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≈ Definition (Algebraic Number Theory)

The study of number fields, i.e. finite extensions K/Q.

≈ Definition (Arithmetic Geometry)

The study of Algebraic Number Theory problems using
geometric techniques (meaning schemes).
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Ultimately, the goal for both fields is the same. . .

We want to solve Diophantine equations.
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Problem
Find the integer solutions to y2 = x3 − 2.



y2 = x3 − 2 ⇐⇒ x3 = y2 + 2

x3 = (y +
√
−2)(y−

√
−2)



We use the fact that Z[
√
−2] is a UFD.

Factor x = uπe1
1 · · ·π

er
r with ui ∈ Z[

√
−2]× = {±1} and

πi ∈ Z[
√
−2] distinct irreducibles.



Claim: y +
√
−2, y−

√
−2 are relatively prime in Z[

√
−2].

Proof. If an irreducible π divides both, then

π |
[
(y +

√
−2)− (y−

√
−2)

]
= −(

√
−2)3

But
√
−2 is irreducible so that we may assume π =

√
−2. Now

π | y +
√
−2 implies

y +
√
−2 = π(a + b

√
−2) =

√
−2(a + b

√
−2)

Expanding and relating parts, y = −2b so that

x3 = y2 + 2 ≡ 4b2 + 2 ≡ 2 mod 4

a contradiction.



We had x = uπe1
1 · · ·π

er
r . Because x3 = (y−

√
2)(y +

√
2), for each

πi dividing x, we know π3ei divides y +
√
−2 or y−

√
−2.

Therefore,
y +
√
−2 = u

∏
i∈I

π3ei
i

But then y +
√
−2 is a cube in Z[

√
−2]. Hence,

y +
√
−2 = (a + b

√
−2)3



Expanding

y +
√
−2 = (a3 − 6ab2) + (3a2b− 2b3)

√
−2

This gives a system of equations (using also y2 = x3 − 2):

y = a3 − 6ab2

1 = b(3a2 − 2b2)

y2 = x3 − 2

But then b = ±1 so that y = ±5 and then x = 3. The only
solutions are then (3,±5).



Idea of the Proof:

We factored y2 + 2 in the larger ring Z[
√
−2] ⊇ Z.



Trying this with y2 = x3 − 61, one finds there are no solutions.
But (5,±8) are clearly solutions. . .

What went wrong?

Z[
√
−61] is not a UFD.
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So we are looking for an object with. . .

• Is an object with ‘interesting’ and ‘nice’ factoring.

• Should generalize ordinary factoring Z ⊆ Q.

• Have ‘close’ relationship with a number field K/Q.

This will be the ring of integers of K, denoted OK.
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Definition (Algebraic Integer)

Given a number field K/Q, let α ∈ K and define pα(x) to be the
minimal polynomial for α. We say α is an algebraic integer if
pα(x) ∈ Z[x].



Example

•
√

2 is an algebraic integer, p√2(x) = x2 − 2.
• i is an algebraic integer, pi(x) = x2 + 1.
• 1√

2
is not an algebraic integer, p1/

√
2(x) = 2x2 − 1.



Proposition

Let K/Q be a number field and let α ∈ K. The following are
equivalent:
(a) pα(x) ∈ Z[x]

(b) f (α) = 0 for some monic f (x) ∈ Z[x]

(c) Z[α] is a finitely generated Z-module
(d) there is a nonzero finitely generated subgroup M ⊆ K such that

αM ⊆M.



Definition (Ring of Integers)

The ring of integers of a number field K is the set of algebraic
integers in K, denoted OK or ZK.



Properties of OK:

• Z ⊆ OK.

• OK is a ring.
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Lemma
For any α ∈ K, there is an integer d ≥ 1 such that mα ∈ OK.

Proof. Let α ∈ K and take any polynomial
f (x) = xn + an−1xn−1 + · · ·+ a0 ∈ Q[x] with f (α) = 0. Multiply
by dn for any integer d ≥ 1, we find

dnf (x) = (dx)n + an−1d(dx)n−1 + · · ·+ a0dn

Choosing d to be the lcm of the denominators of {a0, . . . , an−1}.
Then dα is a root of dnf (x) ∈ Z[x] so that dα ∈ OK.
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Proposition

K = Frac(OK)

Proof. Let F = Frac(OK). We know F ⊆ K. If [K : F] > 1, there is
an α ∈ K \ F which is algebraic over Q. There exists d ∈ Z such
that dα ∈ OK ⊆ F. But dα /∈ F, a contradiction.
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• Ideals in OK factor into products of prime ideals in OK.

Even more properties to come. . .



Properties of OK:

• Z ⊆ OK.

• OK is a ring.

• OK is an integral domain.

• For any α ∈ K, there is an integer d ≥ 1 such that dα ∈ OK.

• K = Frac(OK)

• If L/K/Q are number fields, then OL ∩ K = OK. In
particular, OL ∩Q = Z.

• OK ∼= Zx1 ⊕ · · · ⊕ Zxn ∼= Zn, where n = [K : Q]

• K = Q(x1, . . . , xn).

• Prime ideals in OK are maximal.

• Ideals in OK factor into products of prime ideals in OK.

Even more properties to come. . .



Properties of OK:

• Z ⊆ OK.

• OK is a ring.

• OK is an integral domain.

• For any α ∈ K, there is an integer d ≥ 1 such that dα ∈ OK.

• K = Frac(OK)

• If L/K/Q are number fields, then OL ∩ K = OK. In
particular, OL ∩Q = Z.

• OK ∼= Zx1 ⊕ · · · ⊕ Zxn ∼= Zn, where n = [K : Q]

• K = Q(x1, . . . , xn).

• Prime ideals in OK are maximal.

• Ideals in OK factor into products of prime ideals in OK.

Even more properties to come. . .



Properties of OK:

• Z ⊆ OK.

• OK is a ring.

• OK is an integral domain.

• For any α ∈ K, there is an integer d ≥ 1 such that dα ∈ OK.

• K = Frac(OK)

• If L/K/Q are number fields, then OL ∩ K = OK. In
particular, OL ∩Q = Z.

• OK ∼= Zx1 ⊕ · · · ⊕ Zxn ∼= Zn, where n = [K : Q]

• K = Q(x1, . . . , xn).

• Prime ideals in OK are maximal.

• Ideals in OK factor into products of prime ideals in OK.

Even more properties to come. . .



Suppose K/Q has degree n. For α ∈ K, define µα : K→ K via
x 7→ αx. This is a Q-linear map, so fixing a basis, we can
represent µα by an n× n matrix.

Definition (Norm)

NmK/Q : K→ Q via α 7→ det(µα).

Definition (Trace)

TrK/Q : K→ Q via α 7→ trace(µα).

NmK/Q(αβ) = NmK/Q(α)NmK/Q(β)
NmK/Q(c) = cn for c ∈ Q
NmK/Q : K× → Q× is a homomorphism.
TrK/Q : K→ Q is Q-linear
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Proposition

For a number field K/Q of degree n,

NmK/Q(α) =

n∏
i=1

σi(α)

TrK/Q(α) =

n∑
i=1

σi(α)

where σ1, . . . , σn : K ↪→ C are the embeddings of K in C.



Proposition

Let K/Q be a number field and α ∈ K. Let µα : K→ K denote
multiplication by α. Then

det(xI − µα) =

n∏
i=1

(x− σi(α)) = pα(x)[K:Q(α)]

where σ1, . . . , σn : K ↪→ C are the complex embeddings of K into C.

In particular for α ∈ OK, NmK/Q(α) and TrK/Q(α) are integers.



Norm/Trace give a method of finding OK.



EXAMPLE

Let K = Q(
√

d), where d 6= 1 is a squarefree integer. Let
α = a + b

√
d ∈ K.

K has basis {1,
√

d}. Then with respect to this basis, we have

[µα] =

(
a bd
b a

)
Therefore, NmK/Q(α) = a2 − db2 and TrK/Q(α) = 2a.

If α ∈ OK, then NmK/Q(α),TrK/Q(α) ∈ Z.



EXAMPLE

Let K = Q(
√

d), where d 6= 1 is a squarefree integer. Let
α = a + b

√
d ∈ K.

K has basis {1,
√

d}.

Then with respect to this basis, we have

[µα] =

(
a bd
b a

)
Therefore, NmK/Q(α) = a2 − db2 and TrK/Q(α) = 2a.

If α ∈ OK, then NmK/Q(α),TrK/Q(α) ∈ Z.



EXAMPLE

Let K = Q(
√

d), where d 6= 1 is a squarefree integer. Let
α = a + b

√
d ∈ K.

K has basis {1,
√

d}. Then with respect to this basis, we have

[µα] =

(
a bd
b a

)
Therefore, NmK/Q(α) = a2 − db2 and TrK/Q(α) = 2a.

If α ∈ OK, then NmK/Q(α),TrK/Q(α) ∈ Z.



EXAMPLE

Let K = Q(
√

d), where d 6= 1 is a squarefree integer. Let
α = a + b

√
d ∈ K.

K has basis {1,
√

d}. Then with respect to this basis, we have

[µα] =

(
a bd
b a

)
Therefore, NmK/Q(α) = a2 − db2 and TrK/Q(α) = 2a.

If α ∈ OK, then NmK/Q(α),TrK/Q(α) ∈ Z.



We know a2 − db2, 2a ∈ Z. Multiplying a2 − db2 by 4, we obtain
(2a)2 − d(2b)2 ∈ Z.

Therefore, 2OK ⊆ Z[
√

d] = {a + b
√

d : a, b ∈ Z}.

Z[
√

d] ⊆ OK ⊆
1
2

Z[
√

d]

The quotient 1
2 Z[
√

d]/Z[
√

d] is a group of order 4 with coset

representatives: 0, 1
2 ,
√

d
2 , and 1+

√
d

2 .
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√
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In order to determine OK, we need to determine which of these
representatives are algebraic integers. Clearly, 0 ∈ OK and
1
2 /∈ OK. The minimal polynomial of

√
d

2 is x2 − d
4 , which is not

in Z[x] as d is square free. Hence,
√

d
4 /∈ OK. Finally, the minimal

polynomial of 1+
√

d
2 is(

x− 1 +
√

d
2

)(
x− 1−

√
d

2

)
= x2 − x +

1− d
4

.

Then 1+
√

d
2 has minimal polynomial pα(x) ∈ Z[x]. [That is,

1+
√

d
2 ∈ OK if and only if d ≡ 1 mod 4.] Therefore,

O + K =

{
Z[
√

d], d 6≡ 1 mod 4

Z
[

1+
√

d
2

]
, d ≡ 1 mod 4.



If K = Q(
√

2), then OK = Z[
√

2].

Figure: The lattice for Z[
√

2].



Definition (Norm)

For a nonzero ideal I ⊆ OK, N(I) = #(OK/I).

Proposition

Let K = Q(α), where α ∈ OK. For an integral prime p,
pOK = pe1

1 · · · p
er
r , where pi is a prime ideal. Furthermore, if

pα(x) = g1(x)e1 · · · ger
r , then pi = (p, gi(α)), where g(x) := g(x)

mod p.
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EXAMPLE

Let K = Q(α), where α is a root of x2 − 7.

p = 7: x2 − 7 ≡ x2 mod 7

⇒ 7OK = (7): “7 is inert”

p = 2: x2 − 7 ≡ x2 + 1 ≡ (x + 1)2 mod 2⇒ 2OK = (2,
√

7 + 1)2:
“2 is ramified”

p = 3: x2 − 7 ≡ x2 − 1 = (x− 1)(x + 1)
mod 3⇒ 3OK = (3,

√
7− 1)(3,

√
7− 1): “3 splits”
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Theorem (Dirichlet’s Unit Theorem)

Let K be a number field of degree n with r real embeddings and s
conjugate pairs of embeddings with σ(K) 6⊆ R. Then the abelian
group O×K is a finitely generated abelian group with rank r + s− 1
and O×K ∼= µK × Zr+s−1, where µK are the roots of unity in OK.

That is, there are µ1, . . . , µr+s−1 ∈ O×K such that every α ∈ O×K is
of the form α = ζ · µn1

1 · · ·µ
nr+s−1
r+s−1 .



Example

K = Q(
√

d), where d > 0 is square free.

d ε NmK/Q(ε)

2 1 +
√

2 −1
10 3 +

√
10 −1

93
29 + 3

√
93

2
−1

94 2143295 + 221064
√

94 −1



Definition (Pell’s Equation)

x2 − dy2 = 1, where (x, y) ∈ Z2

Example

Find a positive pair of solutions to x2 − 1141y2.

Dirichlet’s Unit
Theorem gives a method of finding the smallest solution
(x0, y0):

x0 = 1036782394157223963237125215
y0 = 30693385322765657197397208
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Definition (Fractional Ideal)

A fractional ideal of K is a nonzero finitely generated
OK-submodule of K.

Lemma
Let I be a nonzero OK-submodule of K. The following are equivalent:

(i) I is a fractional ideal
(ii) dI ⊆ OK for some d ≥ 1

(iii) dI ⊆ OK for some 0 6= d ∈ OK

(iv) I = xJ for some x ∈ K× and nonzero ideal J ⊆ OK

[For Commutative Algebra People: (R : I) = {x ∈ K : xI ⊆ R}.]
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Example

(i) 5
4 Z

(ii) 〈1, 1
2(1 +

√
−5)〉 ⊆ Z[

√
−5]

We denote by IK the set of fractional ideals of K. This is an
abelian group under multiplication with identity OK.



Definition (Principal Fractional Ideal)

Let BK ⊆ JK be the group of principal fractional ideals, i.e. xOK
with x ∈ K×.

Definition (Ideal Class Group)

The ideal class group of K is

C`K := JK
/
BK
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Theorem (Minkowski’s Theorem)

Let Λ be a lattice in a Euclidean space V of dimension. Let X be a
measurable subset of V that is symmetric and convex. Assume on of
the following:

(i) vol X > 2n covol Λ

(ii) vol X ≥ 2n covol Λ and X compact

•

•

•

•

•

•

•

•

•

•

•

•

•
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•

•

•

•

Figure: The fundamental domain for Z[
√

2].



Theorem
Let K/Q be a number field of degree n. Let r be the number of real
embeddings ρ : K ↪→ C and s be the number of complex conjugate
embeddings σ : K ↪→ C, i.e. σ(K) 6⊆ R. Let I be a nonzero ideal of
OK. Then I contains a nonzero element α with

|NmK/Q(α)| ≤
(π

4

)s n!

n
| disc K|1/2N(I)



Example

Let K = Q(i). For this field, we have r = 0 and s = 1 so

MK =
(π

4

)1 2!

2
| − 4|1/2 =

4
π
< 2.

Therefore, every element of C`K contains an ideal of norm 1.
But then we have C`K = {[OK]} = 1. Since OK = Z[i], this
implies that Z[i] is a PID.



This is only the start of the overlap of Number Theory &
Geometry.



ELLIPTIC CURVES


