefulness to those spaces that are path-connected spaces. However, despite
Corollary 7.1, one cannot leave out the choice of base point x0. Indeed, there is no natural
way of identifying π1(X,x0) with π1(X,x1) in general since different paths α and β from
x0 to x1 could result to different isomorphisms between the groups. As it turns out, the
isomorphism between π1(X,x0) and π1(X,x1) is independent of the path if and only if the
fundamental group is abelian, which is really a deep requirement on the topological space
X itself.
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Theorem 7.3. Let x0 and x1 be points of the path-connected space X. Then π1(X,x0) is

abelian if and only if for every pair α and β of paths from x0 and x1, we have α̂ = β̂.

Proof: First, suppose that π1(X,x0) is abelian, α and β are paths from x0 to x1, and
[f ] ∈ π1(X,x0). It is obvious that α ∗ β is a loop at x0. Now

[f ] ∗ [α] ∗ [β] = [f ] ∗ [α ∗ β] = [α ∗ β] ∗ [f ] = [α] ∗ [β] ∗ [f ]

Then,

α̂([f ]) =[α] ∗ [f ] ∗ [α]

=[α] ∗ [f ] ∗ [α] ∗ [β] ∗ [β]

=[α] ∗ [α] ∗ [β] ∗ [f ] ∗ [β]

=[β] ∗ [f ] ∗ [β]

=β̂([f ])

�

Furthermore, X being path connected induces restrictions on the homomorphisms of the
fundamental group relative to base point x0 as well.

Theorem 7.4. If X is path connected, the homomorphism induced by a continuous map
is independent of bases point, up to isomorphism of the groups involved. More precisely,
let h : X → Y be continuous, with h(x0) = y0 and h(x1) = y1. Let α be a path in X from
x0 to x1 and let β = h ◦ α, then

β̂ ◦ (hx0)∗ = (hx1)∗ ◦ α̂

Proof: We can show this through simple computation. Suppose that f ∈ π1(X,x0).
Then we have

β̂((hx0) ∗ ([f ])) =β̂([h ◦ f ])

=[h ◦ α] ∗ [h ◦ f ] ∗ [h ◦ α]

=[(h ◦ α) ∗ ((h ◦ f) ∗ (h ◦ α))]

=[h ◦ (α ∗ (f ∗ α))]

=(hx1) ∗ ([α ∗ [f ] ∗ [α])

=(hx1) ∗ (α([f ]))

�

In fact, this stringent requirement on the space (that the fundamental group be abelian)
forces the topological space X to be abelian.

Definition 7.6. (Simply Connected)
A topological space X is said to be simply connected if it is a path-connected space and if
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π1(X,x0) is the trivial (one-element) group for some x0 ∈ X and hence for every x0 ∈ X.
We often express the fact that π1(X,x0) is the trivial group by writing π1(X,x0) = 0.

Lemma 7.2. If X is a simply connected topological space, then any two paths with the
same initial and final points are path homotopic.

Proof: Suppose α and β are two paths from x0 to x1 then α ∗ β is a loop based at x0.
Since X is simply connected, this loop must be path homotopic to a constant loop at x0.
But then

[α] = [α ∗ β] ∗ [β] = [ex0 ] ∗ [β] = [β]

�

Example 7.7. The spheres Sn are all simply connected for n ≥ 2.

Example 7.8. The plane R2 is simply connected. Furthermore, every convex subset of
R2 is simply connected. However, the punctured plane R2 − {0} is not simply connected.

Example 7.9. The special orthogonal group SO(n,R) is simply connected for n ≥ 2. The
special unitary group SU(n) is always simply connected.

Example 7.10. All topological vector spaces are simply connected. Importantly, this
implies then that the Banach and Hilbert spaces are simply connected.

It should be clearer now that forming a group out of loop equivalence classes is a powerful
tool for classifying topological spaces to some extent. Indeed, the fundamental group is
clearly a topological invariant of a space. We show this using the notion of homomorphisms
induced by a continuous map.

Definition 7.7. (h-Homomorphisms)
Let h : (X,x0)→ (Y, y0) be a continuous map. Define

h∗ : π1(X,x0)→ π1(Y, y0)

by the equation
h∗([f ]) = [h ◦ f ]

The map h∗ is called the homomorphism induced by h, relative to the base point x0.

Notice that h∗ is well defined because if F is a path homotopy between two paths f and
f ′, then h ◦ F must be a path homotopy between the paths h ◦ f and h ◦ f ′. Clearly, h∗ is
a homomorphism from the fact

(h ◦ f) ∗ (h ◦ g) = h ◦ (f ∗ g)

But what is h∗ doing? Let f be some loop in X based at the point x0 and y0 ∈ Y .
Suppose that h : X → Y is a continuous map that carries x0 to y0, that is h : (X,x0) →
(Y, y0). Then the composition h ◦ f : I → Y is a loop in Y based at the point y0. But then
the correspondence f → h ◦ f gives a map carrying π1(X,x0) to π1(Y, y0) and is exactly
the map h∗. Furthermore, notice that the homomorphism h∗ depends not only on the
topological spaces X,Y but also the choice of base point x0. This also makes it clear that
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if x0, x1 ∈ X are distinct, they may not yield the same homomorphism h∗, even when X
is path connected, though then the groups are certainly isomorphic. Because of this, the
notation

(hx0)∗ : π1(X,x0)→ π1(Y, y0)

is often used in context unless the base point under consideration remains fixed. We now
show that the fundamental group is an invariant property of a topological space.

Theorem 7.5. If h : (X,x0) → (Y, y0) and k : (Y, y0) → (Z, z0) are continuous, then
(k ◦ h)∗ = k∗ ◦ h∗. If i : (X,x0) → (X,x0) is the identity map, then i∗ is the identity
homomorphism.

Proof: The proof follows trivial from simple computation.

(k ◦ h)∗([f ]) =[(k ◦ h) ◦ f ]

(k∗ ◦ h∗)([f ]) =k∗(h∗([f ])) = k∗([h ◦ f ]) = [k ◦ (h ◦ f)]

We similarly find i∗([f ]) = [i ◦ f ] = [f ]. �

Corollary 7.2. If h : (X,x0) → (Y, y0) is a homeomorphism of X with Y , then h∗ is an
isomorphism of π1(X,x0) with π1(Y, y0).

Proof: Let k : (Y, y0)→ (X,x0) be the inverse of h. Then k∗ ◦ h∗ = (k ◦ h)∗ = i∗, where
i is the identity map of (X,x0) and h∗ ◦ k∗ = (h ◦ k)∗ = j∗, where j is the identity map
of (Y, y0). Since i∗ and j∗ are the identity homomorphisms of the groups π1(X,x0) and
π1(Y, y0), respectively, k∗ is the inverse of h∗. �

Hence, a necessary condition for two topological spaces to be homeomorphic is that
their fundamental groups need to be isomorphic. Sadly however, this is not a sufficient
condition.

7.3. Covering Spaces. Though the fundamental group is quite useful, it is far less so if
one cannot calculate the fundamental group. Though this is often easy for fundamental
groups which are trivial, those which are not are much more difficult in general. This is
where covering spaces come in handy. Indeed, they are essential in the study of Riemannian
surfaces and manifolds.

Definition 7.8. (Evenly Covered)
Let p : E → B be a continuous surjective map. The open set U of B is said to be evenly
covered by p if the inverse image p−1(U) can be written as the union of disjoint open sets
Vα in E such that for each α, the restriction of p to Vα is a homeomorphism of Vα onto U .
The collection {Vα} will be called a partition of p−1(U) into slices.

The image often associated with being evenly covered is the “pancake stack”. Suppose
U is an open set that is evenly covered by p, then p−1(U) can be visualized as a “stack of
pancakes” above U . The map p then smashes all these pancakes down onto U , see Figure
6.
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Figure 6. The standard representation of being evenly covered by a pan-
cake stack. The lower darker stack is of course U and the upper stacks are
p−1(U).

Definition 7.9. (Covering Space)
Let p : E → B be continuous and surjective. If every point b ∈ B has a neighborhood U
that is evenly covered by p, then p is called a covering map and E is said to be the covering
space of B.

It is a useful observation to make that if p : E → B is a covering map then p is also
necessarily an open map.

Example 7.11. The map p : R→ S1 given by

p(x) = (cos 2πx, sin 2πx)

is a covering map. This map wraps all of R continuously around the circle and maps each
interval [n, n+ 1] onto S1.

Moreover, one should notice that if we place restrictions on the mapping p : E → B,
then we get a local homeomorphism of E with B. That is to say, each point e ∈ E has
a neighborhood that is mapped homeomorphically by p onto an open subset of B. Why?
Because this open set wraps part of the positive real line entirely around the circle. But
then any open set which contains it must cover the circle slightly more than one, meaning we
have lost injectivity and therefore cannot be a homeomorphism. However, it is important
to know that this is not sufficient for a mapping to be a covering map. Take the mapping
p : R+ → S1 given by

p(x) = (cos 2πx, sin 2πx)



170

Notice that this is surjective and a local homeomorphism. However, it is not a covering
map as the point (1, 0) has no neighborhood U that is evenly covered by p.

We have yet to explain exactly how covering maps relate to the fundamental group.
Here, we rectify this missing connection.

Definition 7.10. (Lift)
Let p : E → B be a map. If f is a continuous mapping of some topological space X into
B, a lifting of f is a map f : X → E such that f = p ◦ f .

X B

E

f

f

p

Notice that a lift exists when p is a covering map, which we shall show. Moreover, path
homotopies can also be lifted.

Lemma 7.3. Let p : E → B be a covering map, let p(e0) = b0. Any path f : [0, 1] → B
beginning at b0 has a unique path lifting to a path f in E beginning at e0.

Proof:

1. Existence: First, cover B by open sets U , each of which is evenly covered by p. Then
using the Lebesgue Number Lemma, find a subdivision, s0, s1, · · · , sn, of [0, 1] such that
for each i f([si, si+1]) lies in an open set U . Now we create the lift f as follows:

First, let f(0) = e0. Supposing that f(s) is defined for all 0 ≤ s ≤ si and define
f on [si, si+1] as follows: The set f([si, si+1]) lies in some open set U that is evenly
covered by p. Let {Vα} be a partition of p−1(U) into slices, each set Vα is mapped
homeomorphically onto U by p. Then f(si) lies in one of these sets. Suppose it lies in
V0. Now define f(s) for s ∈ [si, si+1] by

f(s) = (p|V0)−1(f(s))

Since p|V0 : V0 → U is a homeomorphism, f is continuous on [si, si+1]. Doing this for
each of the si, we can define f on all of [0, 1]. The continuity of f follows from the
pasting lemma and the fact that p ◦ f = f follows from the definition of f .

2. Uniqueness: Suppose that f̃ is another lifting of f starting at e0. Then f̃(0) = e0 = f(0).

Suppose that f̃(s) = f(s) for all s such that 0 ≤ s ≤ si. Let V0 as in the preceding

step. Then for all s ∈ [si, si+1], f(s) is defined as (p|V0)−1(f(s)). Since f̃ is a lifting
of f , it must carry the interval [si, si+1] into the set p−1(U) =

⋃
Vα. The slices Vα are

then open and disjoint. Because the set f̃([si, si+1]) is connected, it must lie entirely

in one of the sets Vα. Moreover, because f̃(si) = f(si), which of course is in V0, f̃(s)
must equal some point of y ∈ V0 lying in p−1(f(s)). But there is only one such point y,

(p|V0)−1(f(s)). Therefore, f̃(s) = f(s) for s ∈ [si, si+1]. �
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Lemma 7.4. Let p : E → B be a covering map; let p(e0) = b0. Let the map F : I× I → B
be continuous, with F (0, 0) = b0. There is a unique lifting of F to a continuous map

F : I × I → E

such that F (0, 0) = e0. If F is a path homotopy, then F is a path homotopy.

Proof:

1. Existence: Given a path homotopy F , define F (0, 0) = e0. Now use Lemma 7.3 to
extend F to the left-hand edge 0× I and the bottom edge I × 0 of I × I. Then we can
extend F to all of I × I as we will describe.

Using the Lebesgue Number Lemma, choose subdivisions s0 < s1 < · · · < sm and
t0 < t1 < · · · < tn of I fine enough so that each rectangle

Ii × Jj = [si−1, si]× [tj−1, tj ]

is mapped by F into an open set of B that is evenly covered by p. Now define the lifting
F slowly, beginning with the rectangle I1 × J1, continuing with all other rectangles,
Ii× J1, then the rectangles Ii× J2, et cetera. In general, if given i0 and j0, assume that
F is defined on the set A which is the union of 0×I and I×0 and all the rectangles before
Ii0 ×Jj0 . Assume also that F is continuous liftings of F |A. Define F on Ii0 ×Jj0 . Then
choose an open set U of B that is evenly covered by p and contains the set F (Ii0 ×Jj0).
Let {Vα} be a partition of p−1(U) into slices. Each set Vα is mapped homeomorphically
onto U by p.

Now F is defined on the set C = A ∩ (Ii0 × Jj0). This set is the union of the left

and bottom edges of the rectangle Ii0 × Jj0 and so is connected. Therefore, F (C) is
connected and must lie entirely within on of the sets Vα. Suppose it lies in V0. Let
p0 : V0 → U denote the restriction of p to V0. Since F is a lifting of F |A, we know that
for any x ∈ C,

p0(F (x)) = p(F (x)) = F (x)

so that F (x) = p−1
0 (F (x)). Therefore, we may extend F be defining

F (x) = p−1
0 (F (x))

for x ∈ Ii0 × Jj0 . The extended map will be continuous by the pasting lemma. Simply

continue this process to define F on all of I2.
2. Uniqueness: At each step of the construction of F , F can only be extended continuously

in one way. So once F (0, 0) is defined, F is completely determined. Suppose then that
F is a path homotopy. We need to show that F is a path homotopy. The map F carries
the entire left edge 0 × I of I2 into a single point, b0 ∈ B. Because F is a lifting of F ,
it must carry this edge into the set p−1(b0). But this set has the discrete topology as a
subspace of E. Since 0× I is connected and F is continuous, F (0× I) is connected and
thus must equal a one-point set. Similarly, F (1× I) must be a one-point set. Therefore,
F is a path homotopy. �
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We are now fully equipped to prove the statement earlier: that when p is a covering map
then there exists a lift.

Theorem 7.6. (Covering Maps Induce Lifts) Let p : E → B be a covering map; let
p(e0) = b0. Let f and g be two paths in B from b0 to b1 and let f and g be their respective
liftings to paths in E beginning at e0. If f and g are path homotopic, then f and g end at
the same point of E and are path homotopic.

Proof: Let F : I × I → B be the path homotopy between f and g. Then F (0, 0) = b0.
Let F : I × I → E be the lifting of F to E such that F (0, 0) = e0. By Lemma 7.4, F is a
path homotopy. Then F (0× I) = {e0} and F (1× I) is a one-point set, namely {e1}.

Then the restriction F |I × 0 of F to the bottom edge of I × I is a path in E, begin-
ning at e0, that is a lifting of F |I × 0. By the uniqueness of path liftings, we must have
F (s, 0) = f(s). Similarly, F |I×I is a path on E that lifts F |I×1 and begins at e0 because
F (0× I) = {e0}. By the uniqueness of path liftings, F (s, 1) = g(s). Therefore, both f and
g end at e1 and F is a path homotopy between them. �

Definition 7.11. (Lifting Correspondence)
Let p : E → B be a covering map; let b0 ∈ B. Choose e0 so that p(e0) = b0. Given an
element [f ] of π1(B, b0), let f be the lifting of f to a path in E that begins at e0. Let
φ([f ]) denote the end point f(1) of f . Then φ is a well-defined set map

φ : π1(B, b0)→ p−1(b0)

We call φ the lifting correspondence derived from the covering map p. Notice that φ
still depends on the choice of the point e0.

Theorem 7.7. Let p : E → B be a covering map; let p(e0) = b0. If E is path connected
then the lifting correspondence

φ : π1(B, b0)→ p−1(b0)

is surjective. If E is simply connected, it is bijective.

Proof: If E is path connected, then given e1 ∈ p−1(b0), there is a path f in E from e0

to e1. But then f = p ◦ f is a loop in B at b0 and φ([f ]) = e1 by definition.
Now suppose that E is simply connected. Let [f ] and [g] be two elements of π1(B, b0)

such that φ([f ]) = φ([g]) and let f, g be the liftings of f and g, respectively, to paths in
E that begin at e0. Then f(1) = g(1). Since E is simply connected there is a path ho-
motopy F in E between f and g. Then p◦F is a path homotopy in B between f and g. �

Example 7.12. We can provide not only an interesting example of a lifting correspondence
but prove that the fundamental group of S1 is indeed the additive group Z, as previously
suggested. Let p : R→ S1 be the covering map given by

p(x) = (cos 2πx, sin 2πx)
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Let e0 = 0 and b0 = p(e0). Then p−1(b0) is the set Z of integers. Because R is simply
connected, the lifting correspondence

φ : π1(S1, b0)→ Z

is bijective. To show that φ is an isomorphism, it remains to show that φ is a homomor-
phism. Suppose that [f ], [g] ∈ π1(B, b0) and let f, g be their respective liftings to paths on
R at 0. Notice that φ([f ]) = f(1) and φ([g]) = g(1) by definition. Now let g̃ be the path

g̃(s) = f(1) + g(s)

on R. Because p(x) = p(f(1) + x) for all x ∈ R, the path g̃ is a lifting of g as it begins at
f(1). Then the product f ∗ g̃ is defined and must be the lifting of f ∗ g that begins at 0.
The end point of the path is g̃(1) = f(1) + g(1). But then it follows that

φ([f ] ∗ [g]) = f(1) + g(1) = φ([f ]) + φ([g])

7.4. Manifolds. Since we are going to be applying the symmetric groups role in topology
to very real objects, it only remains to explain what these objects are. We follow Basener’s
“Topology and Its Applications”? for its wonderful description of the uses of Topology,
except where indicated.

Definition 7.12. (Manifold) An n-dimensional manifold is a topological space M such
that for any x ∈M , there exists a neighborhood U ⊆M of x and an open set V ⊆ Rn such
that U and V are homeomorphic. We also assume that a manifold is Hausdorff and second
countable (it has a countably dense subset). We usually denote the homeomorphism by
φ : U → V . A compact manifold is called a closed manifold.

In essence, manifolds are objects which when one looks “closely” enough at one, they
appear to be a Euclidean space. For example, the sphere is a manifold as are the ripples in
a sheet as flaps in the wind. Moreover, when one stands on the sphere, or for example the
Earth, one would think that they are on a flat 2-dimensional plane when in reality one is
on the surface of the sphere. Think about standing up with this paper and walking across
the room. Though one seems to be walking in a straight line, since one is on the surface of
the Earth, one is really walking on an arc. Despite the fact it seems like a straight line and
my environment flat, it is actually curved. Manifolds are a higher dimensional analogue
of what we image curves and surfaces to be. Moreover, they are of the greatest important
in Applied Mathematics and the sciences as most of the objects we observe in nature are
manifolds. However, many common objects are not manifolds. For example, the figure
eight cannot be a manifold as any neighborhood of the self intersection of the curve is not
homeomorphic with R.

Definition 7.13. (Chart/Atlas) If M is a topological manifold, then the subsets U ⊆ M
are called the charts and the maps φ are called the chart maps. The collection of the charts
that cover M with their associated chart maps is called an atlas for M and can be written
{Uα, φα}.



174

Notice if the manifold M is compact, then only finitely many charts are required. Think-
ing of the example where M is the sphere, we can take this definition literally. If you know
roughly where you are on the sphere, i.e. the world, you know your U . Then you know
what φ or chart map, what in the real world would be your literal flat map you could buy
at the store, to tell you where you are locally on the sphere. But one must be careful not
to picture “nice” spaces when thinking of manifolds. The reader may have been imagining
“nice” spaces thus far, such as the sphere. But a manifold need not even have a boundary.
A manifold with a boundary needs more specification.

Definition 7.14. (Manifold with Boundary) A manifold with boundary is a second count-
able Hausdorff topological space M such that for any x ∈ M , there is a neighborhood
U ⊆ M of x and an open set V ⊆ Rn−1 × R+ such that U and V are homeomorphic. We
denote the homomorphism φ : U → V . The set of points x ∈ M with φ(x) ∈ Rn−1 × {0}
is called the boundary of M and the complement of the boundary of M in M is called the
interior of M .

Moreover, all of the manifolds we have thus far mentioned are already subsets of a
Euclidean space Rk. But notice the definition only requires that the topological space be
locally homeomorphic to a Euclidean space. Nowhere do we require that the space originate
in Euclidean space. For example, consider the manifold as defined by

C = I/(0 ∼ 1)

Here we have created the circle using an identification space and is not in R2. Though
a technicality, this shows that the topological space doesn’t need to be in Rk to begin
with. But this technicality holds great importance. Notice that the circle divides the plane
into two sets while the sphere does not divide R3 into two pieces. To talk about these
differences, we need more definitions.

Definition 7.15. (Embedding/Immersion) A map i : X → Y is called an embedding if
i is a homeomorphism between X and i(X), where the topology on i(X) is the subspace
topology inherited from Y . To indicate that a map is an embedding, we write i : X ↪→ Y .
A map f : X → Y is called an immersion if given any point x ∈ X, there is a neighborhood
U of x such that f : U → Y is a homeomorphism between U and f(U). One thinks of an
immersion as being locally an embedding.

First, note that every embedding is an immersion. However, the converse fails. For
an immersion to be an embedding it needs to be injective and the inverse needs to be
continuous.

Definition 7.16. (Topological Properties) A property of a topological space X is said
to be intrinsic property if it depends only on the topological space X. A property of a
topological space X embedded in Y is called extrinsic if it depends on the embedding.

These topological properties are the difference between the circle and sphere in how they
break up the space they are embedded in. Moreover, we have one more important property
of a surface.
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Definition 7.17. (Orientable) A surface S is said to be orientable if there does not exist
an embedding of a Möbius strip into S. If such an embedding exists, then the surface is
said to be nonorientable.

Definition 7.18. (Embedded Manifold) An embedded n-dimensional manifold is a subset
M of Rk (with the subspace topology) such that for any x ∈M , there exists a neighborhood
U ⊆M of x and an open set V ⊆ Rn such that U and V are homeomorphic.

Clearly, an embedded manifold is also a manifold (every subset of Rk is Hausdorff and
second countable). However, is every manifold homeomorphic to an embedded manifold?
Indeed, this is called the Whitney Embedding Theorem, which we will not prove here.

Theorem 7.8. (Whitney Embedding Theorem) Every compact n-dimensional manifold
embeds in some Euclidean space Rk.

7.5. Vector Fields. Vector fields and winding numbers express the intimate connection
between Calculus and Topology. Vector fields tell us about forces at varying points in some
force field while winding numbers tell us important information about paths in those fields.
We have already considered the fundamental group, which studies possible paths in the
space. However, since we will not be considering just arbitrary groups but manifolds, we
can do Calculus on these groups. Hence, vector fields yield more information about the
space.

Definition 7.19. (Vector Field) If U is an open subset of Rn, then a vector field on U is
a function V : URn that assigns to each point x ∈ U a vector V (x).

Moreover, a function between open sets in Rn is said to be continuously differentiable if
it has continuous partial derivatives. For our purposes, all vector fields will considered to
be continuously differentiable. Furthermore, recall that a contour integral is independent
of the parametrization of the path γ. So if γ : I → U is a continuously differentiable path
in U , then the integral of the vector field V along γ is defined∫

γ
V =

∫ 1

0
V (γ(t)) · γ′(t) dt

Because of the independence of
∫

on γ’s parametrization, choose ‖γ‖ = 1. Then V (γ(t)) ·
γ′(t) is the projection of V onto γ′, or the amount of component of V in the direction of
movement in γ. Therefore,

∫
γ V is the total amount of the vector field that points along

γ, assuming increasing t.

Theorem 7.9. (Differentiable Homotopy) Let U ⊂ Rn be an open set and γ0 and γ1

are differentiable paths in U with common endpoints. Let V be a vector field on U with
∇× V = 0. If there exists a differentiable homotopy from γ0 to γ1, then∫

γ0

V =

∫
γ1

V
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Proof: We prove this only in the case where H is injective. The general case follows
similarly but with far more calculation. Let γ0− γ1 be the path consisting of traversing γ0

and then γ1 in the negative direction. Then∫
γ0

V −
∫
γ1

V = γγ0−γ1V

In this case, γ0 − γ1 forms a loop based at γ0(0). Moreover, this path bounds the region
D = Im(H). Using Green’s Theorem, we obtain∫

γ0−γ1
V =

∫
D
∇× V

But then we cheaply obtain∫
γ0

V −
∫
γ1

V =

∫
D
∇× V =

∫
D

0 = 0

We obtain then the following trivial corollary.

Corollary 7.3. If n 6= m then the loops γn and γm are defined as in Theorem 7.9 are not
homotopic in R2 − {0} and γ0 is the only one that is homotopic to the constant map.

Then we can define a very useful topological property of a curve in relation to the space
in which it sits.

Definition 7.20. (Winding Number) Given a point P = (a, b) ∈ R2, define a vector field
Vθ,P by

Vθ,P (x, y) = Vθ(x− a, y − b) =

(
−(y − b)

(x− a)2 + (y − b)2
,

(x− a)

(x− a)2 + (y − b)2

)
Given a differentiable loop γ : I → R2 − P , then the winding number around P is

W (γ, P ) =
1

2π

∮
γ
Vθ,P

The winding number is simply the amount of times a curve completes a circle around a
point. The sign of the winding number tells which direction the curve has rotated around
the point, positive being counterclockwise. Which then allows us to make the following
statement

Theorem 7.10. Two differentiable paths in R2 − {0} are differentiably homotopic if and
only if they have the same winding number.

In fact, this concept is crucial in the method developed by William Thurston in his
method of turning a sphere inside out (something that cannot be done with a circle,
specifically, because doing so would result in a change in winding number).



177

7.6. Condensed Matter Physics and Order Fields. We finally have all the necessary
tools and vocabulary to tackle the issue of topology in condensed matter physics. The key
idea here will be symmetry. However, the notion of symmetry as we will be utilizing it
is not the common perception of symmetry. For example, does the cube have “a lot” of
symmetry. Many people would say, “yes”. After all, there are 24 possible rigid motions of
the cube alone, not including reflection symmetries.

Figure 7. A collection of random points.

What are the symmetries of the collection of points in Figure 7? Are there any? A
symmetry is essentially an action on an object which makes the object “look” like it did
before. Notice for the points in Figure 7, any possible rotation or reflection will return the
points to a state which resembles their state in Figure 7. However, there are objects one
tends to think of as being very “symmetrical” that are not so random. Take the sphere, any
possible 3-dimensional rotation of the sphere returns the sphere to a state which resembles
the previous state, as does any reflection. In essence, the objects one tends to think of as
being very “symmetrical” actually have very few possible symmetries. For example,

(a) A ice molecular arrangement. (b) A collection of water molecules.

Figure 8. Notice the difference in the symmetries of water and its solid
form - ice.

Notice in Figure 8, ice only has rotation symmetries of 2π
3 and 4π

3 radians (or any

multiple of pi3 radians for a symmetry with some shift). Therefore, the ice breaks rotational
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invariance as it can only be shifted by multiples of π
3 radians. Moreover, the lattice can

only be shifted by certain amounts, that is multiplies of the lattice unit. So ice breaks
translational invariance. However, the water will appear the “same” under all possible
symmetries.10

As evident from our examples and discussion thus far, our viewpoint will not be to focus
on individual particles but rather focus on how large collections of particles come together
to form a global behavior for the object. A perfect example of this is iron. Metals, such
as iron, are full of free elections, that is electrons which are free to “move about” (that is
exchange with other electrons’ nuclei which they are orbiting). These movements allow the
material to be a good conductor as well as allow the substance to become magnetic. The
electrons moving about in the iron create a local direction of magnetization. If all these
directions are aligned, then the iron will act as a magnet. However, if the local directions
of magnetization vary largely over the iron, it will not act as a magnet. Though no single
electron determines this, large groups of electrons and the directions of magnetization
attached to them come together to determine the properties of the iron. Moreover, the
iron itself does not act exactly as a solid. Its electrons move as those of a liquids but its
nuclei are rigidly fixed in place as those of a crystal. To describe these global behaviors
that are induced by smaller local behaviors (or orders), we look at the symmetries of the
object in question.

Definition 7.21. (Order Field) An order field is a map from an open set X ⊆ Rn minus
a singular set Z to a manifold R.

In many cases, R is a topological group of symmetries that is quotiented by a finite group
of symmetries of the molecules involved. Then the order can be thought of as determining
the direction the molecules are facing.

Example 7.13. If we imagine the molecules being examined as small cubes in R3 and
assume that the cubes will prefer to orient themselves in the same direction, then R is
SO(3)/S4, where SO(3) are all possible rotations in R3 and S4 is the symmetries of the
cube (obviously this is not exactly so but the rigid symmetries of the cube are isomorphic
to S4, as one can show).

However, it is important when working with R to make ones assumptions carefully as R
could easily experience odd forces - such as quantum effects - that alter the “traditional”
order field in ways one would not expect. The safest thing is to always only assume that
R is a manifold.

Definition 7.22. (Order Parameter Space) Let R denote a manifold that we refer to as
the order parameter space. Let X be an open subset of R and let Z be a subset of X. An
order field (or the order parameter field) on X with singular set Z is a map

Φ : X − Z → R

The set Z is called the singular set of Φ and the points in Z are called singular points,
singularities, or defects of Φ.
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Definition 7.23. (Index) Let z be a point in Z and let γ be a loop in X whose winding
number around z is 1 and whose winding number around any other point of Z is zero.
Then the index of z in the order field Φ is

indexzΦ = [Φ ◦ γ] ∈ π1(R, z)

Figure 9. A collection of particles with their direction of local magnetiza-
tion M(x) on the left. On the right, we see the order parameter space for
this collection local magnetizations.

Example 7.14. Examine Figure 9. On the left, at each point x = (x, y, z), we have a
direction for the local magnetization, M(x). The length of M is primarily fixed by the
material in question. However, notice the direction of magnetization is undetermined. In
becoming a magnet, the material has broken symmetry directions (as then only certain
rotations suffice to return the material to a similar previous state). The order parameter
M labels the various broken symmetry directions chosen by the materials. Specifically,
take M to be the order parameter for a magnet. At a given temperature, the amount of
magnetization |M | = M0 will remain essentially constant. However, the energy is often

independent of the direction M̂ = M
M0

of magnetization. Throughout the material, the
direction of magnetization changes essentially smoothly. We can think of the order param-
eter field as an arrow at each point in space giving a direction for the local magnetization.
Moreover, we can think of it as a function taking points in the space x to the points on
the sphere |M | = M0. The sphere S2 is the order parameter space for the magnet (though
the dimension we place S2 in does not matter).10
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Figure 10. Here we represent the order parameter space for a nematic
liquid crystal.

Example 7.15. Consider the space in Figure 10. A nematic liquid crystal (like those
found in LCD displays in digital watches) is made up of long thing molecules that often
align with each other. The molecules do not care which direction is regarded as up, their
order parameter isn’t exactly the vector n along the axis of molecules. Instead, it is a
unit vector up to the equivalence n ≡ −n. The order parameter is then a half-sphere with
the antipodal points equated. Then a loop over the entirety of the half-sphere is a closed
loop and its intersections with the equator must correspond to the same orientations of the
nematic molecules in the space.

Often, the material will have the lowest energy when the direction of magnetization
is uniform. However, this does not often occur in nature - for example most iron pieces
are not magnetic. This is because the material does not break symmetry uniformly. The
individual parts of the material have a magnetization direction, but since they are not
globally aligned, the material is not magnetic.

We have already stated that we would be interested in the symmetries of an object. So
we will shift our focus to the symmetry groups of a molecule.

Definition 7.24. (Symmetry Group) Let G be a subgroup of SO(2), called the symmetry
group of a molecule. Then G consists of all rotations which are isometries of the molecule.
G must have the form

G = Gn = {0, 1

n
,

2

n
, · · · , n− 1

n
}

for some n ∈ Z+, where m
n represents a rotation by 2πm

n - the only subgroups of SO(2).

Definition 7.25. (n-Symmetry Field) Let X be an open subset of R and Z be a finite set
of points in X. A n-symmetry field on X on X with a singular set Z is a map

Φ : X − Z → SO(2)/Gn

While every symmetry field are an order field, not every order field is a symmetry field.
Furthermore, the order at a point x ∈ X −Z is the rotation from some standard molecule
to the molecule located at the point x. The order field defines, for each point x ∈ X − Z,
some regular n-gon. Or in general,

SO(2)/Gn = [0,
1

n
] with (0 ∼ 1

n
)
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Then the index of z in the order field Φ is given as in definition of index above. Moreover,
the index at a point z can be identified with a rational number m

n , with m,n ∈ Z and
n 6= 0. Take a covering map R→ SO(2)→ SO(2)/Gn, given by the quotient of R with the
subgroup 1

nZ. Let Φ ◦ γ : [0, 1]→ R denote the lift of Φ ◦ γ : [0, 1]→ SO(2)/Gn beginning

at 0 ∈ R. Then we have m
n = Φ ◦ γ(1). Then the index of a singularity in an order field is

the amount that the molecules rotates traveling around the singularity.

Example 7.16. A X-Y ferromagnet is a thin film of material that has a lattice structure
with some spin at each point in the lattice. When the material is in the ground state, the
spins are confined to the plane. The spin acts as a direction vector giving a local direction
of magnetization. The manifold R is then a circle

R = SO(2) with π1(SO(2)) = Z
Then the index of any defect is some integer n ∈ Z.

Example 7.17. The order parameter of superfluid helium-4 is defined by a complex num-
ber (the wave function) with a fixed magnitude. Then the manifold R is given by

R = SO(2) with π1(SO(2)) = Z
which is similar to planar spins. Here, the magnitude is determined by several factors:
temperature and pressure. However, these disappear at any temperature which is at least
at the point where the phase changes from a superfluid to a normal fluid.

Example 7.18. A uniaxial nematic phase is a liquid crystalline phase of matter where
the molecules appear like very narrow ellipses, whose symmetries are obviously like line
segments. In a thin film, molecules will have their center of mass in some plane and will tilt
at an angle of φ ∈ [0, π2 ] with the normal vector defining the plane. Suppose that φ = π

2 ,
then the order is a 2-symmetry field with

R = SO(2)/G2 with π1(SO(2)/G2) =
1

2
Z = {· · · ,−1,

−1

2
, 0,

1

2
, 1, · · · }

The index of any defect is n
2 for some n ∈ Z. Now if φ ∈ (0, π2 ), then the ends of the

molecule are then indistinguishable by the direction, either above or below, in which they
point from the plane. The order then looks like a direction field. The order parameter
space is then

R = SO(2) with π1(SO(2)) = Z
and the index of defect is also an integer. Finally, if φ = 0, it must be the case that
R = SO(2)/SO(2) = 0. Meaning, there are no stable defects.

Example 7.19. Suppose we have a 2-dimensional crystal, whose molecules lie in an integer
lattice, then the crystal has an order field. The order of each molecule is measured as the
vector in R2 from the position of the molecule to some position in an ideal lattice. Moreover,
the order parameter is then periodic in both the x and y directions with period 1(because
it is measured from the location of the molecule to any location in the lattice). Then it is
the case that R is given by

R = T2 with π1(T2) = Z× Z
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The index of a defect is then a pair of integers (m,n) ∈ Z× Z.

Now that we have sufficiently covered examples which are planar, we will now consider
3-dimensional pieces of materials whose order varies continuously with respect to position.
Our definition of the order parameter need not change. However, for our purposes, we
assume that Z is a finite collection of manifolds with dimension 0, 1, or 2 and unless stated
R = SO(3)/G for some subgroup G of SO(3). But this need not always be the case for any
given material. The defects now can be any point, curve, or surface and then their index
is far more complicated than in the 2-dimensional case. So in the case that the defects are
curves, that is with 1-dimensional components of Z called singular curves, Suppose that l
is a singular curve for an order parameter Φ, the index of l in an order field Φ is

IndexlΦ = [Φ ◦ γ] ∈ π1(SO(3)/H)

where γ is any loop that goes only once around l, i.e. there is a homeomorphism from some
open ball B ⊂ X to a ball in R3 with radius 2 centered at the origin. Then take l ∩ B to
the z-axis and the image of γ to the circle with radius 1 in the x, y-plane. The situation for
a 0-dimensional singularity is more complicated and requires the second homotopy group,
using 2-spheres in place of our previous circles.

Definition 7.26. (Second Homotopy Group) Let X be a topological space and b be a
point in X. Let f be a map from the square I2T × I to X such that f(x, y) = b if (x, y) is
in the boundary of I2. We denote the equivalence class of all such maps that are homotopic
to f , via a homotopy that always sends points in the boundary of T 2 to b, by [f ]. The
group of all such classes, where the product operation is defined similar to that for loops,
is denoted π2(X, b) and called the second homotopy group of X based at b.

Since the sphere is of great importance in our analysis, it is important we know about
their homotopy groups.

Theorem 7.11. (n-Sphere Homotopy Groups)

1. πn(S1) = 0 for n > 1.
2. πn(Sm) = 0 for n < m.
3. πn(Sn) = Z.

Moreover, the homotopy groups πn(Sm) are all nontrivial for m > n and often difficult
to compute. Also, the reader should note that if X is a contractible space then πn(X, b) is
trivial for all n. So in general, we can define the index of an order field Φ : X − Z → R at
some singularity z ∈ X by taking a sphere f surrounding z only once but not surrounding
any other point of Z. Then we have

IndexzΦ = [Φ ◦ f ] ∈ πn(R)

A singularity z that has a nonzero index is called a hedgehog because these defects look
like hedgehogs under a microscope. Now as with the two dimensional case, a symmetry
field on X with a singular set Z is a map

Φ : X − Z → SO(3)/G
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Of course, then the index of a singular curve l in the order field Φ is given by

IndexlΦ = [Φ ◦ γ] ∈ π1(SO(3)/G)

where γ is any loop which goes around l only once. In other words, the index of l is
the continuous 1-parameter family of possible rotations that the molecules undergo as you
travel around the curve l.

Example 7.20. Take the uniaxial nematic as given in Example 7.18 before but in 3-
dimensions. The order is determined by the direction of n. ThenR = SO(3)/(SO(2)/Z2) =
S2/Z2 = RP2. Of course,

R = RP2 π1(RP2) = Z2 π2(RP2) = Z
But then of course uniaxial nematics can have singular curves and hedgehogs.

Example 7.21. A biaxial nematic has two axes with the symmetry of a pair of elongated
ellipses making an “x”. The symmetries are rotations by π about any of the axes. This is
the symmetry of a prism whose cross sections are line segments. The symmetry group is
then D2 with

R = SO(3)/D2 π1(SO(3)/D2) = {e,Rx, Ry, Rz} π2(RP2) = 0

Where Ri is a reflection across the i-axis. The fundamental group here actually tells us
about the space. Specifically, the nonabelian property of π1 tells us the way the defects
tangle and combine. Moreover, notice that biaxial nematics can have singular curves but
not hedgehogs.

Example 7.22. A Heisenberg isotropic ferromagnet is given by the direction of the spin
of the substance. It is then a direction field. Then

R = S2 π1(S2) = 0 π2(S2) = Z

Example 7.23. Superfluid helium-3 in a dipole locked A-phase has the symmetry of a
pair of orthogonal vectors n and e ∈ S3. The only symmetry is the identity; therefore,

R = SO(3) π1(SO(3)) = Z× Z π2(SO(3)) = 0

Then the substance can have singular curves but not hedgehogs.

Example 7.24. Consider superfluid helium-3 again but in the dipole free A-phase. The
symmetries are determined by a pair of vectors that are free to rotate, n ∈ S2 and e ∈ RP3.
The order is then determined by the function O(x) = n(x)e(x), where x is a point in the
medium. Then

R = (S2 × RP3)/( (x, y) = (−x,−y) )

This yields π1() = Z4 and π2(R) = Z. Then superfluid helium-3 in this state can have
singular curves as well as hedgehogs.
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Conclusion

It was our goal to see how the various pieces of Mathematics meet and interplay. Specif-
ically, we examined the property of the symmetric group and its uses in the fields of
Mathematics. Without doubt the theories developed are not trivial and are of great length
and deep ideas. However, without great work one cannot expect to answer the great ques-
tions. Moreover, though the ideas may be vastly different and as a theoretical whole be
none trivial, each individual step is simple and the idea quite trite. Indeed, we see how
the roles of the symmetric group thread Galois Theory, Representation Theory, Lie Alge-
bra Representations, Combinatorics, and Topology together. In this way, we see how one
takes the big ideas and breaks them down into such simple concepts as permutations. All
of Mathematics works in this way, taking the big ideas, breaking them down, and then
generalizing them. We hope in this paper the reader has learned a new appreciation for
this process.
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8. Appendix

8.1. Fundamental Theorem of Algebra. Here we give two different proofs, an alge-
braic argument and a topological one, that says every polynomial f(x) ∈ C of degree n
must have n roots in C.

Theorem 8.1. (Fundamental Theorem of Algebra - Proof 1)4 Every polynomial f(x) ∈
C[x] of degree n has precisely n roots in C (counted with multiplicity). Equivalently, C is
algebraically closed.

Proof: It suffices to prove that every polynomial f(x) ∈ C[x] has a root in C. Let
τ denote the automorphism complex conjugation. If f(x) has no root in C then neither
does the conjugate polynomial f(x) = τf(x) (as conjugate roots come in pairs in C)
obtained by applying τ to the coefficients of f(x) (since its roots are the conjugates of the
roots of f(x)). The product f(x)f(x) has coefficients which are invariant under complex
conjugation, hence has real coefficients. It suffices then to prove that a polynomial with
real coefficients has a root in C.

Supoose that f(x) is a polynomial of degree n with real coefficients and write n = 2km,
where m is odd. We prove that f(x) has a root in C by induction on k. For k = 0,
f(x) has odd degree and polynomials of odd degree necessarily have a root in R so we
are done. Now suppose that k ≥ 1. Let α1., α2, · · · , αn be the roots of f(x) and set
K = R(α1, α2, · · · , αn, i). Then K is a Galois extension of R containing C and the roots
of f(x). For any t ∈ R, consider the polynomial

Lt =
∏

1≤i<j≤n
[x− (αi + αj + tαiαj)]

Any automorphism of K/R permutes the terms in this product so the coefficients of Lt
are invariant under all the elements of G(K/R). Hence, Lt is a polynomial with real
coefficients. The degree of Lt is

n(n− 1)

2
= 2k−1m(2km− 1) = 2k−1m′

where m′ is odd (since k ≥ 1). The power of 2 in this degree is therefore less than k, so by
induction the polynomial Lt has a root in C. Hence, for each t ∈ R, one of the elements
αi + αj + tαiαj for some i, j (1 ≤ i < j ≤ n) is an element of C. Since there are infinitely
many choices for t and only finitely many values of i and j, we see that for some i and j
(say, i = 1 and j = 2) there are distinct real numbers s and t with

α1 + α2 + sα1α2 ∈ C α1 + α2 + tα1α2 ∈ C
Since s 6= t, it follows that a = α1 + α2 ∈ C and b = α1α2 ∈ C. But then α1 and α2 are
the roots of the quadratic equation ax2 − ax+ b with coefficients in C, hence are elements
of C because quadratic polynomials with coefficients in C have roots in C (i.e., there are
no quadratic extension of C). �
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Theorem 8.2. (Fundamental Theorem of Algebra - Proof 2)9 A polynomial equation

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

of degree n > 0 with real or complex coefficients has at least one (real or complex) root.

Proof: We will show this in four steps:

1. We show that an induced homomorphism f∗ of fundamental groups is injective.
2. We show that if g : S1 → R2 − 0 is the map g(z) = zn, then g is not nulhomotopic.
3. We prove a special case.
4. We then show the general case.

1. Consider the map f : S1 → S1 given by f(z) = zn, where z ∈ C. We show the induced
homomorphism f∗ of fundamental groups is injective. Let p0 : I → S1 be a standard
loop in S1.

p0(s) = e2πis = (cos 2πs, sin 2πs)

The image of I under f∗ is the lop

f(p0(s)) = (e2πs)n = (cos 2πns, sin 2πns)

This loop lifts to the path s → ns in the covering space R. Therefore, the loop f ◦ p0

corresponds to the integer n under the standard isomorphism of π1(S1, b0) with the
integers, whereas p0 corresponds to the number 1. Thus, f∗ is “multiplication by n” in
the fundamental group of S1, so in particular, f∗ is injective.

2. Now we show that if g : S1 → R2 − 0 is the map g(z) = zn, then g is not nulhomotopic.
The map g equals the map f of step 1 followed by the inclusion map j : S1 → R2 − 0.
Now f∗ is injective and j∗ is injective because S1 is a retract of R2 − 0. Therefore,
g∗ = j∗ ◦ f∗ is injective. Therefore, g cannot be nulhomotopic.

3. Now we prove a special case based on a condition on the coefficients. Given a polynomial
equation

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

we shall assume that

|an−1|+ · · ·+ |a1|+ |a0| < 1

and show that the equation must have a root lying the the unit ball B2.
Suppose there does not exist such a root. Then define a map k : B2 → R2 − 0 by the

equation

k(z) = zn + an−1z
n−1 + · · ·+ a1z + a0

Let h be the restriction of k to S1. Because h extends to a map of the unit ball into
R2 − 0 by the equation

F (z, t) = zn + t(an−1z
n−1 + · · ·+ a0)
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F (z, t) is never 0 because

|F (z, t)| ≥|zn| − |t(an−1z
n−1 + · · ·+ a0|

≥1− t(|an−1z
n−1|+ · · ·+ |a0|)

=1− t(|an−1 + · · ·+ |a0|) > 0

4. Now we can show the general case. Given a polynomial equation

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

let us choose a real number c > 0 and substitute x = cy. Then we obtain the equation

(cy)n + an−1(cy)n−1 + · · ·+ a1cy + a0 = 0

Or equivalently,

yn +
an−1

c
yn−1 + · · ·+ a1

cn−1
y +

a0

cn
= 0

If this equation has the root y = y0, then the original equation has the root x0 = cy0.
We need merely choose c large enough that∣∣∣∣an−1

c

∣∣∣∣+

∣∣∣∣an−2

c2

∣∣∣∣+ · · ·+
∣∣∣∣ a1

cn−1

∣∣∣∣+

∣∣∣∣a0

cn

∣∣∣∣ < 1

But then the theorem reduces down to the case considered in Step 3. �

8.2. Solving the Linear, Quadratic, Cubic, and Quartic Polynomials4. Here we
show how to solve all possible polynomials of degree n for 0 ≤ n ≤ 5.

1. n = 0: This is the constant polynomial and is only zero if it is the zero function, in
which case it is zero infinitely many times. Thus, we discard it as a possibility as a
polynomial of degree n should have n roots.

2. n = 1: This is the linear equation

a1x+ a0 = 0

for a0, a1 ∈ C with a1 6= 0. This polynomial has the trivial solution

x = −a0

a1

Here, the Galois group is obviously trivial.
3. n = 2: We solve this by a method called completing the square (a method known even

to the Babylonians). Start with

ax2 + bx+ c = 0

with a, b, c ∈ C and a 6= 0. Division by a yields,

x2 +
b

a
x+

c

a
= 0

We proceed as follows:
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x2 +
b

a
x+

c

a
=0

x2 +
b

a
x+

c

a
+

(
b

2a

)2

−
(
b

2a

)2

=0

x2 +
b

a
x+

(
b

2a

)2

=

(
b

2a

)2

− c

a(
x+

b

2a

)2

=
b2

4a2
− c

a(
x+

b

2a

)2

=
b2 − 4ac

4a2

x+
b

2a
=

√
b2 − 4ac

4a2

x+
b

2a
=
±
√
b2 − 4ac

2a

x =
−b±

√
b2 − 4ac

2a

We can also calculate the Galois group of the quadratic. If we are given a polynomial
x2 + ax + b with roots α, β, the discriminant D for this polynomial is (α − β)2 can be
written as a polynomial in the elementary symmetric functions of the roots.

D = s2
1 − 4s2 = a2 − 4b

The polynomial is separable if and only if a2 − 4b 6= 0. The Galois group is a subgroup
of S2, the cyclic group of order 2 and is trivial (as A2 is trivial) if and only if a2 − 4b
is a rational square, which completely determines the possible Galois groups. If the
polynomial is reducible (i.e. E is a square in F ), then the Galois group is trivial (the
splitting field is just F ), while if the polynomial is irreducible then the Galois group is

isomorphic to Z/2Z since the splitting field is the quadratic extension F (
√
D).

4. Suppose the cubic polynomial is

f(x) = x3 + ax2 + bx+ c

If we make the substitution x = y − a
3 , the polynomial becomes

g(y) = y3 + py + q

where

p =
1

3
(3b− a2) q =

1

27
(2a3 − 9ab+ 27c)

The splitting fields for these two polynomials are the same since their roots differ by
the constant a

3 ∈ F and since the formula for the discriminant involves the difference of
roots, we see that these polynomials have the same discriminant.
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Let the roots of the polynomial be α, β, and γ. We compute the discriminant of this
polynomial in terms of p and q. Note that

g(y) = (y − α)(y − β)(y − γ)

so that if we differentiate, we have

Dyg(y) = (y − α)(y − β) + (y − α)(y − γ) + (y − β)(y − γ)

Then

Dyg(α) =(α− β)(α− γ)

Dyg(β) =(β − α)(β − γ)

Dyg(γ) =(γ − α)(γ − β)

Taking the product we see that

D = [(α− β)(α− γ)(β − γ)]2 = −Dyg(α)Dyg(β)Dyg(γ)

Since Dyg(y) = 3y2 + p, we have

−D =(3α2 + p)(3β2 + p)(3γ2 + p)

=27α2β2γ2 + 9p(α2β2 + α2γ2 + β2γ2) + 3p2(α2 + β2 + γ2) + p3

The corresponding expression in the elementary symmetric functions of the roots are
s2

1 − 4s2 and s2
1 − 2s2. Note that s1 = 0, s2 = p, s3 = −q. We obtain

−D = 27(−q)2 + 9p(p2) + 3p2(−2p) + p3

so that
D = −4q3 − 27q2

The same as the discriminant of our original cubic. Expressing D in terms of a, b, c we
obtain

D = a2b2 − 4b3 − 4a3c− 27c2 + 18abc

Now we compute its Galois group. We need consider two cases. Case one is where
the cubic f(x) is reducible. Then it splits either into three linear factors or into a linear
factor and an irreducible quadratic. In the first case the Galois group is trivial and in
the second the Galois group is of order 2 (from above). Case 2 is when the polynomial
f(x) is irreducible. Then a root of f(x) generates an extension of degree 3 over F , so
the degree of the splitting field over F is divisible by 3. Since the Galois group is a
subgroup of S3, there are only two possibilities, namely A3 or S3. The Galois group is
A3 if and only if the discriminate D is a square.

Explicitly, if D is the square of an element of F , then the splitting field of the irre-
ducible cubic f(x) is obtained by adjoining any single root of f(x) to F . The resulting
field is Galois over F of degree 3 with a cyclic group of order 3 as a Galois group. If D
is not the square of an element of F then the splitting field of f(x) is of degree 6 over F ,

hence is the field F (θ,
√
D) for any one of the roots θ of f(x). This extension is Galois

over F with Galois group S3 (generators given by σ, which takes θ to one of the other

roots of f(x) and fixed
√
D and τ , which takes

√
D to −

√
D and fixes θ).
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In either case, the splitting field for the irreducible cubic f(x) is obtained by adjoining√
D and root of f(x) to F .

5. n = 4: Let the quartic polynomial be

f(x) = x4 + ax3 + bx2 + cx+ d

which under the substitution x = y − a
4 becomes the quartic

g(y) = y4 + py2 + qy + r

with

p =
1

8
(−3a2 + 8b)

q =
1

8
(a3 − 4ab+ 8c)

r =
1

256
(−3a4 + 16a2b− 64ac+ 256d)

Let the roots of g(y) be α1, α2, α3, and α4 and let G denote the Galois group for the
splitting field of g(y) (or of f(x)).

Suppose first that g(y) is reducible. If g(y) splits into a linear and a cubic, then G is
the Galois group of the cubic, determined able. Suppose then that g(y) splits into two
irreducible quadratics. Then the splitting field is the extension F (

√
D1,
√
D2), where

D1 and D2 are the discriminates of the two quadratics. If D1 and D2 do not differ by a
square factor then this extension is a biquadratic extension and G is isomorphic to the
Klein 4-subgroup of S4. If D1 is a square times D2 then this extension is a quadratic
extension and G is isomorphic to Z/2Z.

We are reduced to the situation where g(y) is irreducible. In this case recall that
the Galois group is transitive on the roots, i.e. it is possible to get from a given root
to any other root by applying some automorphism of the Galois group. Examining the
possibilities we see that the only transitive subgroups of S4, hence the only possibilities
are S4,A4, D8 and its conjugates, V = {1, (1 2)(3 4), (1 3)(2 4), (1 4), (2 3)} , or C =
{1, (1 2 3 4), (1 3)(2 4), (1 4 3 2)} and its conjugates.

Consider the elements

θ1 =(α1 + α2)(α3 + α4)

θ2 =(α1 + α3)(α2 + α4)

θ3 =(α1 + α4)(α2 + α3)

in the splitting field for g(y). These elements are permuted amongst themselves by the
permutations in S4. The stabilizer of θ1 in S4 is the dihedral group D8. The stabilizers
in S4 of θ2 and θ3 are the conjugate dihedral subgroups of order 8. The subgroup of S4

which stabilizes all three of these elements is the intersection of these subgroups, namely
the Klein 4-group V .

Since S4 merely permutes θ1, θ2, θ3, it follows that the elementary symmetric functions
in the θ’s are fixed by all the elements of S4, hence are in F . An elementary computation
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in symmetric functions shows that these elementary symmetric functions are 2p, p2−4r,
and −q2, which shows that θ1, θ2, θ3 are the roots of

h(x) = x3 − 2px2 + (p2 − 4r)x+ q2

called the resolvent cubic for the quartic g(y). Since

θ1 − θ2 =α1α3 + α2α4 − α1α2 − α3α4

=− (α1 − α4)(α2 − α3)

and similarly

θ1 − θ3 =− (α1 − α3)(α2 − α4)

θ2 − α3 =− (α1 − α2)(α3 − α4)

we see that the discriminant of the resolvent cubic is the same as the discriminant of
the quartic g(y), hence also the discriminant of the quartic f(x). Using our formulation
for the discriminant of the cubic, we can easily compute the discrimination in terms of
p, q, r:

D = 16p4r − 4p3q2 − 128p2r2 + 144pq2r − 27q4 + 256r3

from which one can give the formula for D in terms of a, b, c, d:

D =− 128b2d2 − 4a3c3 + 16b4d− 4b3c2 − 27a4d2 + 18abc3

144a2bd2 − 192acd2 + a2b2c2 − 4a2b3d− 6a2c2d

144c2d+ 256d3 − 27c4 − 80ab2cd+ 18a3bcd

The splitting field for the resolvent cubic is a subfield of the splitting field of the quartic,
so the Galois group of the resolvent cubic is a quotient of G. Hence, knowing the action
of the Galois group on the roots of the resolvent cubic h(x) gives information about the
Galois group of g(y) as below.

First, suppose that the resolvent cubic is irreducible. If D is not a square, then G
is not contained in A4 and the Galois group of the resolvent cubic in S3, which implies
that the degree of the splitting field for g(y) is divisible by 6. The only possibility then
is G = S4. If the resolvent cubic is irreducible and D is a square, then G is a subgroup
of A4 and 3 divides the order of G (the Galois group of the resolvent cubic is A3). The
only possibility is G = A4.

We are left in the case where the resolvent cubic is reducible. The first possibility is
that h(x) has 3 roots in F . Sine each of the elements θ1, θ2, θ3 is in F , every element
of G fixes all three of these elements, which means G ⊆ V . The only possibility is that
G = V . Now if h(x) splits into a linear and a quadratic, then precisely one of θ1, θ2, θ3

is in F , say θ1. The G stabilizes θ1 but not θ2 and θ3, so we have G ⊆ D8 and G * V .
This leaves two possibilities: G+D8 or G = C. One way to distinguish between these
is to observe that F (

√
D) is the fixed field of the elements G in A4. For the two cases

being considered, we have D8 ∩ A4 = V , C ∩ A4 = {1, (1 3)(2 4)}. The first group is
transitive on the roots of g(y), the second is not. It follows that the first case occurs if
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and only if g(y) is irreducible over F (
√
D). We may therefore determine G completely

by factoring g(y) in F (
√
D) and so completely determine the Galois group in all cases.
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8.3. Tensor Products. Here we will discuss briefly what the tensor product is and how it
relates to extension fields. We assume the reader is familiar with linear maps between vector
spaces. Suppose that we want to extend this idea into a broader “new idea”. Meaning
that if V is a vector space with v0, w0 ∈ V , we want to find a vector space Q such that all
linear transformations ϕ : V → Q given by v 7→ v, we have v0 = w0 and that this space
is somehow the “best one”. What we mean by “best one” is that it has all the universal
mapping properties one would ever want in that create create the following commutative
diagram

V Q

X

ϕ

h
H

where h is a linear map to another vector space X and H is a unique function such that
H ◦ ϕ = h, i.e that H(v) = h(v) for all v ∈ V . So in a sense, the tensor product somehow
captures all the information about linear maps from a vector space. However, here we
construct the tensor product in a more general setting over a commutative ring.

Accordingly, let R be a commutative ring with unity 1 6= 0. Now let M,N,P be R-
modules. The question we wish to solve is following:

Create a mapping t from M ×N such that given any bilinear function g : M ×N → P ,
there is a unique G such that the following diagram commutes.

M ×N T = M ⊗R N

P

t

g
G

That is, G ◦ t = g and t is the “best” linear map we discussed above. If we wanted
to be truly rigorous, we say that given a commutative ring with unity 1 6= 0 R, a right
R-module M , a left R-module N , and P any abelian group (though often this will too be
an R-module), then the tensor product over R, M⊗RN is an abelian group with a bilinear
map ⊗ : M×N →M⊗RN that is universal in that for every abelian group P and bilinear
map f : M ×N → P , there is a unique group homomorphism f : M ⊗R N → P such that
the following diagram commutes

M ×N T = M ⊗R N

P

⊗

f
f
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that is f ◦ ⊗ = f . How do we know such a space even exists? Well, we show that it
exists.

Theorem 8.3. The tensor product exists and is unique up to isomorphism.

Proof: Uniqueness is quite trivial to show and we will not bother to demonstrate it here.
To prove existence, let W ⊆ V and

W =span(v0 − w0)

={α(v0 − w0) |α ∈ R}

Let Q = V/W , that is p : V → V/W where p is the projection of V onto W given by
v 7→ v +W . Now p is the “new idea” that we spoke of earlier. We have

v0 =v0 +W

w0 =w0 +W

v0 − w0 ∈W

So now let t : M ×N → T be a bilinear function t(m,n) = m⊗ n such that

1. (m+m′)⊗ n = m⊗ n+m′ ⊗ n
2. (rm)⊗ n = r(m⊗ n)
3. m⊗ (n+ n′) = m⊗ n+m⊗ n′
4. m⊗ (rn) = r(m⊗ n)

where T is the space we shall construct. So consider the free module

R(S) = FS → T

where R(S) is the set of δs, where s ∈ S, S is the set of generators, and the mapping is
onto. Then R(M×N) has the basis

{δs | s ∈ S}
but this is a free module on (m,n)

k∑
i=1

ri(mi, ni) ; ri ∈ R

So consider the onto mapping R(M×N) → T given by (m,n) 7→ m ⊗ n. But we still don’t
have our space T ! But notice in the 4 equations above for t(m,n), if we were to set those to
be 0 then they would all be in the ker of the mapping. So we can let R be the “relations”,
that is to say equations we want to be true. That is, let R be the submodule generated by
our “equations”

1. (m+m′, n)− (m,n)− (m′, n)
2. (m,n+ n′)− (m,n)− (m,n′)
3. (rm, n)− r(m,n)
4. (m, rn)− r(m,n)
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Then we can let T be the space R(M×N)/ker. But then we finally have

T = M ⊗N def
= F (M×N)/R

It only remains to show that we have the desired universal mapping properties.

M ×N F (M×N) T

P

t=p◦i

i

g

p

g̃
G

Where i and p have the universal mapping property, g is bilinear, and G is the unique
function from the theorem statement. We need to show that g(m,n) = g̃(m,n). It is
obvious that g̃ send all our “equations” to 0 if g sends them to 0. But does g send them
to 0? Yes, because it sends things in the ker to 0. So g and g̃ are bilinear and equivalent. �

Let us make a few comments. First, the free R-module we created in the theorem is
extremely large! Say M,N , and R were the ring R, then the free R-module contains R2

copies of R! This size comes from the fact that the the construction was equivalent to⊕
(m,n)∈M×N

Rδ(m,n)

so the sum is running over all possible pairs of vectors, not just those in the basis of M
and N . We will not go further into the properties of tensor products. However, we can use
them to construct fields with the roots of polynomials similarly to extension fields. Really
what you do is extend scalars. Consider the polynomial x2 + 1 ∈ R[x]. We need to extend
to C in some way. But then we can use

VC = C⊗R V
where V is a vector space over R. This space has dimension 2dim V over R but dimen-
sion dim V over C. In this vein, we can construct fields with the necessary roots of the
polynomials as scalars.
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8.4. Lie Algebras. Here we will construct many examples of the most commonly seen
Lie algebras, following the method used by Hazewinkel, Gubareni, and Kirichenko7.

1. Any vector space L with Lie bracket given by [u, v] = 0 for all u, v ∈ L is an abelian Lie
algebra. Moreover, all abelian Lie algebras look like this.

2. Suppose A is an associate algebra with operations +, · called addition and multiplication,
respectively. Then let the Lie bracket [·, ·, ] be given by

[x, y] = x · y − y · x

often called the bracket or commutator (less commonly the difference) of x and y for
all x, y ∈ A. If A is not a commutative algebra (if A is commutative then we are in the
case of the first Lie algebra we constructed), then the bracket satisfies:
1. [x, x] = 0
2. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0
for all x, y, z ∈ A. Then A becomes a Lie algebra with respect to the bracket operation
[·, ·]. So any associative algebra A with product x · y (often simply written xy) can be
made into a Lie algebra.

3. Let A = Endk(V ) be the endomorphism algebra of a k-vector space V . Then define the
operation [x, y] by [x, y] = xy − yx for all x, y ∈ A. Then with respect to the operation
[·, ·], A becomes a Lie algebra over the field k. To differentiate the Lie algebra from the
“composition of endomorphisms” of the original algebra, one uses the notation gl(V ) for
the Lie algebra. This is called the general linear Lie algebra. Any subalgebra of gl(V )
is called a linear Lie algebra.

4. Let A = Mn(k) be the set of n × n matrices over a field k. Then define the operation
[X,Y] = XY −YX, where XY denotes the usual matrix product. Then with respect
to [·, ·], A becomes a Lie algebra that is denoted gl(n, k). Now as a vector space, gl(n, k)
has basis of matrix units ei,j for 1 ≤ i and j ≤ n, where ei,j denotes the matrix with a
1 in the i, jth position and 0’s elsewhere. It is a simple exercise to check that

[ei,j , er,s] = δj,rei,s − δi,ser,j

where δ is the standard Kronecker delta function. According to Ado’s Theorem, any
finite dimensional Lie algebra over a field k of characteristic 0 is a linear Lie algebra.
But then it must be isomorphic to some subalgebra of gl(n, k).

5. Let A = {X ∈ Mn(k) | trace X = 0} be the set of all n × n over a field k of trace 0.
Then A is a Lie algebra under the same bracket operation as gl(n, k). This algebra is
denoted sl(n, k) and is called the special linear Lie algebra. Of course, sl(n, k) has basis
consisting of {ei,j | 1 ≤ i, j ≤ n ∧ i 6= j}

⋃
{ei,i − ei+1,i+1 | 1 ≤ i ≤ n− 1}.

6. Let b(, nk) = {X = (xi,j) ∈ Mn(k) |xi,j = 0 when i > j} be the set of all upper
triangular matrices. Then if we let [·, ·] be the same operation as in gl(n, k). Then
b(n, k) is a Lie algebra over the field k.

7. Let n(n, k) = {X = (xi,j) |xi,j = 0 when i ≥ j} be the algebra of all strictly upper
triangular matrices with the Lie bracket given by that in gl(n, k).
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8. Let A = {X ∈ Mn(k) |XT = −X} be the set of all skew symmetric matrices over the
field k. Then A is a Lie algebra with Lie bracket given by that in the matrix commutator.
This algebra is often denoted O(n, k).

9. Let A = {X ∈ M2(R) |
(
x y
0 0

)
with x, y ∈ R} be the subset of real 2 × 2 matrices

with a zero second row. Then A = aft(1) is the affine Lie algebra of the line with basis
given by

X =

(
1 0
0 0

)
, Y =

(
0 1
0 0

)
and Lie bracket given by

[X,Y] = Y

10. Let R4 be the real 4-dimensional Euclidean space with vectors v = (x, z, y, t). Then
considering the Lorentz inner product

〈v, v〉L = x2 + y2 + z2 − t2

If

I3,1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


then we have

〈v, v〉L = vT I3,1v

Then the subset l3,1 of all real 4× 4 matrices M with

MT I3,1 + I3,1M = 0

is a Lie algebra called the Lorentz Lie algebra.
11. Let u, v be real-valued differentiable functions of 2n variables: p = (p1, · · · , pn) and

q = (q1, · · · , qn). These variables could also possibly be dependent on time, t. Then we
define the Poisson bracket by

{p, q} =

n∑
i=1

(
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
Then the space formed by the variables u, v under the Poisson bracket forms a Lie
algebra.

12. Let A be an algebra, not necessarily associative, over a field k. Then a k-derivation of
A is a k-linear mapping D : A→ A such that

D(ab) = D(a)b+ aD(b)

for all a, b ∈ A. The k-module of derivations carries a Lie algebra structure given by the
commutator difference composition

[D1, D2] = D1D2 −D2D1
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with (D1D2)(a) = D1(D2(a)). The derivation is the algebraic counterpart to vector
fields in topology, analysis, and differential geometry.

13. Let V be a vector space over k with basis Ln, c for n ∈ Z. Then take

[Ln, c] = 0 for all n

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
c

This action defines a Lie algebra called the Virasoro algebra.
14. If we quotient the center spanned by c in the Virasoro algebra again yields a quotient

Lie algebra with basis Ln, n ∈ Z and bracket

[Lm, Ln] = (m− n)Lm+n

We can view this as a polynomial vector field on the circle

Lm = −zm+1 d

dz
for n ∈ Z

This Lie algebra is known as the Witt algebra, though they were first defined by Cartan.
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