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Interesting Number Paradox



Theorem. All natural numbers are interesting.

Proof. Assume the set of uninteresting numbers is nonempty. By the
Well Ordering Property of N, there is a smallest uninteresting number,
say N0. But then N0 is interesting, being the smallest uninteresting
number, contradiction.
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• Smallest prime number.

• The only even prime number.

• In fact, 2 is a Germain prime: 2(2) + 1 = 5, a prime.

• 3rd Fibonacci number.

• 2nd Catalan number.

• The number of Prelims and Quals you have to pass. . .
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• The smallest Mersenne prime, i.e. of the form 2n − 1.
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• The smallest number of colors required to color any map: Four Color
Theorem.
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Theorem.
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• The smallest perfect number: 6 = 1+ 2+ 3.
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• The fewest moves required to solve a three-disk Tower of Hanoi
puzzle.

• The puzzle with 64 disks would take at least 264 − 1 seconds, or 565
billion years, to finish.
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• The number of Archimedean solids.



13

• The number of Archimedean solids.
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• Smallest Leyland prime: xy + yx .
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Let’s hear from an expert. . .
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Image Credit: https://www.goodhousekeeping.com/life/entertainment/a44703/big-bang-theory-easter-egg-number-73/
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• The maximum percentage of the total volume of a cube that a
sphere packing can occupy.
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• The maximum percentage of the total volume of a cube that a
sphere packing can occupy.
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• The smallest narcissistic number: 13 + 53 + 33 = 153.
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• Prime number.

• Sum of 3 squares: 163 = 12 + 92 + 92

• π ≈ 29

163
≈ 3.1411 . . .

• e ≈ 163
3 · 4 · 5 ≈ 2.7166 . . .

• Largest Heegner number: Square-free positive integer d such that
the imaginary quadratic field Q(

√
−d) has class number 1, i.e. the

ring of integers is a UFD. There are only 9 such numbers: 1, 2, 3, 7,
11, 19, 43, 67, 163.

• Ramanujan’s constant:

eπ
√

163 ≈ 262, 537, 412, 640, 768, 743.999 999 999 999 25 . . .
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102 ≤ R(6,6) ≤ 165



R(n,m) is the smallest number such that every graph of order n contains
either a clique of n vertices or an independent set of m vertices.



R(n,m) is the smallest number of people needed so that either n know
each other or m will not know each other.



R(3, 3) = 6

R(3, 9) = 36

R(4, 3) = 9

R(4, 4) = 18

R(4, 5) = 25



“Suppose aliens invade the earth and threaten to obliterate it in a year’s
time unless human beings can find the Ramsey number for red five and
blue five.

We could marshal the world’s best minds and fastest
computers, and within a year we could probably calculate the value. If
the aliens demanded the Ramsey number for red six and blue six,
however, we would have no choice but to launch a preemptive attack.”
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• The smallest pair of amicable numbers.
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• The number of cases in the proof of the Four Color Theorem.
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• Ramanujan number: 1729 = 103 + 93 = 123 + 13.

• 3rd Carmichael number.

• First absolute Euler pseudoprime.

• Harshad number.

• The 1729th decimal digit of e is the first consecutive occurrence of
all ten digits without repetition (not necessarily in order).

• One more than 1728 = 123 : j(τ) = 1728
g3
2

∆
.
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• The only Münchhausen number.
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• . . . to 1—the odds of a royal flush in Texas Hold’em poker.
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• The number of possible checker ‘games.’
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• Estimated number of Chess games.
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43,252,003,274,489,856,000

• Number of possible 3× 3× 3 Rubik cube states.
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277,232,917− 1

• Largest known prime number, as of September 28, 2018.
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808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000



246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

• Order of the Monster Group.

• Conjectured by Fischer & Griess, existence proof by Griess in 1982.
Construction simplified by Conway & Tits.

• The group was originally called the ‘Friendly Giant.’

• Each matrix generator takes almost 5GB of storage space.



10100

• Googl.

• Googlplex: 1010100
.



eee79
≈ 10101034



π(x) := number of primes at most x .
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x π(x)
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For example, with massive loss of generality, let x be. . .

x π(x)

1 0

2 1
10 4
100 25
1,000 168

1,000,000 78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2

1
10 4
100 25
1,000 168

1,000,000 78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2 1

10 4
100 25
1,000 168

1,000,000 78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2 1
10

4
100 25
1,000 168

1,000,000 78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2 1
10 4

100 25
1,000 168

1,000,000 78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2 1
10 4
100

25
1,000 168

1,000,000 78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2 1
10 4
100 25

1,000 168
1,000,000 78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2 1
10 4
100 25
1,000

168
1,000,000 78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2 1
10 4
100 25
1,000 168

1,000,000 78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2 1
10 4
100 25
1,000 168

1,000,000

78,498



For example, with massive loss of generality, let x be. . .

x π(x)

1 0
2 1
10 4
100 25
1,000 168

1,000,000 78,498



Gauß famously approximated π(x) by
x

log x
. Legendre later improved

this with the logarithmic integral:

li(x) :=
∫ x

0

dt

ln t



x π(x) li(x) li(x)− π(x) % Error
101 4 6.17 2.17 54.15
102 25 30.13 5.13 20.50
103 168 177.61 9.61 5.72

106 78,498 78,627.5 129.55 0.17
109 50,847,534 50,849,234.96 1700.96 0.0033
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π(x) < li(x)?



No
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g64



Connect each pair of vertices of an n-dimensional hypercube to obtain a
complete graph on 2n vertices, coloring each edge with one of two colors.

What is the smallest n such that every such coloring contains at least one
single-colored complete subgroup on four coplanar vertices?



Connect each pair of vertices of an n-dimensional hypercube to obtain a
complete graph on 2n vertices, coloring each edge with one of two colors.

What is the smallest n such that every such coloring contains at least one
single-colored complete subgroup on four coplanar vertices?



What is the smallest dimension possible so that a coloring of a hypercube
with all vertices joined together must contain a complete graph, lying in
some plane, with all edges the same color.









2-dimensions → Avoidable
3-dimensions → Avoidable
4-dimensions → Avoidable
5-dimensions → Avoidable
6-dimensions → Avoidable

...
...



6 ≤ minimum dimension required ≤ g64
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3 ↑ 3 = 3 · 3 · 3 = 33 = 27
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3 ↑↑ 3 = 3 ↑ (3 ↑ 3) = 3 ↑ 27 = 327 = 33
3
=

7, 625, 597, 484, 987



3 ↑↑↑ 3 = ?



3 ↑↑↑ 3 = 3 ↑↑ (3 ↑↑ 3)



33
33

...
3

7,625,597,484,987 times



a ↑↑ · · · ↑︸ ︷︷ ︸
n

b = a ↑↑ · · · ↑︸ ︷︷ ︸
n−1

(a ↑↑ · · · ↑︸ ︷︷ ︸
n−1

(· · · ↑ · · · ↑︸ ︷︷ ︸
n−1

))

︸ ︷︷ ︸
bcopies a



g1 = 3 ↑↑↑↑ 3

g2 = 3 ↑↑ · · · ↑︸ ︷︷ ︸
g1

3

...

Graham’s Number: g64
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Image Credit: NASA’s Goddard Space Flight Center. https://www.nasa.gov/image-feature/star-wanders-to-a-black-hole



1971 Graham, Rothschild’s original estimate
1977 Graham’s Number (unpublished)
2003 Geoffrey Exoo improved lower bound to 11
2013 Jerome Barkley improved lower bound to 13
2014 Upper bound 2 ↑↑↑ 6



TREE(3)



Kruskal’s Tree Theorem



TREE(n):= is the number of trees which can be built using n seeds,
which do not contain an earlier tree preserving common ancestors.









TREE(1)=1



TREE(2)= ?





TREE(2)= 3



TREE(3)= ?
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a[2]b = a+ a+ · · ·+ a︸ ︷︷ ︸
b

a[3]b = a · a · · · · · a︸ ︷︷ ︸
b

a[n]b = a[n− 1](a[n− 1](· · · a[n− 1]a))︸ ︷︷ ︸
b



Lower Bound: AA(187196)(1) = A(A(· · ·A(1) · · · )︸ ︷︷ ︸
A(187,196)

)

A(x) = 2[x + 1]x a hyperoperation

a[0]b = 1+ 1+ · · ·+ 1︸ ︷︷ ︸
b

a[1]b = a+ 1+ 1+ · · ·+ 1︸ ︷︷ ︸
b

a[2]b = a+ a+ · · ·+ a︸ ︷︷ ︸
b

a[3]b = a · a · · · · · a︸ ︷︷ ︸
b

a[n]b = a[n− 1](a[n− 1](· · · a[n− 1]a))︸ ︷︷ ︸
b



Lower Bound: AA(187196)(1) = A(A(· · ·A(1) · · · )︸ ︷︷ ︸
A(187,196)

)

A(x) = 2[x + 1]x a hyperoperation

a[0]b = 1+ 1+ · · ·+ 1︸ ︷︷ ︸
b

a[1]b = a+ 1+ 1+ · · ·+ 1︸ ︷︷ ︸
b

a[2]b = a+ a+ · · ·+ a︸ ︷︷ ︸
b

a[3]b = a · a · · · · · a︸ ︷︷ ︸
b

a[n]b = a[n− 1](a[n− 1](· · · a[n− 1]a))︸ ︷︷ ︸
b



Lower Bound: AA(187196)(1) = A(A(· · ·A(1) · · · )︸ ︷︷ ︸
A(187,196)

)

A(x) = 2[x + 1]x a hyperoperation

a[0]b = 1+ 1+ · · ·+ 1︸ ︷︷ ︸
b

a[1]b = a+ 1+ 1+ · · ·+ 1︸ ︷︷ ︸
b

a[2]b = a+ a+ · · ·+ a︸ ︷︷ ︸
b

a[3]b = a · a · · · · · a︸ ︷︷ ︸
b

a[n]b = a[n− 1](a[n− 1](· · · a[n− 1]a))︸ ︷︷ ︸
b



TREE(3) � AA(187196)(1)

Graham’s Number: A64(4)

Challenge: Count to TREE(TREE(TREE(3))).
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Questions?


