Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	0000000

Adic and Perfectoid Spaces 42nd Annual New York State Regional Graduate Mathematics Conference

Caleb McWhorter

April 8, 2017

Caleb McWhorter Adic and Perfectoid Spaces

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
●	0000	00	0000	

Some 'geometric spaces' you have seen before:

• Topological spaces

伺下 イヨト イヨト

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
●	0000	00	0000	

Some 'geometric spaces' you have seen before:

- Topological spaces
- Manifolds, i.e. topological 'model spaces'

-∢ ∃ ▶

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
●	0000	00	0000	

Some 'geometric spaces' you have seen before:

- Topological spaces
- Manifolds, i.e. topological 'model spaces'
- Ringed Spaces: (X, \mathcal{O}_X)

-∢ ∃ ▶

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
●	0000	00	0000	

Some 'geometric spaces' you have seen before:

- Topological spaces
- Manifolds, i.e. topological 'model spaces'
- Solution Ringed Spaces: (X, \mathcal{O}_X)
- Schemes

.

-

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
●	0000	00	0000	

Some 'geometric spaces' you have seen before:

- Topological spaces
- Manifolds, i.e. topological 'model spaces'
- Solution Ringed Spaces: (X, \mathcal{O}_X)
- Schemes
- Formal Schemes

★ ∃ ►

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
●	0000	00	0000	

Some 'geometric spaces' you have seen before:

- Topological spaces
- Manifolds, i.e. topological 'model spaces'
- Solution Ringed Spaces: (X, \mathcal{O}_X)
- Schemes
- Formal Schemes
- (Complex–Analytic/Rigid–Analytic Spaces)

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	●000	00	0000	0000000

Definition (Huber Ring)

A Huber ring is a topological ring *A* containing an open subring A_0 carrying the linear topology induced by a finitely generated ideal $I \subseteq A_0$.

Remark

The data (A_0, I) are *not* included along with *A*.

・ 何 ト ・ ヨ ト ・ ヨ ト

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0●00	00	0000	

Definition (Bounded)

We say that $S \subseteq A$ is bounded if for all open $U \ni 0$, there is an open neighborhood $V \ni 0$ such that $VS \subset U$.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0●00	00	0000	

Definition (Bounded)

We say that $S \subseteq A$ is bounded if for all open $U \ni 0$, there is an open neighborhood $V \ni 0$ such that $VS \subset U$.

Definition (Power-Bounded)

An element $f \in A$ is power–bounded if $\{f^n\} \subset A$ is bounded. We denote the set of power–bounded elements as $A^\circ \subset A$.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0●00	00	0000	

Definition (Bounded)

We say that $S \subseteq A$ is bounded if for all open $U \ni 0$, there is an open neighborhood $V \ni 0$ such that $VS \subset U$.

Definition (Power-Bounded)

An element $f \in A$ is power–bounded if $\{f^n\} \subset A$ is bounded. We denote the set of power–bounded elements as $A^\circ \subset A$.

Definition (Pseudo–Uniformizer, ϖ)

A pseudo-uniformizer is a topological nilpotent unit.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	00●0	00	0000	

Definition (Tate)

A Huber ring *A* is called Tate if it contains a topological nilpotent unit. Such an element is called a pseudo–uniformizer.

Definition (Uniform)

A Huber ring *A* is uniform if $A^{\circ} \subset A$ is bounded.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	000●	00	0000	0000000

A	A_0	I_0	Tate	Uniform
A	Α	0	X	\checkmark
Κ	K^0	(ϖ)	1	1
$K\langle T_1,\cdots,T_n\rangle$	$K^0\langle T_1,\cdots,T_n\rangle$	(ϖ)	1	\checkmark
$R\llbracket T_1, \cdots, T_n\rrbracket$	$R\llbracket T_1,\cdots,T_n\rrbracket$	(T_1,\cdots,T_n)	X	1
$\mathbb{Q}_p[T]/T^2$	$\mathbb{Z}_p + \mathbb{Q}_p T$	(T)	?	X

・ロト ・ 個 ト ・ ヨト ・ ヨト

≡ ∽ へ (~

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	●○	0000	0000000

Definition (Continuous Valuation)

If *A* is a topological ring, a continuous valuation on *A* is a map $|\cdot|: A \to \Gamma \cup \{0\}$ such that $|\cdot|$ is a valuation on *A* and for all $\gamma \in \Gamma$, $\{a \in A \mid |a| < \gamma\}$ is open in *A*.

Note: ker $| \cdot | \leq A$ is prime and only depends on its equivalence class.

Definition (Cont(*A*))

The set of equivalence classes of continuous valuations on A.

If $x \in Cont(A)$, we write $f \mapsto |f(x)|$ to denote a continuous valuation representing *x*.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
		00		

Definition (Integral Elements)

Let *A* be a Huber ring. A subring $A^+ \subset A$ is a *ring of integral elements* if it is open and integrally closed and $A^+ \subset A^\circ$.

Definition (Huber Pair)

A *Huber pair* is a pair (A, A^+) , where A is Huber and $A^+ \subset A$ is a ring of integral elements.

・ロト ・ 理 ト ・ 理 ト ・

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
		00		

Definition (Integral Elements)

Let *A* be a Huber ring. A subring $A^+ \subset A$ is a *ring of integral elements* if it is open and integrally closed and $A^+ \subset A^\circ$.

Definition (Huber Pair)

A *Huber pair* is a pair (A, A^+) , where *A* is Huber and $A^+ \subset A$ is a ring of integral elements.

Definition (Spa)

Given a Huber pair (A, A^+) , we let $\text{Spa}(A, A^+) \subset \text{Cont}(A)$ be the subset of continuous valuations x for which $|f(x)| \leq 1$ for all $f \in A^+$.

() > < () > < () >

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	●000	0000000

Definition

Let $s_1, \dots, s_n \in A$ and $T_1, \dots, T_n \subset A$ be finite subsets such that for each *i*, $T_i A \subset A$ is open. Define a subset

$$U\left(\left\{\frac{T_i}{s_i}\right\}\right) = U\left(\frac{T_1}{s_1}, \cdots, \frac{T_n}{s_n}\right)$$
$$= \{x \in X \colon |t_i(x)| \le |s_i(x)| \ne 0 \text{ for all } t_i \in T_i\}$$

Subsets of this form are called *rational subsets*.

伺下 イヨト イヨト

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0●00	0000000

Theorem

Let $U \subset \text{Spa}(A, A^+)$ be a rational subset. Then there exists a complete Huber pair $(A, A^+) \to (\mathcal{O}_X(U), \mathcal{O}_X^+(U))$ such that the map $\text{Spa}(\mathcal{O}_X(U), \mathcal{O}_X^+(U)) \to \text{Spa}(A, A^+)$ factors over U and is universal for such maps. Moreover, this map is a homeomorphism onto U. In particular, U is quasicompact.

くほと くきと くきと

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	00●0	0000000

Definition (Structure Presheaf)

Define a presheaf \mathcal{O}_X of topological rings on $\text{Spa}(A, A^+)$ as follows: if $U \subset X$ is rational, $\mathcal{O}_X(U)$ is as in the theorem. On a general open $W \subset X$, define

$$\mathcal{O}_X(W) = \varprojlim_{U \subset W \text{ rational}} \mathcal{O}_X(U)$$

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	000●	

Definition (Adic Space)

An *adic space* consists of a topological space X, a sheaf of rings \mathcal{O}_X , and the data of a continuous valuation on $\mathcal{O}_{X,x}$ for each $x \in X$. We require that X be covered by open subsets of the form $\text{Spa}(A, A^+)$, where each (A, A^+) is a sheafy Huber pair.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	●000000

Definition (Perfectoid Field)

Let *K* be a nonarchimedean field of residue characteristic *p*. Then *K* is said to be a perfectoid field if...

- $|K^{\times}|$ is nondiscrete.
- $K^{\circ}/p \rightarrow K^{\circ}/p$ is surjective.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	●000000

Definition (Perfectoid Field)

Let *K* be a nonarchimedean field of residue characteristic *p*. Then *K* is said to be a perfectoid field if...

- $|K^{\times}|$ is nondiscrete.
- $K^{\circ}/p \rightarrow K^{\circ}/p$ is surjective.

Example

Both the completions of $\mathbb{Q}_p(\mu_{p^{\infty}})$ and $\mathbb{Q}_p(p^{1/p^{\infty}})$ are perfectoid fields. In fact, the completion of any arithmetically profinite extension is a perfectoid field.

A (10) > A (10) > A

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	○●○○○○○

Definition (Tilt)

Let *K* be a perfectoid field with absolute value $|\cdot|$. Let $K^{\circ} = \{|x| \le 1\}$ be the ring of integers. Define

 $K^{\flat} = \lim_{x \mapsto x^p} K$

$$c_n = \lim_{m \to \infty} (a_{m+n} + b_{m+n})^{p^m}$$

Remark

Note that the perfectoid field K^{\flat} contains a pseudo–uniformizer ϖ with $|\varpi| = |p|$ and

$$K^{\flat\circ} \cong \underset{x \mapsto x^p}{\longleftarrow} K^{\circ}/p \text{ and } K^{\flat\circ}/\varpi \cong K^{\flat}/p$$

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	

Example

Let $K = \mathbb{Q}_p(p^{1/p^{\infty}})^{\wedge}$. Then K^{\flat} contains $t = (p, p^{1/p}, \cdots)$ with |t| = |p|. Therefore, t is a pseudo–uniformizer of K^{\flat} and since K^{\flat} is perfected, K^{\flat} contains $\mathbb{F}_p((t^{1/p^{\infty}}))$. In fact, $K^{\flat} = \mathbb{F}_p((t^{1/p^{\infty}}))$.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	

Theorem (Tilting Equivalence)

Let K be a perfectoid field. Then for any finite extension L/K (necessarily separable), L is a perfectoid field and L^{\flat}/K^{\flat} is a finite extension of the same degree as L/K. The categories of finite extensions of K and K^{\flat} are equivalent via $L \mapsto L^{\flat}$. Therefore, there is an isomorphism $\operatorname{Gal}(\overline{K}/K) \cong \operatorname{Gal}(\overline{K}^{\flat}, K^{\flat})$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	

Definition (Untilt)

An untilt *K* is a pair (K^{\sharp}, ι) , where K^{\sharp} is a perfectoid field and $\iota : K \xrightarrow{\sim} K^{\sharp\flat}$ is an isomorphism.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	00000●0

Definition (Perfectoid Ring)

If *A* is a Huber ring, then *A* is a perfectoid ring if...

- A is Tate.
- A is uniform.
- $\varpi \in A$ with $\varpi^p \mid p$ and $A^0/\varpi \to A^0/\varpi^p$ is an isomorphism.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	000000●

Definition (Perfectoid Space)

A perfectoid space is an adic space which is covered by affinoids of the form $\text{Spa}(A, A^+)$, where *A* is perfectoid.

Motivation	Huber Rings	Building Adic Spaces	Adic Space	Perfectoid Rings and Spaces
0	0000	00	0000	

Definition (Perfectoid Space)

A perfectoid space is an adic space which is covered by affinoids of the form $\text{Spa}(A, A^+)$, where *A* is perfectoid.

Example

If *K* is a perfectoid field and $K^+ \subset K$ is a ring of integral elements, then $\text{Spa}(K, K^+)$ is a perfectoid space.

Example

Let *K* be a perfectoid field. Let $A = K\langle T^{1/p^{\infty}} \rangle$. Then *A* is a perfectoid ring and $\text{Spa}(A, A^{\circ})$ is a perfectoid space.

イロト イロト イヨト イ