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1888 – 1972

“Mathematicians have been familiar with very few
questions for so long a period with so little

accomplished in the way of general results, as that of
finding the rational [points on elliptic curves].”

– L.J. Mordell, 1922



Definition (Elliptic Curve)

An elliptic curve is. . .
(i) a smooth projective curve of genus 1 (with O).

(ii) a compact Riemann surface of genus 1.
(iii) an abelian variety of dimension one.
(iv) a nonempty smooth variety V(F), where deg F = 3.
(v) for fixed A,B with −16(4A3 + 27B2) 6= 0, the set

EA,B := {(x, y) : y2 = x3 + Ax + B} ∪ {∞}

with an addition law ⊕.



Given an elliptic curve

EA,B : y2 = x3 + Ax + B

We also define. . .

• Discriminant: ∆ := −16(4A3 + 27B2)

• j-Invariant: j := −1728
(4A)3

∆



EXAMPLES

(a) y2 = x(x2 + 1) (b) y2 = x3 − x + 1



(c) y2 = x2(x + 2) (d) y2 = x3



ADDITION LAW (GEOMETRIC VERSION)



Theorem (Mordell, 1922)

Let E/Q be an elliptic curve. Then the group of rational points on E,
denoted E(Q) is a finitely generated abelian group. In particular,

E(Q) ∼= Zr ⊕ E(Q)tors

where r ≥ 0 is the rank and E(Q)tors is the set of points with finite
order.

Louis J. Mordell
1888 – 1972



Theorem (Mordell–Weil, 1928)

Let K be a number field and A/K be an abelian variety. Then the
group of K-rational points on A, denoted A(K), is a finitely generated
abelian group. In particular,

A(K) ∼= ZrA/K ⊕ A(K)tors

where rA/K ≥ 0 is the rank and A(K)tors is the set of points with finite
order.

Louis J. Mordell
1888 – 1972

André Weil
1906 – 1998



Theorem (Mordell–Weil–Néron, 1952)

Let K be a field that is finitely generated over its prime field and A/K
be an abelian variety. Then the group of K-rational points on A,
denoted A(K), is a finitely generated abelian group. In particular,

A(K) ∼= ZrA/K ⊕ A(K)tors

where rA/K ≥ 0 is the rank and A(K)tors is the set of points with finite
order.

Louis J. Mordell
1888 – 1972

André Weil
1906 – 1998

André Néron
1922 – 1985



What are the possible ranks of elliptic curves E/Q?



Rank Year Due To
3 1938 Billing
4 1945 Wiman
6 1974 Penney/Pomerance
7 1975 Penney/Pomerance
8 1977 Grunewald/Zimmert
9 1977 Brumer/Kramer
12 1982 Mestre
14 1986 Mestre
15 1992 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao/Kouya
22 1997 Fermigier
23 1998 Martin/McMillen
24 2000 Martin/McMillen
28 2006 Elkies
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Are the ranks of elliptic curves E/Q unbounded?



What is the ‘average’ rank of elliptic curves E/Q?



What does ‘average’ mean here?



Probabilities with Infinite Sets



PROBABILITIES WITH INFINITE DISCRETE SETS

A := Some property
Sn := set of objects up to size n.
An := set of objects in S with property A in Sn.

P(A) = lim
n→∞

|An|
|Sn|



Example (Probability that positive integer is even)

We expect P(Even) = 1
2 .

A = Integer even
Sn := {1, 2, . . . ,n}
An := {2, 4, . . .}

Consider the counting numbers up to n > 2. We have n
counting numbers and n/2− εn of them are even.

P(Even) = lim
n→∞

|An|
|Sn|

= lim
n→∞

n/2− εn

n
= lim

n→∞

(
1
2
− εn

n

)
=

1
2
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Example (Probability positive integer is prime)

A = Integer prime
Sn := {1, 2, . . . ,n}
An := {2, 3, . . .}

By the Prime Number Theorem: π(n) ∼ n
log n .

P(Prime) = lim
n→∞

|An|
|Sn|

= lim
n→∞

π(n)

n
≈ lim

n→∞

1
log n

= 0

Remark. For infinite sets P(A) = 0 does not mean A cannot
occur.
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Challenge: What is the probability that two random
positive integers are coprime?



We proceed the same way for average size.



Example (Average size of a positive integer)

lim
n→∞

1 + 2 + · · ·+ n
n

= lim
n→∞

n(n− 1)/2
n

= lim
n→∞

n− 1
2

=∞



Example (Average size of a positive integer)

lim
n→∞

1 + 2 + · · ·+ n
n

= lim
n→∞

n(n− 1)/2
n

= lim
n→∞

n− 1
2

=∞



FRIVOLOUS THEOREM OF ARITHMETIC

Theorem (Steinbach, 1990)

Almost all natural numbers are very, very, very large.



We need two things:

• A notion of ‘size’ for elliptic curves.

• A way of counting the number of elliptic curves up to a
given ‘size.’



Fact. Any elliptic curve E/Q is isomorphic to an elliptic curve
of the form

EA,B : y2 = x3 + Ax + B.

where A,B ∈ Z.

In fact, E/Q is isomorphic to a unique EA,B if we require that if
p4 | A then p6 - B.
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There are many notions of ‘size’ (a.k.a. complexity) of an
elliptic curve EA,B := y2 = x3 + Ax + B:

• Naı̈ve Height: H(EA,B) := max{|A|3, |B|2}

• Falting’s Height

• Discriminant, ∆E: ∆(EA,B) := −16(4A3 + 27B2)

• Conductor, NE :=
∏

p prime p fp(E), where

fp(E) =


0, E has good reduction at p
1, E has multiplicative reduction at p
2, E has additive reduction at p



FUN ASIDE

Conjecture (Szpiro)

For every ε > 0, there exists a κε such that for all elliptic curves
E/Q

|∆E| ≤ κεN6+ε
E .

Conjecture (ABC Conjecture, Masser–Oesterlé)

For every ε > 0, there exists a constant κε such that for all
positive coprime integers a, b, c satisfying a + b = c, then

c ≤ κεrad(abc)1+ε
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FUN ASIDE

Fact. The ABC Conjecture implies Szpiro’s conjecture, and if
Szpiro’s conjecture is true, then the ABC conjecture is true with
exponent 3/2.



NAÏVE HEIGHT

EA,B : y2 = x3 + Ax + B

The naı̈ve height of EA,B is

H(EA,B) := max{|A|3, |B|2}.

The naı̈ve height can also be defined as H(EA,B) := max{4|A|3, 27B2}.



The advantage of the naı̈ve height is that is we know
how many elliptic curves there are up to a given

height.



Let EH≤X denote the set of isomorphism classes of elliptic
curves of height at most X.

#EH≤X = 4ζ(10)−1X5/6 + O(X1/2)

This essentially comes from the fact that there are X1/3 choices
for A and X1/2 choices for B.

It is conjectured that all the measures of heights give the same
order of magnitude for all but a ‘small’ proportion of elliptic
curves.
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Conjecture (Goldfeld, Katz–Sarnak)

When ordered by height, the average rank of elliptic curves
E/Q is 1

2 . More precisely, 50% of curves should have rank 0 and
50% of curves should have rank 1.

Dorian Goldfeld Nick Katz Peter Sarnak



Prior to the conjecture, the average rank was not
even known to be finite!



COMPUTATIONS OF BRUMER, MCGUINNESS,
BEKTEMIROV, STEIN, WATKINS

100,000 50,050,000 100,000,000

0.70

0.78

0.87

Average rank of elliptic curves of conductor ≤ 108. The average
turns out to be 0.8664 . . . .



Two Important Conjectures



RIEMANN HYPOTHESIS (RH)
The Riemann Zeta Function, ζ(s), is defined as

ζ(s) :=

∞∑
n=1

1
ns =

∏
p

(1− p−s)−1.

Conjecture (Riemann Hypothesis, 1859)

If s ∈ C is a nontrivial zeros of ζ(s), then <(s) = 1/2

Bernhard Riemann
1826 – 1866
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GENERALIZED RIEMANN HYPOTHESIS (GRH)
Let χ be a Dirichlet character, i.e. an arithmetic function
χ : Z→ C that is both periodic and totally multiplicative. Then
the Dirichlet L-function is

L(χ, s) =

∞∑
n=1

χ(n)

ns

Conjecture (Generalized Riemann Hypothesis)

If s ∈ C is a nontrivial zeros of L(χ, s), then <(s) = 1/2

Bernhard Riemann
1826 – 1866



Hasse Principle: |p + 1−#E(Fp)| ≤ 2√p. We define ‘error
terms’ ap := p + 1−#E(Fp).

L(E, s) =
∏
p-∆

1
1− app−s + p1−2s



Hasse Principle: |p + 1−#E(Fp)| ≤ 2√p. We define ‘error
terms’ ap := p + 1−#E(Fp).

L(E, s) =
∏
p-∆

1
1− app−s + p1−2s



MODULARITY THEOREM

Theorem (Wiles, Taylor, Brueil, Conrad, Diamond)

L(E, s) can be analytically continued to C.

Andrew Wiles Richard Taylor Christophe Breuil

Brian Conrad Fred Diamond



In particular, L(E, s) has a Taylor expansion about s = 1:

L(E, s) = c0 + c1(s− 1) + c2(s− 1)2 + · · ·

Define the analytic rank ran of E to be the order of vanishing of
L(E, s) at s = 1,

L(E, s) = cran(s− 1)ran + · · ·
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BIRCH AND SWINNERTON-DYER CONJECTURE (BSD)
Conjecture

The algebraic and analytic ranks of elliptic curves are equal.

Bryan Birch (Sir Henry) Peter
Francis Swinnerton-Dyer

Due to work of Gross, Zagier, Kolyvagin, if ran ≤ 1, then
ranal = ralg. If BSD is true, there is an algorithm to compute the
rank of an elliptic curve.

L(r)(E, 1)

r!
=

ΩE Reg(E) #X(E/Q)
∏

p cp

#E(Q)2
tors
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PREVIOUSLY KNOWN RESULTS

1992: Assuming BSD & GRH, Brumer showed the average rank
is bounded (by 2.3).

2004: Heath-Brown (assuming BSD, GRH) improved this
average rank to ≤ 2.0

2009: Young (assuming BSD, GRH) improved this to
≤ 25/14 ≈ 1.786.
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PREVIOUSLY KNOWN RESULTS

1992: Assuming BSD & GRH, Brumer showed the average rank
is bounded (by 2.3).

2004: Heath-Brown (assuming BSD, GRH) improved this
average rank to ≤ 2.0

2009: Young (assuming BSD, GRH) improved this to
≤ 25/14 ≈ 1.786.



Is there a proof of boundedness (with an estimate)
without assuming BSD, GRH?



Manjul Bhargava Arul Shankar



IDEA OF BHARGAVA-SHANKAR

We do not know how to compute E(Q), so we study the
‘simpler’ group E(Q)/nE(Q).

By the Mordell-Weil Theorem, we know that

E(Q) ∼= Zr ⊕ E(Q)tors

Then we must have

E(Q)/nE(Q) ∼= (Z/nZ)r ⊕ E(Q)tors/nE(Q)tors
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If we knew E(Q)/nE(Q) and E(Q)tors, we could compute r.

Example. If n = p, then

dimFp E(Q)/pE(Q) = dimFp E(Q)[p] + rank E(Q)
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SELMER & SHAFAREVICH-TATE GROUPS

Define a computable group Sn(E), called the Selmer group,
containing E(Q)/nE(Q).

Approximate E(Q)/nE(Q) by S(n)(E). We define an ‘error term’
X(E), called the Shafarevich-Tate group.

0→ E(Q)/nE(Q)→ S(n)(E)→X[n]→ 0
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Definition
Let ϕ : E/K→ E′/K be an isogeny. The ϕ-Selmer group E/K is
the subgroup of H1(GK/K,E[ϕ]) defined by

S(ϕ)(E/K) := ker

H1(GK/K,E[ϕ])→
∏

v∈MK

WC(E/Kv)


The Shafarevich-Tate group of E/K is the subgroup of WC(E/K)
defined by

X(E/K) := ker

WC(E/K)→
∏

v∈MK

WC(E/Kv)

 .



IDEA OF BHARGAVA-SHANKAR

0→ E(Q)/nE(Q)→ S(n)(E)→X[n]→ 0

If E(Q)[n] = {O}, then

nrank E ≤ |S(n)(E)|.

To prove boundedness of average rank, it is enough to show
that the average size of |S(n)(E)| for any n > 1.
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OUTLINE OF THE PROOF

1. For n ≤ 5, construct a representation V of an algebraic
group G defined over Z related to A,B.

2. Count the elements under the action of G on V with
bounded A,B.

3. Sieve to count the elements of S(n)(EA,B) ‘in’ the
representation.



Theorem (Bhargava–Shankar)

Let n = 1, 2, 3, 4, 5. When elliptic curves E/Q are ordered by height,
the average number of order n elements in the n-Selmer group is n.

Corollary

Let n = 1, 2, 3, 4, 5. When ordered by height, the average size of the
n-Selmer group for elliptic curves E/Q is σ(n).

Conjecture (Bhargava–Shankar)

Let n ≥ 1. When elliptic curves E/Q are ordered by height, the
average size of the n-Selmer group is σ(n).
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Proposition (Bhargava–Shankar)

If the previous conjecture is true for all n, then when elliptic curves
are ordered by height, a density of 100% of elliptic curves have rank 0
or 1.



Theorem (Bhargava–Shankar)

When elliptic curves E/Q are ordered by height, the average rank is
bounded (by 0.885 < 1).

Corollary

When elliptic curves E/Q are ordered by height, a positive proportion
have rank 0.

Corollary

When elliptic curves E/Q are ordered by height, more than 80% have
rank 0 or 1.
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WHAT ABOUT LOWER BOUNDS?

Theorem (Bhargava, Shankar, Skinner)

When elliptic curves E/Q are ordered by height, a positive proportion
have rank 1.
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have analytic rank 1.

Corollary

A positive proportion of elliptic curves satisfy the BSD conjecture.

Theorem (Bhargava–Shankar–Zhang)

More than 66% of elliptic curves have analytic rank 0 or 1, and thus
satisfy BSD.
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The average rank is bounded. But what about ranks
generally?



SOME HEURISTICS

New heuristics of Jennifer Park, Bjorn Poonen, John Voight,
and Melanie Matchett Wood model the distribution of Selmer
groups, Tate-Shafarevich groups, and Mordell-Weil groups of
‘random’ rational elliptic curves.

In particular, the p-adic Selmer group is modeled by the
intersection between randomly chosen maximal isotropic
subspaces in some large orthogonal spaces over Zp.

The model predicts. . .
• rank E(Q) is 0 or 1 each with density 50%.
• rank E(Q) ≥ 2 with density 0%.
• Only finitely many elliptic curves over Q have rank ≥ 22.
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Questions?


