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Introduction

The way mathematics textbooks and courses are structured, one would think Mathematics
is an extraordinary linear topic with perhaps a few paths leading to the same destination.
The reality is the fibers of Mathematics are more like the root system of vast forest: twisting,
with dead-ends, and leaps still to be made from tree to tree. The best path from one topic to
another can be unclear and even worse, require other topics which then require the topic you
wanted to learn in the first place! All this is doubled by the fact that to truly learn the topic,
one must spend enough time ‘living in the mindset’ of the topic until its inner workings finally
sink in - a time consuming process for sure! Grothendieck once described problem solving as
soaking a nut until it becomes soft enough to break. During these periods of intense focus on
particular areas, it can be tough to see the forest through the trees. Our purpose here will not
be to learn any particular topic nor necessarily seriously try to define each term, describe each
problem, or prove each theorem. Instead, we will try to see the intertwining of Mathematics
through the lens of a particular concept, namely homology/cohomology. (Co)Homology is
a topic which is trans-disciplinary and a powerful tool for many fields. We will see how it
comes into play in three of the largest fields in Mathematics: Algebra, Topology, and Analysis.
Since even this is too large a task, it will be our goal to briefly see how it is useful in solving
a particular problem in each field:

Algebra: Given two (abelian) groups A, C , does there exist a group E so that A ≤ E and
E/A∼= C? If so, ‘how many’ such groups are there? Can we describe them?

Topology: How can we tell spaces apart? For example, how do we distinguish the three
spaces below:

C = {e2πin : n ∈ [0, 1)}
D = {(r cosθ , r sinθ ): r ∈ [0, 1],θ ∈ [0,2π]}

T =
§�

(2+
p

2cosθ ) cosφ, (2+
p

2 cosθ ) sinφ,
p

2sinθ ): 0≤ θ ,φ ≤ 2π
ª

∗This talk was also titled: Homology: What does it know? Does it know things? Let’s find out!
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Analysis: Find a set X ⊆ R3 such that

V = {F : R3 \ X → R3 : ∇× F = 0}
W = {F : F =∇g}

dim(V/W ) = 8

1 Algebra

Abelian groups serve as a wonderful introduction to many of the techniques of Algebra and
are full of rich structures and theorems to accompany them. These are easily generalized to R-
modules (abelian groups with a ring compatibly acting on them). One important technique
used in Algebra to study spaces is to ‘compare’ spaces by looking at maps between them.
These provide interesting subspace which allow us to relate sub-structures to more ‘global’
structures. One easy example comes from the First Isomorphism Theorem.

Theorem 1.1 (First Isomorphism Theorem). If φ : G→ H is a homomorphism of groups, then
kerφ Ã G and G/kerφ ∼= φ(G).

Corollary 1.1. If φ : G→ H is a surjective homomorphism of groups, then G/kerφ ∼= H.

Notice that by ‘modding out’ by the kernel, we obtain something equivalent to the image
so kernels and images may have deeper relationships. This will ‘lead us’ to the notion of an
exact sequence, which will give us great diagrammatic way of encoding the information of
the First Isomorphism Theorem and much more.

Definition 1.1 (Exact). A pair of R-homomorphisms M
f
−→ N

g
−→ P is called exact (at N) if

im f = ker g. An infinite sequence of homomorphisms is exact if it is exact in each spot. A
sequence of the form

0 −→ M
f
−→ N

g
−→ P −→ 0

is called a short exact sequence.

Example 1.1.
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(i) The sequence 0 −→ M
f
−→ N is exact if and only if f is injective.

(ii) The sequence N
g
−→ P −→ 0 is exact if and only if g is surjective.

(iii) The sequence 0 −→ M
f
−→ N −→ 0 is exact if and only if f is an isomorphism.

(iv) The sequence 0 −→ M
f
−→ N

g
−→ P −→ 0 is exact if and only if f is injective, g is

surjective, and im f = ker g. Note that by exactness, we can view M as a submodule of
N (since f is injective, we have M ∼= im f ) and by the First Isomorphism Theorem: P ∼=
N/ker g = N/ im f ∼= N/M . Then a short exact sequence gives us a diagrammatic way
of representing the First Isomorphism Theorem. In this case, we say N is an extension
of P by M .

(v) The sequence 0 −→ ker f −→ M
f
−→ N −→ coker f −→ 0 is an exact sequence.

(vi) If P ⊆ N ⊆ M is a tower of submodules, there is an exact sequence 0 −→ N/P −→
M/N −→ M/P −→ 0.

(vii) The sequence 0 −→ M
i
−→ M ⊕ N

π
−→ N −→ 0 is an exact sequence. Therefore, an

extension of N by M always exists. To see an explicit example, take the following:

0 −→ Z
i
−→ Z⊕ (Z/nZ)

π
−→ Z/nZ −→ 0

However, this is not the only possible extension of Z/nZ by Z:

0 −→ Z
n
−→ Z

π
−→ Z/nZ −→ 0

If exact sequences give a nice pictorial way of comparing structures of R-modules, then
comparing exact sequences should give us even more information.

Definition 1.2 (Homomorphism of Exact Sequence). If · · · −→ Mn+1
fn+1−→ Mn

fn−→ Mn−1
fn−1−→

· · · and · · · −→ Pn+1
gn+1−→ Pn

gn−→ Pn−1
gn−1−→ · · · are exact sequences, then a homomorphism of

exact sequences is a collection of maps (βn)n∈Z, βn : Mn → Pn such that for all n ∈ Z and
m ∈ Mn, gnβn(m) = βn−1 fn(m); that is, the following diagram commutes

· · · Mn+1 Mn Mn−1 · · ·

· · · Pn+1 Pn Pn−1 · · ·

βn+1

fn+1

βn

fn

βn−1

fn−1

gn+1 gn gn−1

Example 1.2.
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(i) Suppose m, n ∈ Z+ and n | m. Let k = m/n. Then (abusing notation by letting π to
denote the obvious projection maps in each case) the following diagram commutes.

0 Z Z Z/nZ 0

0 Z/kZ Z/mZ Z/nZ 0

π

n

π

π

1

n π

(ii)

0 Z/2Z Z/2Z⊕Z/2Z Z/2Z 0

0 Z/2Z Z/2Z⊕Z/2Z Z/2Z 0

1

i1

s

π2

1

i1 π1

where i j is the inclusion into the jth component, πi is the projection onto the ith com-
ponent, and s swaps components. Note defining maps the ‘obvious’ way would not give
a commutative diagram.

This quickly leads to a new general type of proof: diagram chasing.

Proposition 1.1 (The Short 5–Lemma). If the rows in the following commutative diagram are
exact and α,γ are isomorphisms, then β is an isomorphism.

0 A B C 0

0 M N P 0

f

α

g

β γ

r s

Proof. Suppose b ∈ kerβ . We want to show that b = 0. Now sβ(b) = 0 but as the diagram
is commutative, 0 = sβ(b) = γg(b). Since γ is an isomorphism, we must have g(b) = 0 so
that b ∈ ker g = im f . Therefore, there is an a ∈ A so that f (a) = b. Now as the diagram is
commutative, β f (a) = rα(a). However, β f (a) = β(b) = 0 and so r(α(a)) = 0. But r,α are
injective so that a = 0. But then 0= f (a) = b as desired.

Now suppose n ∈ N . We want to find a b ∈ B such that β(b) = n. Now s(n) ∈ P
and as γ is an isomorphism, there is a unique c ∈ C such that γ(c) = s(n). However, g is
surjective so that there is a b ∈ B (not necessarily unique) so that g(b) = c. By the com-
mutativity of the diagram, we have γg(b) = s(β(b)) = s(n). Then s(n− β(b)) = 0 so that
n − β(b) ∈ ker s = im r. Therefore, there is a m ∈ M such that r(m) = n − β(b). But as
α is an isomorphism, there is a a ∈ A such that α(a) = m. As the diagram is commutative,
β f (a) = rα(a) = n − β(b). Now f (a) ∈ B so we consider the element b + f (a). Observe
β(b+ f (a)) = β(b) + β f (a) = β(b) + (n− β(b)) = n. But then β is surjective.

In fact, a more general result holds which we encourage the reader try to prove by diagram
chasing (which in some cases will be made by the homology theory to come).
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Proposition 1.2 (The 5–Lemma). Consider the following commutative diagram with exact
rows:

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

f1

h1

f2

h2

f3

h3

f4

h4 h5

g1 g2 g3 g4

(a) if h2, h4 are surjective and h5 is injective, then h3 is surjective.

(b) if h2, h4 are injective and h1 is surjective, then h3 is injective.

(c) if h1, h2, h4, and h5 are isomorphisms, then h3 is an isomorphism.

These proofs for any diagram with the same ‘shape’ actually hold more generally (and
allow by-passing the bothersome language of mono and epi for more general categories)
with the same proofs!

Theorem 1.2 (Mitchell Embedding Theorem). If A is an abelian category, there is an asso-
ciative unital ring R and a fully faithful exact functor F :A →Mod(R).

That is, every abelian category can be thought of as a full exact subcategory of some module
category. While it is not generally helpful to think of abelian categories in this manner, it does
allow us to transfer these ‘diagram chasing’ proofs to more general settings. Even the method
of diagram chasing can be more easily using the Salamander Lemma. But this is beyond
the scope of our discussion as this is more categorical than what this discussion should be.
Of course, much of our preceding discussion and the topics to come could be rephrased in
categoric language, but for simplicity we shall avoid this. Returning now to the theory at
hand, we wish to loosen the requirements for an exact sequence to get a more general (and
more powerful) theorem.

Definition 1.3 (Chain Complex). A sequence of R-modules, (Cn, dn)n∈Z, with maps (called
boundary maps) dn : Cn→ Cn−1 is said to be a chain complex if im dn+1 ⊆ ker dn for all n ∈ Z.

· · ·
dn+3−→ Cn+2

dn+2−→ Cn+1
dn+1−→ Cn

dn−→ Cn−1
dn−1−→ Cn−2

dn−2−→ · · ·

Remark 1.

(a) Note this generalizes the notion of exactness as in an exact sequence we have the stronger
im dn+1 = ker dn.

(b) It is often tiresome to indicate which chain map one is looking (since it is usually obvious
from context or is ‘irrelevant’ to the task at hand) at so one often drops the subscript and
simply writes d.
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(c) There are also cochain complexes, defined exactly as in the chain complex but the indices
of everything increase rather than decrease. We also write these with superscripts rather
than subscripts, i.e. (Cn, dn)n∈Z.

Definition 1.4 (Homology). Given a chain complex (Cn, dn)n∈Z, the nth homology group of
the complex is Hn := kerδn/ imδn+1.

Again, cohomology is defined mutatis mutandis using cochain complexes. We can gen-
eralize the comment above, we have Hn = 0 if and only if im dn+1 = ker dn. Now again as
with exact sequences, we would like to compare chain complexes. This will become particu-
larly useful with comparing homologies and allow us to easily create homologies from chain
complexes as well.

Definition 1.5 (Chain Map). Given two chain complexes (Cn,δn)n∈Z and (C ′n,δ′n)n∈Z, a map
of chain complexes is a family of R-homomorphisms ( fn : Cn→ C ′n)n∈Z so that δ′n fn = fn−1δn

for all n ∈ Z; that is, that the diagram below commutes.

· · · Cn+1 Cn Cn−1 · · ·

· · · C ′n+1 C ′n C ′n−1 · · ·

δn+1

fn+1

δn

fn

δn−1

fn−1

δ′n+1 δ′n δ′n−1

This naturally allows to state one of the more useful lemmas in Homology Theory:

Lemma 1.1 (Snake Lemma). Given the following commutative diagram of R-modules with
exact rows

M N P 0

0 M ′ N ′ P ′

f

α

g

β γ

f ′ g ′

there is an exact sequence

kerα
f
−→ kerβ

g
−→ kerγ

δ
−→ cokerα

f ′
−→ cokerβ

g ′
−→ cokerγ

The lemma is so named as it can be visualized with the following ‘snake like’ diagram.
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0 0 0

0 // ker(a) // ker(b) // ker(c)

δ

0 // A
f // B

g // C // 0

0 // A′
f ′ //

//

B′
g ′ // C ′ // 0

coker(a) // coker(b) // coker(c) // 0

0 0 0

�� �� ��

�� �� ��

a
��

b

��
c
��

�� �� ��

�� �� ��

This is useful because given maps of chain complexes, we actually get a map between
their homologies. Before stating and proving the result, we should make a note on notation.
Rather than writing

...
...

An+1 Bn+1

An Bn

An−1 Bn−1

...
...

fn+1

dA
n+1 dB

n+1

fn

dA
n dB

n

fn−1

dA
n−1 dB

n−1

for a chain map ( fn)n∈Z : (An, dA
n)→ (Bn, dB

n ), we can simply abbreviate this A∗
f
−→ B∗ for ease

of notation.

Theorem 1.3 (Long Exact Sequence). Let 0∗ −→ A∗
f
−→ B∗

g
−→ C∗ −→ 0 be a short exact

sequence of chain complexes (meaning each row is exact). Then for all n, there are natural maps
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δ : Hn(C)→ Hn−1(A), called connecting homomorphisms, such that the sequence

· · · −→ Hn+1(A) −→ Hn+1(B) −→ Hn+1(C)
δn+1−→ Hn(A)

Hn( f )−→ Hn(B)
Hn(g)−→ Hn(C)

δn−→ Hn−1(A) −→ · · ·

is exact. Similarly, if instead we have a short exact sequence of cochain complexes, then for all
n there are natural maps δ : Hn(C) −→ Hn+1(A) such that the sequence

· · · −→ Hn+1(A) −→ Hn+1(B) −→ Hn+1(C)
δn+1−→ Hn(A)

Hn( f )−→ Hn(B)
Hn(g)−→ Hn(C)

δn−→ Hn−1(A) −→ · · ·

is exact.

Proof. This is just a simple application of the Snake Lemma. Given a short exact sequence of
complexes 0 −→ A∗ −→ B∗ −→ C∗ −→ 0, apply the Snake Lemma to

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

dA
n dB

n dC
n

in order to get for each n an exact sequence

0 −→ ZA
n −→ ZB

n −→ ZC
n

δ
−→ An−1/ im dA

n −→ Bn−1/ im dB
n −→ Cn−1/ im dC

n −→ 0

We rearrange to a commutative diagram with exact rows

An/ im dnBn/ im d Cn/ im d 0

0 ZA
n−1 ZB

n−1 ZC
n−1

Applying the Snake Lemma we get an exact sequence

Hn(A) −→ Hn(B) −→ Hn(C)
δ
−→ Hn−1(A) −→ Hn−1(B) −→ Hn−1(C)

We leave naturality to the reader.

Note that we often write long exact sequences of homology groups as follows: given an
exact sequence of complexes 0 −→ A∗ −→ B∗ −→ C∗ −→ 0, we write the exact sequence of
homology groups as

H∗(A) H∗(B)

H∗(C)
δ

This result can take care of many results trivially. For example:
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Lemma 1.2 (3× 3 Lemma). Consider the following commutative diagram:

0 0 0

0 A′ B C 0

0 A B C 0

0 A′′ B′′ C ′′ 0

0 0 0

α′

f ′

β ′

g ′

γ′

α

f

β

g

γ

f ′′ g ′′

If the rows and middle column are exact, then if either the first or last column is exact, so is the
other.

Proof. This follows immediately from the Snake Lemma. We have a long exact sequence

· · · −→ Hn+1(C) −→ Hn(A) −→ Hn(B) −→ Hn(C) −→ Hn−1(A) −→ · · ·

However, the exactness of the middle column gives Hn(B) = 0 for all n. But then we have

· · · −→ 0 −→ Hn+1(C) −→ Hn(A) −→ 0 −→ Hn(C) −→ Hn−1(A) −→ 0 −→ · · ·

so that Hn+1(C) ∼= Hn(A) for all n. Then if either the first or last column is exact, then its
homology groups vanish. Given the homology groups are isomorphic, if either vanishes, so
does the other, implying exactness.

We now have enough language to briefly state the solution to the Algebra problem poised
at the beginning. An ‘easy’ way of describing the isomorphism classes of group extensions is
to recognize them as a certain cohomology group using Topoi Theory:

H2
Grp(C , A) = H2(BC , A) = H(BC ,B2A)

where BG ∈ Grp is the delooping groupoid. Better yet, we can recognize these as a certain
Ext group. A general powerful tool coming from Homology are the Ext and Tor groups. We
would go too far astray to try to describe them both here, but we will define Ext enough to
give a solution to our problem. Take a short exact sequence of groups

0 −→ A−→ E −→ C −→ 0

Take a free-resolution of C . That is, find an exact sequence of Z-modules

· · · −→ F2 −→ F1 −→ F0 −→ C −→ 0
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where each Fi is a free Z-module, i.e. a Z-module with a Z-basis. Note this is always possible.
It is a good exercise to see why this is. [In fact, we only need take each F to be projective.
But we do not want to take time to define that now. All free modules are projective and are
more likely to be familiar to the reader.] Now take the Hom groups of this sequence (recall
HomZ(M , N) is the group of Z-maps from M to N). This gives an exact sequence

0 −→ HomR(F
0, A) −→ HomR(F

1, A) −→ HomR(F
2, A) −→ · · ·

It is a good exercise for the reader to try to understand the maps here, why the order is
switched, and why the sequence is exact. Now take the homology of this sequence. We
call the homology groups Ext groups: Extn

Z(C , A) := Hn. There is a bijective correspondence
between the equivalence class of extensions of C by A and the elements of Ext1

Z(C , A).

2 Topology

Let’s recall our earlier question: how do we tell spaces apart? Take for example the three
spaces below: the circle, the disk, and the torus. How do we tell them apart? One intuitive
way is to say that the first and last spaces have ‘holes’ while the middle one does not.

This is may be easy to see when we easily plot the space, but what if we were handed simply
an arbitrary set, how could we distinguish them? Take for example the two spaces given by
the sets below:

C = {e2πin : n ∈ [0, 1)}

T =
§�

(2+
p

2cosθ ) cosφ, (2+
p

2 cosθ ) sinφ,
p

2sinθ ): 0≤ θ ,φ ≤ 2π
ª

which represent the circle and torus, respectively. It is not immediate from these definitions
that these spaces have ‘holes’. So we need a more axiomatic way to distinguish spaces. One
way of doing this is the fundamental group.

Definition 2.1 (Path Homotopy). A homotopy of paths f0, f1 (from x0 to x1) in a space X is
a family ft : I → X , 0≤ t ≤ 1 such that
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(i) ft(0) = x0 and ft(1) = x1 are independent of t.

(ii) the associated map F : I × I → X defined by F(s, t) = ft(s) is continuous.

If f0 and f1 are connected by a homotopy ft , we say that f0 and f1 are homotopic and denote
this f0 ' f1.

That is, f0 and f1 are path homotopic if we can continuously deform the path f0 into the
path f1, as in the figure below.

Now if instead of looking path homotopies, we can look at homotopies of loops, i.e. paths
with the same start and end points. Now if f : I → X is a loop at x0, then f (0) = f (1) = x0.
Then we can view the path f : I → X as a path f : S1 → X by identifying 0,1 ∈ I (as
f (0) = f (1) = x0). We can now define the fundamental group:

Definition 2.2 (Fundamental Group). The fundamental group of a space X at a point x0 ∈ X
is the set of equivalence classes of path homotopic loops at x0, denoted π1(X , x0).

Remark 2. If the space X is path connected, then the fundamental group π1(X , x0) is unique
up to isomorphism; that is, π1(X , x0) ∼= π1(X , x1) for all x0, x1 ∈ X , the being isomorphism
being conjugation by an equivalence class of a path connecting x0 to x1. In this case, we can
simply write π1(X ).

Why does this help us with the problem at hand? For instance, any loop in the disk can be
deformed to a point, so the fundamental group is trivial – consisting only of the equivalence
class of constant paths in the disk. However any loop around the origin in the disk with the
origin removed cannot be deformed to a point. Therefore, the fundamental group of this
space is nontrivial (in fact, the fundamental group of this space is isomorphic to Z). Thus,
the fundamental group has allowed us to distinguish these two spaces.

In fact, considering the fundamental group and the theory surrounding it yields a lot of
interesting results and give us a method of approaching problems not just in Topology:
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Theorem 2.1. Every subgroup of a free group is free.

Prob 2.1. Find all index 2 subgroups of the free group F(2) = 〈a, b〉.

Theorem 2.2. Let F(n) denote the free group on n generators. Then for n = 2,3, . . ., F(n) Ã
F(2).

While the fundamental group can distinguish many spaces, it fails even to distinguish the
spheres Sn for n> 1. Generally, the disadvantage to the fundamental group is that while it is
useful in studying spaces with low ‘dimension’ (which is to be expected since it depends on
loops I → X ), it loses much of its power for higher dimensional spaces as it cannot often tell
them apart or becomes difficult to compute. There are higher analogs of the fundamental
group – the higher homotopy groups, pn(X ). The higher homotopy groups look at homotopic
maps Sn → X . However, again, these are generally nearly intractible to compute – even for
the spheres Sn. So we would like a different tool and this is where homology enters. While the
definitions are less accessible and more technical, the homology groups are very computable.
However, these computations depend on being able to describe the space. There are many
ways to describe spaces: CW complex,∆-complexes, triangulations, et cetera (see the figures
above for the diagrams for these methods for the torus, respectively).

Since it is not our goal to learn the theory generally, we will not describe any of these
in details. We will be using CW-complex which are created by gluing disks Dn, called n-
cells, together for various n. To motivate why the homology groups are useful, we follow the
introduction in Hatcher [Hat01]. Consider the space in the diagram below.
We still want to be able ‘see’ holes in the space. So lets consider loops at x . For example,
ab−1 or ab−1dc−1. Should the loops ab−1 and b−1a be considered different? They do have
different starting positions – namely x , y , respectively. On the other hand, they do represent
the same circle in the space. If we abelianize, these would be the same loop: (switching to
additive notation) a−b and (−b)+a = a−b. Notice by doing so, we no longer need consider
basepoints as all loops become simple cycles. So now cycles become linear combinations of
edges with integer coefficients. We shall call these chains of edges. Some of these chains can
be decomposed into loops several ways. For example, a − b + c − d can be decomposed as
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(a− c)+ (b− d) or (a− d)+ (b− c). However, we do not want to distinguish between these
decompositions. So when we use the word ‘cycle’, we should mean any linear combination of
edges for which there is at least one decomposition into loops (cycles in the previous sense).

What is the condition for a chain to be a cycle? Geometrically, a cycle has the property
that it enters each vertex the same number of times it leaves the vertex. Take the chain
ka + l b + mc + nd. This chain enters y a total number of k + l + m + n times as each of
a, b, c, and d enters y once. Similarly, each of the edges leaves x ones to the number of times
the chain enters x is −k − l − m − n = 0. Hence, the criterion for a chain to be a cycle is
k+ l+m+n= 0. So what we shall do is define free abelian groups on the disks Dn that build
the space. For n = 0, these are the vertices. For n = 1, these are are the edges. For n = 2,
these are the filled regions between the edges. We denote these free groups Cn. Then in our
case, C0 is the free abelian group with basis the vertices x , y and C1 is the free abelian group
with basis the edges a, b, c, and d. Then we define a homomorphism δ : C1 → C0 via ‘tip
minus tail’. Then the cycles are the kernel of δ. It is routine to verify that a − b, b − c, and
c− d form a basis for the kernel. Notice we can think of these as directed edges. Then every
cycle in this space is a unique linear combination of these cycles. Notice this corresponds to
the three ‘holes’ in the space. Huzzah!

Let’s take a look at a similar, albeit different space, shown the the figure above. In this
space, we have attached a disk to the cycle a − b. Then the loop formed by the cycle a − b
is now homotopic to the constant loop as we can contract it to a point by sliding the loop
through A. That is, we have filled a hole in the previous space. This suggests we have made
the cycle a − b trivial by forming a quotient using the subgroup generated by a − b. In this
quotient, the cycle a−c and b−c are equivalent, which makes sense as in this new space they
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are homotopic. To make this algebraically sound, we define C2 to be the infinite cyclic group
generated by A and examine the chain of maps (no pun intended as this is a chain complex)

C2
δ2−→ C1

δ1−→ C0, where δ2(A) = a − b. Then the quotient discussed is kerδ1/ imδ2 – the
1-dimensional cycles module those which are boundaries. This is exact the homology group
H1(X ). The previous example was the first homology group H1(X ) = kerδ1/ imδ2 = kerδ1.

Let’s consider a final example given by the space shown in the figure above, where we
have attached to the previous example another disk D1 along a − b. So together, A, B form
a ‘hollow tube’ along the left side of the space. Redefine the map δ2 : C2 → C1 by having
it send both A, B to a − b. Then the first homology group H1(X ) is the same as before.
However, δ2 now has a nontrivial kernel – namely the subgroup of C2 generated by A− B.
Then H2(X ) = kerδ2

∼= Z. Then this ‘tubular’ cycle detects the presence of a ‘hole’ in the
space. Notice, even by the algebraic measurement afforded by the homology groups, the
hole here is different than the holes of the first example. If we attached a 3-cell, D3, along
the 2-sphere formed by A and B, we create a chain group C3 generated by this 3-cell C .
Define a homomorphism δ3 : C3 → C2 via δ3(C) = A− B. Now H2(X ) = 0 is now trivial
while H3(X ) = kerδ3 = 0 so that we have filled the hole from before. But we still have
H1(X )∼= Z×Z generated by b− c and c−d. Generally, we form a space X by gluing together
cells of various dimensions. We form the free abelian groups Cn generated by the n-cells and
attach them together via maps δn : Cn→ Cn−1. This gives us the chain complex

· · · −→ C3
δ3−→ C2

δ2−→ C1
δ1−→ C0

δ0−→ 0

Let’s now distinguish some of the space from before. Consider the circle shown above.
We form the circle by taking a 0-cell, the vertex v, and attaching a 1-cell, the disk D1 = [0,1]
labeled a, by gluing its endpoints to v. Then C0 is the free abelian group generated by v and
C1 is the free abelian group generated by a. Define δ0 to be the zero map and δ1 to be the
map sending a to v − v = 0. Since there are no other cells, Cn = 0 and δn = 0 for all other
n ∈ Z. This gives us the chain complex

0
δ2−→ C1 = Z= 〈a〉

δ1−→ C0 = Z= 〈v〉
δ0−→ 0

Then the homology groups are H1 = kerδ1/ imδ2 = 〈a〉/0= 〈a〉 ∼= Z and H0 = kerδ0/ imδ1 =
〈v〉/0 = 〈v〉 ∼= Z. Clearly, Hn = 0 for all other n ∈ Z. It is not clear that our construction of
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the homology groups is independent of how we build the space but this is the case. Consider
building the circle as in the diagram below.

We define C0 to be the free abelian group generated by the 0-cells v, w and C1 to be the
free abelian group generated by the 1-cells a, b. We define maps δ0 = 0 and δ1 to be the
map given by a 7→ w− v and b 7→ v −w – extending by linearity. Again, we take Cn = 0 and
δn = 0 for all other n ∈ Z. Observe that δ1(a+ b) = δ1(a) + δ1(b) = (w− v) + (v − w) = 0.
Since C2 is two-dimensional and not the zero map, this must generate the kernel. This gives
the chain complex

0
δ2−→ C1 = Z2 = 〈a, b〉

δ1−→ C0 = Z2 = 〈v, w〉
δ0−→ 0

Then we have homology groups H1 = kerδ1/ imδ2 = 〈a + b〉/0 = 〈a + b〉 ∼= Z and H0 =
kerδ0/ imδ1 = 〈v, w〉/〈w− v, v−w〉= 〈v, w〉/〈v−w〉 ∼= 〈v〉 ∼= Z. Clearly, Hn = 0 for all other
n ∈ Z. This is exactly as before. Now consider the solid circle:

Now C0, C1,δ0,δ1 are the same as before. However, this time we attach a 2-cell. Define
C2 to be the free abelian group generated by U with δ2 to be the map given by δ2(U) = a+ b,
extending by linearity. Then we have chain complex

0
δ3−→ C2 = Z= 〈U〉

δ2−→ C1 = Z2 = 〈a, b〉
δ1−→ C0 = Z2 = 〈v, w〉

δ0−→ 0
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so that we have homology groups H2 = kerδ2/ imδ3 = 0/0 = 0, H1 = kerδ1/ imδ2 =
〈a+b〉/〈a+b〉= 0, and H0 = kerδ0/ imδ1 = 〈v, w〉/〈v−w, w−v〉= 〈v, w〉/〈v−w〉 ∼= 〈v〉 ∼= Z.
Notice then we have filled the hole from before by attaching the disk. Since homeomorphic
spaces should have isomorphic homology groups, the circle and disk cannot be isomorphic.
Therefore, we have algebraically distinguished the disk and the circle! In fact, we have
generally Hi(Sn) = 0 when i 6= 0, n and Hn(Sn) = H0(Sn) = Z. We leave it as a challenge to
the reader to figure out how to attach the 2-cell to the CW complex for the torus below and
verify that its homology groups are H0 = Z, H1 = Z⊕ Z, H2 = Z, and Hn = 0 for all other
n ∈ Z.

There are many interesting homology theories in Algebraic Topology: Simplicial Homol-
ogy, Singular Homology, Cellular Homology, Cubical Homology, Floer Homology, Khovanov
Homology, Morse Homology, K-homology, Steenrod Homology,Persistent Homology, etc.. We
leave it to the interested reader to seek them out.
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3 Analysis

Before returning to the problem from Analysis poised in the beginning, we shall look at
another similar problem: if f = ( f1, f2) : U → R2 is a smooth function on an open set
U ⊆ R2, is there a smooth function F : U → R so that ∂ F

∂ x = f1 and ∂ F
∂ y = f2, i.e. ∇F = ( f1, f2)?

Since F is smooth function, we have ∂ 2F
∂ y ∂ x =

∂ 2F
∂ x ∂ y and hence ∂ f1

∂ y =
∂ f2
∂ x . Clearly, this condition

is necessary but is it sufficient? Let f : R2 \ {(0,0)} → R2 be given by

f (x , y) =
� −y

x2 + y2
,

x
x2 + y2

�

It is routine to check that ∂ f1
∂ y =

∂ f2
∂ x . However, there is no function F : R2 \ {(0,0)} → R so

that ∇F = f . If there were then
∫ 2π

0

d
dθ

F(cosθ , sinθ ) dθ = F(1,0)− F(1, 0) = 0

However, the chain rule gives

d
dθ

F(cosθ , sinθ ) =
∂ F
∂ x
·(− sinθ )+

∂ F
∂ y
·cosθ = − f1(cosθ , sinθ )·sinθ+ f2(cosθ , sinθ )·cosθ = 1

Therefore, no such F can exist. Note that the open set U where f (x , y) is defined contains a
hole – namely (0,0). However for a ‘nice’ open region, the question we asked as an affirmative
solution.

Definition 3.1 (Star-Shaped). A subset X ⊆ Rn is star-shaped with respect to x0 ∈ X if the
line segment {t x0 + (1− t)x : t ∈ [0,1]} is contained in X for all x ∈ X .

Proposition 3.1. If U ⊆ R2 is an open star-shaped region, then any smooth function f =
( f1, f2) : U → R2 with ∂ f1

∂ y =
∂ f2
∂ x , there is a function F : U → R with ∇F = f .

However, how do we answer these type of questions generally? We require some sort of
general theory. Let U ⊆ R3 be an open set and C∞(U ,Rn) be the set of smooth functions
φ : U → Rn on U . Taking U ⊆ R3, we define the following maps:

Grad : C∞(U ,R)→ C∞(U ,R3); φ 7→ ∇φ
Curl : C∞(U ,R3)→ C∞(U ,R3); φ 7→ ∇×φ
Div : C∞(U ,R3)→ C∞(U ,R); φ 7→ ∇ ·φ

Now Grad, Rot, and Div are linear operators, Curl◦Grad= 0 (gradient fields are irrotational),
and Div ◦ Rot = 0 (curls are incompressible) so that im Grad is a subspace of kerCurl and
imRot is a subspace of ker Div. Therefore, we define the following quotients:

H0(U) := kerGrad

H1(U) := kerCurl/ imGrad

H2(U) := kerDiv/ im Curl
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[Notice the definition of H1 should look a lot like the problem proposed at the beginning.]
These groups can be used to determine various properties of the set U . For example,

Proposition 3.2. An open set U ⊆ Rk is connected if and only if H0(U) = R.

In fact, this can be extended to show that dim H0(U) is the number of connected com-
ponents of U . By the Proposition 3.1 above, we have H1(U) = 0 whenever U ⊆ R2 is star-
shaped. Furthermore from our previous work, we know that H1(R2 \ {(0,0)} 6= 0. Thus for
a star-shaped region, we have

Proposition 3.3. If U ⊆ R3 is an open star-shaped region, then H0(U) = R and H1(U) =
H2(U) = 0.

Generally, if V is a R-vector space, a map

f : V × V × · · · × V
︸ ︷︷ ︸

k times

→ R

is called a k-linear map.

Definition 3.2 (Alternating Map). A k-linear mapω : V k→ R is alternating ifω(v1, . . . , vk) =
0 whenever vi = v j for i 6= j. The vector space of alternating k-linear maps is denoted Altk(V ).

We define a product on these spaces as follows:

Definition 3.3 (Exterior Product). For ω1 ∈ Altp(V ) and ω2 ∈ Altq(V ), define

(ω1 ∧ω2)(v1, v2, . . . , vp+q) :=
∑

σ∈S(p,q)

sgn(σ)ω1(vσ(1), . . . , vσ(p))ω2(vσ(p+1), . . . , vσ(p+q))

where S(p, q) is all the permutations of {1,2, . . . , p+q}withσ(1)< · · ·< σ(p) andσ(p+1)<
· · ·< σ(p+ q).

This product has the following properties:

(i) ω1 ∧ω2 is a (p+ q)-linear map.

(ii) if ω1 ∈ Altp(V ) and ω2 ∈ Altq(V ), then ω1 ∧ω2 ∈ Altp+q(V ).

(iii) if ω1 ∈ Altp(V ) and ω2 ∈ Altq(V ), then ω1 ∧ω2 = (−1)pqω2 ∧ω1.

(iv) ifω1 ∈ Altp(V ), ω2 ∈ Altq(V ), andω3 ∈ Altr(V ), thenω1∧ (ω2∧ω3) = (ω1∧ω2)∧ω3.

Let U ⊆ Rn be an open set, {e1, e2, . . . , en} denote the standard basis forRn, and {ε1,ε2, . . . ,εn}
the dual basis of Alt1(Rn).

Definition 3.4 (Differential p-form). A differential p-form on U is a smooth map ω : U →
Altp(Rn). The vector space of all such maps is denoted by Ωp(U).
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For example, if p = 0 then Alt0(R) and Ω0(U) is just the vector space of smooth real-valued
functions on U so thatΩ0(U) = C∞(U ,R). Let Dω denote the ordinary derivative of a smooth
map ω : U → Altp(Rn) and its value at x by Dxω.

Definition 3.5 (Exterior Differential). The exterior differential dp : Ωp(U)→ Ωp+1(U) is the
linear operator

dxω(v1, . . . , vp+1) =
p+1
∑

i=1

(−1)i−1Dxω(vi)(v1, . . . ,bvi, . . . , vp+1)

where Dxω(e j) =
∑

I
∂ω
∂ x j
(x)εI , j = 1, . . . , n, εI = εi1 ∧ · · · ∧ εip , and I runs over all sequences

with 1≤ i1 < i2 < · · ·< ip ≤ n.

Now dxω ∈ Altp+1(Rn) and the composition d2, Ωp(U) → Ωp+1(U) → Ωp+2(U), is zero.
This should make one think that we can define a homology on these spaces and this is indeed
the case.

Definition 3.6 (de Rham Cohomology). The pth de Rham cohomology group is the quotient
vector space

H p(U) = ker dp/ im dp−1

Then in particular H0(U) is the kernel of d : C∞(U ,R)→ Ω1(U) – the vector space of maps
f ∈ C∞(U ,R) with vanishing derivative, i.e. the space of locally constant maps. The case
where U is again a star-shaped region, not surprisingly, have rigid restrictions on their de
Rham cohomology groups.

Theorem 3.1 (Poincaré’s Lemma). If U ⊆ Rn is an open star-shaped region, then H p(U) = 0
for p > 0 and H0(U) = R.

Of course, these are not the only sets for which the cohomology groups have special proper-
ties:

Theorem 3.2. If an open set U ⊆ Rn is covered by convex open sets U1, . . . , Ur , then H p(U) is
finitely generated.

Theorem 3.3. If C ( Rn is a closed subset, then

H p+1(Rn+1 \ C)∼= H p(Rn \ C), p ≥ 1

H1(Rn+1 \ C)∼= H0(Rn \ C)/R
H0(Rn+1 \ C)∼= R

Theorem 3.4. If U ⊆ Rn is an open contractible set, then H p(U) = 0 for p > 0 and H0(U) = R.
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Of course as with the ordinary homology groups, there is a way to relate the structure of
the cohomology groups for a space to the cohomology groups of open subsets making up the
space.

Theorem 3.5 (Mayer-Vietoris). If U1, U2 ⊆ Rn are open subsets, there is an exact sequence of
cohomology of vector spaces

· · · −→ H p(U1 ∪ U2) −→ H p(U1)⊕H p(U2) −→ H p(U1 ∩ U2)
δ
−→ H p+1(U1 ∪ U2) −→ · · ·

We now return to the original problem:

V = {F : R3 \ X → R3 : ∇× F = 0}
W = {F : F =∇g}

dim(V/W ) = 8

Notice then we can phrase our original question as follows: find a set X so that dim H1(R3 \
X ) = 8. Take X to be the set of 8 lines parallel to the z-axis , distributed equally along the
unit circle. Observe that R3 \ X deformation retracts to the plane minus the 8 intersections
of these lines with the plane. It is a routine exercise to show that

H p(R2 \ {(0,0)}) =

¨

R, p = 0,1

0, p ≥ 2

It is then a matter of induction using Mayer-Vietoris to show that H1(R2 \ (X ∩ R2)) = R8.
But then we have H1(R3 \ X ) ∼= R8, as desired. Generally, the dimension of H1 will give
the number of 1-dimensional ‘holes’ in the space and the dimension H2 gives the number
0-dimensional ‘holes’ in the space.
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