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~ Definition (Algebraic Number Theory)

The study of number fields, i.e. finite extensions K/Q.

~ Definition (Arithmetic Geometry)

The study of Algebraic Number Theory problems using
geometric techniques (meaning schemes).



Ultimately, the goal for both fields is the same. ..



Ultimately, the goal for both fields is the same. ..

We want to solve Diophantine equations.






o242

2=y +vV-2)(y-V-2)

P=x-2 = «x



We use the fact that Z[\/—2] is a UFD.

Factor x = un{' - - - & with u; € Z[v/-2]* = {£1} and
m; € Z]v/—2] distinct irreducibles.



Claim: y + v/—2, y — v/—2 are relatively prime in Z[/-2].
Proof. If an irreducible 7 divides both, then
T | y+V=2) - (y-V-2)| = -(V-2)

But /-2 is irreducible so that we may assume 7= = /—2. Now
7 |y + V=2 implies

y+v-2=m@a+bv-2)=v-2(a+bv-2)
Expanding and relating parts, y = —2b so that
B =y 42=4+2=2 mod4

a contradiction. O



We had x = ur' - - - 7. Because x> = (y — v2)(y + V'2), for each
7; dividing x, we know 7% divides y + v/—2 ory — v/—2.

Therefore,
y+v-2= uHﬂ?ei
icl
But then y + /—2 is a cube in Z[/—2]. Hence,

y+vV-2=(a+bv/=-2)°



Expanding
Y+ -2 = (a® — 6ab?) + (3a*b — 2b°)v/ -2

This gives a system of equations (using also y? = x* — 2):

y= a® — 6ab?
1= b(3a> — 2b%)
yZ — x3 )

But then b = +1 so that y = 5 and then x = 3. The only
solutions are then (3, £5).



Idea of the Proof:

We factored y* + 2 in the larger ring Z[v/—2] 2 Z.



Trying this with y> = x> — 61, one finds there are no solutions.
But (5, £8) are clearly solutions. ..

What went wrong?



Trying this with y> = x> — 61, one finds there are no solutions.
But (5, £8) are clearly solutions. ..

What went wrong?

Z[\/=61] is not a UFD.



So we are looking for an object with. ..
® Is an object with ‘interesting” and ‘nice” factoring.
® Should generalize ordinary factoring Z C Q.

¢ Have ‘close’ relationship with a number field K/Q.



So we are looking for an object with. ..
® Is an object with ‘interesting” and ‘nice” factoring.
® Should generalize ordinary factoring Z C Q.

¢ Have ‘close’ relationship with a number field K/Q.

This will be the ring of integers of K, denoted Ok.
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Lemma
Forany a € K, there is an integer d > 1 such that ma: € Ok.

Proof. Let o € K and take any polynomial
f(x) =x"+a,_ 1x" 1+ +ap € Q[x] with f(a) = 0. Multiply
by d" for any integer d > 1, we find

d"f(x) = (dx)" 4 ay_1d(dx)" "1 + - - + apd"



Lemma

Forany a € K, there is an integer d > 1 such that ma: € Ok.

Proof. Let o € K and take any polynomial
f(x) =x"+a,_ 1x" 1+ +ap € Q[x] with f(a) = 0. Multiply
by d" for any integer d > 1, we find

d"f(x) = (dx)" 4 ay_1d(dx)" "1 + - - + apd"

Choosing d to be the lcm of the denominators of {ag, ...,a,-1}.
Then da is a root of d"f(x) € Z[x] so that da € O.
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Proposition

K = Frac(Ok)

Proof. Let F = Frac(Ok). We know F C K. If [K: F] > 1, there is
an a € K\ F which is algebraic over Q. There exists d € Z such
that da € Ox C F. Butda ¢ F, a contradiction. O
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Properties of Ok:

e 7Z C Ok.

® Ok isaring.

® (g is an integral domain.

® For any a € K, there is an integer d > 1 such that da € Ok.
K = Frac(Ok)

If L/K/Q are number fields, then O; N K = Ok. In
particular, Or N Q = Z.

o Ok 2Zx1 @ ®Zx, = Z", wheren = [K: Q]

® K=0Q(x1,...,%n).

® Prime ideals in Ok are maximal.

¢ Ideals in Ok factor into products of prime ideals in Ok.

Even more properties to come...



Suppose K/Q has degree n. For o € K, define 1, : K — K via
x — ax. This is a Q-linear map, so fixing a basis, we can
represent /i, by an n x n matrix.
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Suppose K/Q has degree n. For o € K, define 1, : K — K via
x — ax. This is a Q-linear map, so fixing a basis, we can
represent /i, by an n x n matrix.

Definition (Norm)

Nmg /g : K — Q via a + det(uq)-

Definition (Trace)

Trg /g : K — Q via a + trace(pia)-

Nmg g (af) = Nmg,q(a)Nmg /g (5)
Nmg q(c) = " forc € Q

Nmg /g : K* — Q* is a homomorphism.
Trg,q : K — Qs Q-linear






In particular for a € Og, Nmg/g(a) and Trg () are integers.



Norm/Trace give a method of finding Ok.
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EXAMPLE

Let K = Q(V/d), where d # 1 is a squarefree integer. Let
a=a+bvdeK

K has basis {1, /d}. Then with respect to this basis, we have

= (5 %)

Therefore, Nmg g (a) = a?> — db? and Trg /(o) = 2a.



EXAMPLE

Let K = Q(V/d), where d # 1 is a squarefree integer. Let
a=a+bvdeK

K has basis {1, /d}. Then with respect to this basis, we have
] = a bd
Hal=\p 4

Therefore, Nmg q(a) = a* — db* and Trg /(o) = 2a.

If a € O, then Nmg g (a), Trx /g (o) € Z.



We know a? — db?,2a € Z. Multiplying a* — db? by 4, we obtain
(2a)> — d(2b)? € Z.



We know a? — db?,2a € Z. Multiplying a* — db? by 4, we obtain
(2a)> — d(2b)? € Z.

Therefore, 20x C Z[Vd] = {a +b\Vd: a,b € Z}.

21V € Ox € L ZIVi



We know a? — db?,2a € Z. Multiplying a* — db? by 4, we obtain
(2a)2 —d(2b)* € Z

Therefore, 20x C Z[Vd] = {a +b\Vd: a,b € Z}.
21V € Ox € L ZIVi

The quotient 1Z[\f ]/Z[\/d] is a group of order 4 with coset

representatives: 0,1 57 ‘2[, and 1+‘[



In order to determine Ok, we need to determine which of these
representatives are algebraic integers. Clearly, 0 € Ok and

% ¢ Ok. The minimal polynomial of \f is x? — 4 Wthh is not
in Z[x] as d is square free. Hence, %4 Y gé Ok. Fmally, the minimal
polynomial of 1%[

(x—1+2\/a) (x— 1—2\/EZ> :xz—x—i-lT_d.

Then 1*'2—‘/’; has minimal polynomial p,(x) € Z[x]. [That is,
1+27\/E € Ogifand only if d =1 mod 4.] Therefore,

Z[Vd], d#1 mod 4
O+K= Z|2%4), d=1 mod4.



If K = Q(V/2), then O = Z[V2].

Figure: The lattice for Z[v/2].
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Let K = Q(a), where « is a root of x> — 7.
p=7 x*—-7=x* mod7= 70k = (7): “7 is inert”

p=2 ¥*-7=x>+1=(x+1) mod 2 =20k = (2,V7+1)%
“2 is ramified”

p=3 x2-7=x>-1=(x-1)(x+1)
mod 3



EXAMPLE

Let K = Q(a), where « is a root of x> — 7.
p=7 x*—-7=x* mod7= 70k = (7): “7 is inert”

p=2 ¥*-7=x>+1=(x+1) mod 2 =20k = (2,V7+1)%
“2 is ramified”

p=3 x2-7=x>-1=(x-1)(x+1)
mod 3 = 30k = (3,v/7 — 1)(3,V7 — 1): “3 splits”



Theorem (Dirichlet’s Unit Theorem)

Let K be a number field of degree n with r real embeddings and s
conjugate pairs of embeddings with o(K) ¢ R. Then the abelian
group OF is a finitely generated abelian group with rank r +s — 1
and OF = pg x Z'1 where pg are the roots of unity in Ok.

X

That is, there are i1, . .., py45—1 € Of such that every a € Of is

of the form o = ¢ - pu" - uf:;sjll









Definition (Pell’s Equation)
x? — dy? = 1, where (x,y) € Z?

Example

Find a positive pair of solutions to x> — 1141y?. Dirichlet’s Unit
Theorem gives a method of finding the smallest solution

(x0,Y0):

xo = 1036782394157223963237125215
Yo = 30693385322765657197397208






Definition (Fractional Ideal)

A fractional ideal of K is a nonzero finitely generated
Ok-submodule of K.

Lemma

Let I be a nonzero Og-submodule of K. The following are equivalent:
(i) I1is a fractional ideal

(ii) dI C Ok for somed > 1

(iii) dI C Ok for some 0 # d € Ok

(iv) I = x] for some x € K* and nonzero ideal ] C O

[For Commutative Algebra People: (R :I) = {x € K: xI C R}.]



We denote by Zk the set of fractional ideals of K. This is an
abelian group under multiplication with identity Ok.









Theorem (Minkowski’s Theorem)

Let A be a lattice in a Euclidean space V of dimension. Let X be a
measurable subset of V that is symmetric and convex. Assume on of
the following:

(i) vol X > 2" covol A

(ii) vol X > 2" covol A and X compact

Figure: The fundamental domain for Z[v/2].









This is only the start of the overlap of Number Theory &
Geometry.



ELLIiPTIC CURVES




