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Motivation

Some ‘geometric spaces’ you have seen before:
1 Topological spaces
2 Manifolds, i.e. topological ‘model spaces’

3 Ringed Spaces: (X,OX)

4 Schemes
5 Formal Schemes
6 (Complex–Analytic/Rigid–Analytic Spaces)
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Definition (Huber Ring)

A Huber ring is a topological ring A containing an open
subring A0 carrying the linear topology induced by a finitely
generated ideal I ⊆ A0.

Remark
The data (A0, I) are not included along with A.
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Definition (Bounded)

We say that S ⊆ A is bounded if for all open U 3 0, there is an
open neighborhood V 3 0 such that VS ⊂ U.

Definition (Power–Bounded)

An element f ∈ A is power–bounded if {f n} ⊂ A is bounded.
We denote the set of power–bounded elements as A◦ ⊂ A.

Definition (Pseudo–Uniformizer, $)

A pseudo–uniformizer is a topological nilpotent unit.
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Definition (Tate)

A Huber ring A is called Tate if it contains a topological
nilpotent unit. Such an element is called a pseudo–uniformizer.

Definition (Uniform)

A Huber ring A is uniform if A◦ ⊂ A is bounded.
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A A0 I0 Tate Uniform
A A 0 7 3

K K0 ($) 3 3

K〈T1, · · · ,Tn〉 K0〈T1, · · · ,Tn〉 ($) 3 3

RJT1, · · · ,TnK RJT1, · · · ,TnK (T1, · · · ,Tn) 7 3

Qp[T]/T2 Zp + QpT (T) ? 7
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Definition (Continuous Valuation)

If A is a topological ring, a continuous valuation on A is a map
| · | : A→ Γ ∪ {0} such that | · | is a valuation on A and for all
γ ∈ Γ, {a ∈ A | |a| < γ} is open in A.

Note: ker | · |E A is prime and only depends on its equivalence
class.

Definition (Cont(A))

The set of equivalence classes of continuous valuations on A.

If x ∈ Cont(A), we write f 7→ |f (x)| to denote a continuous
valuation representing x.
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Definition (Integral Elements)

Let A be a Huber ring. A subring A+ ⊂ A is a ring of integral
elements if it is open and integrally closed and A+ ⊂ A◦.

Definition (Huber Pair)

A Huber pair is a pair (A,A+), where A is Huber and A+ ⊂ A is
a ring of integral elements.

Definition (Spa)

Given a Huber pair (A,A+), we let Spa(A,A+) ⊂ Cont(A) be
the subset of continuous valuations x for which |f (x)| ≤ 1 for all
f ∈ A+.
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Definition
Let s1, · · · , sn ∈ A and T1, · · · ,Tn ⊂ A be finite subsets such that
for each i, TiA ⊂ A is open. Define a subset

U
({

Ti

si

})
= U

(
T1

s1
, · · · , Tn

sn

)
= {x ∈ X : |ti(x)| ≤ |si(x)| 6= 0 for all ti ∈ Ti}

Subsets of this form are called rational subsets.
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Theorem

Let U ⊂ Spa(A,A+) be a rational subset. Then there exists a
complete Huber pair (A,A+)→ (OX(U),O+

X (U)) such that the map
Spa(OX(U),O+

X (U))→ Spa(A,A+) factors over U and is universal
for such maps. Moreover, this map is a homeomorphism onto U. In
particular, U is quasicompact.
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Definition (Structure Presheaf)

Define a presheaf OX of topological rings on Spa(A,A+) as
follows: if U ⊂ X is rational, OX(U) is as in the theorem. On a
general open W ⊂ X, define

OX(W) = lim←−
U⊂W rational

OX(U)
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Definition (Adic Space)

An adic space consists of a topological space X, a sheaf of rings
OX, and the data of a continuous valuation on OX,x for each
x ∈ X. We require that X be covered by open subsets of the
form Spa(A,A+), where each (A,A+) is a sheafy Huber pair.
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Definition (Perfectoid Field)

Let K be a nonarchimedean field of residue characteristic p.
Then K is said to be a perfectoid field if. . .
• |K×| is nondiscrete.
• K◦/p→ K◦/p is surjective.

Example

Both the completions of Qp(µp∞) and Qp(p1/p∞) are perfectoid
fields. In fact, the completion of any arithmetically profinite
extension is a perfectoid field.
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Definition (Tilt)

Let K be a perfectoid field with absolute value | · |. Let
K◦ = {|x| ≤ 1} be the ring of integers. Define

K[ = lim←−
x7→xp

K

cn = lim
m→∞

(am+n + bm+n)pm

Remark

Note that the perfectoid field K[ contains a pseudo–uniformizer
$ with |$| = |p| and

K[◦ ∼= lim←−
x7→xp

K◦/p and K[◦/$ ∼= K[/p
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Example

Let K = Qp(p1/p∞)∧. Then K[ contains t = (p, p1/p, · · · ) with
|t| = |p|. Therefore, t is a pseudo–uniformizer of K[ and since K[

is perfectoid, K[ contains Fp((t1/p∞)). In fact, K[ = Fp((t1/p∞)).
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Theorem (Tilting Equivalence)

Let K be a perfectoid field. Then for any finite extension L/K
(necessarily separable), L is a perfectoid field and L[/K[ is a finite
extension of the same degree as L/K. The categories of finite
extensions of K and K[ are equivalent via L 7→ L[. Therefore, there is
an isomorphism Gal(K/K) ∼= Gal(K[

,K[).
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Definition (Untilt)

An untilt K is a pair (K], ι), where K] is a perfectoid field and
ι : K ∼−→ K][ is an isomorphism.
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Definition (Perfectoid Ring)

If A is a Huber ring, then A is a perfectoid ring if. . .
1 A is Tate.
2 A is uniform.
3 $ ∈ A with $p | p and A0/$ → A0/$p is an isomorphism.
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Definition (Perfectoid Space)

A perfectoid space is an adic space which is covered by
affinoids of the form Spa(A,A+), where A is perfectoid.

Example

If K is a perfectoid field and K+ ⊂ K is a ring of integral
elements, then Spa(K,K+) is a perfectoid space.

Example

Let K be a perfectoid field. Let A = K〈T1/p∞〉. Then A is a
perfectoid ring and Spa(A,A◦) is a perfectoid space.
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