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1 Introduction & Historical Background

The study of group rings began with Arthur Cayley (studying CS3) in about 1854. Group rings then ap-
peared in some works in the late 1800s in complex algebras. However, it was not until after the turn of the
century that group rings were used in Representation Theory to address more traditional problems. Finite
dimensional complex rings occur naturally in the study of representations of finite groups, i.e. Maschke’s
Theorem1 and Schur’s Lemma.2 Nevertheless, the first monogrammed work on group rings was not until
Donald S. Passman’s “The Algebraic Structure of Group Rings” [Pas77] in 1977. Much of what is known
about group rings originated with the study of semisimple rings. Rickart showed in 1950 that if K = C,
then KG is semisimple regardless of the group G. Another major conjecture (now solved) was when does
RG ∼= RH imply that G ∼= H? Note that this cannot hold for all group algebras. For example, consider
the case of R = C and |G| < ∞. Then CG is isomorphic to a direct product of matrix rings. For any two
non-isomorphic abelian groups G, H of order n, we have CG ∼= Cn and CH ∼= Cn but G 6∼= H. Hertweck
showed in 2001 that there are two non-isomorphic groups of order 225 · 972 having non-isomorphic group
rings.

2 Group Rings

Definition 2.1 (Group Ring). Let R be a ring with identity and G a group. A group ring, denoted RG, is a ring
consisting of sums of finite support

∑
g∈G

agg

where ag ∈ R and g ∈ G. The operations are defined as follows:

∑
g∈G

agg + ∑
g∈G

bgg = ∑
g∈G

(ag + bg)g(
∑

g∈G
agg

)(
∑

g∈G
bgg

)
= ∑

g∈G
cgg

where cg = ∑h∈G agbg−1h. This ring is unital with identity 1R1G. This group ring is a left R-module under action

r · ∑
g∈G

agg = ∑
g∈G

(rag)g

The group ring is then a free R-module with basis consisting of copies of elements of G with rank |G|. If R is a field
(often denoted k), kG is a vector space over k, with a canonical basis consisting of the elements of G. If G is finite, then
kG is a finite dimensional k-algebra. The ring kG is often called the group algebra.

1Maschke’s Theorem: if G is a finite group and k is a field such that |G| · 1k 6= 0, then kG is a semisimple k-algebra
2Schur’s Lemma: if L is a simple R-module then EndR L is a division ring
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Remark 2.2. Multiplication in a group ring might seem strange but it is exactly what is required when
we force (agg)(bhh) = agbhgh. One could simply define this to be the product. One could also define(

∑g∈G agg
) (

∑g∈G bgg
)
= ∑u∈G cug, where cu = ∑gh=u agbh. One natural sees the equivalence via gh = u

if and only if g = uh−1 or vice versa gh = u if and only if h = g−1u.

Definition 2.3 (Support Group). For a function f ∈ RG, the support of f , denoted Supp( f ), consisting of the
finite subset of points x ∈ G for which f (x) 6= 0. The support group of f is the smallest subgroup of G containing
Supp( f ).

The identity of a group ring is 1R · 1G. In general, RG is not commutative. In fact, RG is commutative
if and only if both R and G are commutative.The group ring RG is a ring extension of R as we have a
ring homomorphism R → RG given by r 7→ r · 1G. So RG is by definition an R-algebra. Finally, the map
G → RG given by g 7→ 1R · g is a group embedding of G into the group of units of RG. Furthermore, these
types of maps can be naturally extended.

Proposition 2.4. If ϕ : S→ R is a ring homomorphism, then ϕ extends uniquely to a homomorphism of group rings
ϕ : SG → RG given by

ϕ

(
∑

g∈G
agg

)
= ∑

g∈G
ϕ(ag)g

If ϕ is injective, then so too is ϕ. In this case, SG can be interpreted as a subring of RG as SG canonically embeds
into RG.

Proposition 2.5. If ϕ : H → G is a group homomorphism, then ϕ extends uniquely to a homomorphism of group
rings ϕ : RH → RG given by

ϕ

(
∑

g∈G
agg

)
= ∑

g∈G
ag ϕ(g)

This shows that if H ≤ G, then RH can be canonically embedded into RG.

Proposition 2.6. Let R be a commutative ring, G a group, and A an R-algebra. If ϕ : G → I(A), where I(A) is
the set of invertible elements of A, be a group homomorphism. Then ϕ induces a unique R-algebra homomorphism
ϕ : RG → A such that ϕ(g) = ϕ(g) for all g ∈ G.

There are also projection maps of the R-module RG onto submodules RH, where H ≤ G. The projection
map is πH : RG → RH mapping the basis elements g ∈ G \ H to 0. That is for a ∈ RG given by a =
∑g∈G agg, we have

πH(a) = ∑
g∈H

agg

Proposition 2.7. Let H ≤ G be groups and R be a ring. The projection map πH : RG → RH is an R-module
homomorphism such that for a ∈ RG, b ∈ RH, we have

πH(ab) = πH(a)b
πH(ba) = bπH(a)

Example 2.8. Let k be a field and let G = 〈g〉 be a cyclic group of order n. We know k[x] is a PID. Take
the map ϕ : k[x] → kG given by x 7→ g is a surjective ring homomorphism. It is clear that xn − 1 ∈
ker ϕ. Furthermore, if p(x) ∈ ker ϕ, then we know p(x) = q(x)(xn − 1) + r(x) for q(x), r(x) ∈ k[x] with
deg r(x) < n so that ker ϕ is the PID generated by xn − 1. Therefore by the First Isomorphism Theorem,
kG ∼= k[x]/(xn − 1). /
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Example 2.9. By the Artin-Wedderburn Theorem, any group ring over k is isomorphic as a k-algebra to a
direct product of matrix rings over a finite dimensional division algebra Di. Then

kG ∼=
n

∏
i=1

Mni (Di)

/

Remark 2.10. As a reminder, the Artin-Wedderburn Theorem states that if R is a finite dimensional semisim-
ple algebra, then R is isomorphic to a product of matrix algebras over division rings.

Example 2.11. As a specific example of the previous example, if k is an algebraically closed field, the poly-
nomial xn − 1 factors completely into irreducible factors

xn − 1 = (x− ζ1)(x− ζ2) · · · (x− ζn) =
n

∏
i=1

x− ζi

Furthermore, if n is a prime number and k = C, then the roots of unity ζ1, ζ2, · · · , ζn are all distinct. If Mi is
the maximal ideal of C[x] generated by the polynomial x− ζi, then by the Chinese Remainder Theorem

CG ∼= C[x]/
n

∏
i=1

Mi
∼=

n

∏
i=1

C[x]/Mi
∼= Cn

/

Example 2.12. If R = C and G = Z, we know that CZ ∼= C[x, x−1], the ring of formal sums ∑n∈Z anxn with
finite support. /

Example 2.13. Given any linear group representation ρ : G → GL(V), where V is a vector space over a
field k. This group representation has a kG-module structure on V and vice versa. /

A group ring RG can be identified with the finitely supported R-valued functions on G. Suppose x ∈
RG. Then x = ∑g∈G agG. We can then interpret x as a function x : G → R given by x(g) = ag. The group
ring RG can then be given addition operations

(x + y)(g) = x(g) + y(g)

for all x, y ∈ RG and g ∈ G. Multiplication is similar

(x ∗ y)(g) = ∑
h∈G

x(gh−1)y(h)

for all x, y ∈ RG and g ∈ G, where ∗ is just ordinary convolution.
For any nontrivial group, a group ring can never be simple as they always contain a proper nonzero

ideal.

Definition 2.14 (Augmentation Ideal). Let G be a nontrivial group and let E be the trivial group. Consider the
homomorphism ϕ : G → E. If R is a ring, it is clear that RE ∼= R. The extended ring homomorphism ϕ : RG → R
is called the augmentation map. The kernel of this map is called the augmentation ideal:

ker ϕ =

{
∑

g∈G
agg | ∑

g∈G
ag = 0

}

This ideal is denoted ω(RG).

Notice that if R is a field then the augmentation ideal of RG is maximal as it is the kernel of a ring
homomorphism into a field.
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3 Idempotents and Zero Divisors

Just to make clear the definition for group rings.

Proposition 3.1. An element x = ∑g∈G agg ∈ RG is in the center of RG if and only if the coefficients ag are
contained in the center of R and ag = ahgh−1 for all g, h ∈ G.

The zero divisor conjecture of Kaplansky is closely related to another conjecture as the two concepts are
similar. We will discuss them simultaneously. However, we first give some definitions.

Definition 3.2 (Zero Divisor). An element y ∈ R is a zero divisor if there is a nonzero element x ∈ R such that
xy = 0. An element is a trivial zero divisor if y = 0. Left and right zero divisors are defined in the obvious way. If
the ring R is commutative, all the definitions are equivalent.

Example 3.3. If n = pq for some primes p, q, then p, q are zero divisors in Z/nZ. /

Example 3.4. We have two examples of zero divisors in M2(R)(
1 0
0 0

)(
0 0
0 1

)
=

(
0 0
0 0

)
(

1 1
2 2

)(
1 1
−1 −1

)
=

(
0 0
0 0

)
/

Definition 3.5 (Idempotent). An element e ∈ R is an idempotent if e2 = e. A map e : R → R is an idempotent
mapping if e2 = e. An idempotent is trivial if e = 0 or e = 1.

Example 3.6. A matrix with 0’s and 1’s along its diagonals and zeros elsewhere is an idempotent matrix in
Mn(R). /

Example 3.7. If M = N ⊕ L is an R-module, then the projection maps πN and πL are idempotent maps. /

Remark 3.8. If e is an idempotent, then all the conjugates of e by a unit are idempotents. That is, if e is an
idempotent and x ∈ R is a unit, then xex−1 is an idempotent. Furthermore, if e is an idempotent then 1− e
is an idempotent. Notice also that a nilpotent element is also a zero divisor.

Observe that nontrivial idempotents e ∈ R imply the existence of zero divisors as e(1 − e) = 0 =
(1− e)e. However, the existence of idempotents is more stringent than requiring zero divisors as Z/4Z has
nontrivial zero divisors but no nontrivial idempotent elements.

Conjecture 1 (Kaplanksy). Let k be a field and G a torsion free group. Then kG contains no nontrivial idempotents.

It is clear that if R contains an idempotent elements, so too does RG. Furthermore, it is necessary that G
be torsion free for otherwise it would have a finite subgroup H and then

x =
1
|H| ∑

h∈H
h

would be an idempotent (se that Hh = H for all h ∈ H). This conjecture has been confirmed by Formanek
for noetherian groups (groups which satisfy the ascending chain condition) in the case where k has char-
acteristic 0. Furthermore, if R is an integral domain and G is torsion free abelian then RG is an integral
domain so RG cannot contain nontrivial idempotents (for otherwise it would contain zero divisors).

Proposition 3.9. If R is an integral domain and G is a torsion free abelian group, then RG is an integral domain.

4



Proof: If H ≤ G, we have the inclusion RH ↪→ RG. If x ∈ RG is a torsion element, there is a 0 6= y ∈ RG
such that xy = 0. Let H be the subgroup of G generated by the supports of x, y and form the subgroup ring
RH. Then x, y ∈ RH, where H is finitely generated. It then suffices to consider the case where G is a finitely
generated torsion free abelian group.

Let G = Zn and let Q = Frac(R) be the field of fractions. Consider the field of rational functions
Q(x1, · · · , xn). The elements of G are n-tuples of integers. Map any n-tuple to xmi

1 · · · x
mn
n . This is a group

homomorphism, which then extends to a ring homomorphism RG ↪→ Q(x1, · · · , xn). But Q(x1, · · · , xn) is
a field.

However, there is a stronger conjecture, also formulated by Kaplanksy.

Conjecture 2 (Kaplanksy). Let k be a field and G a torsion free group. Then kG has no nontrivial zero divisors.

It is clear that R need be a domain as R ⊆ RG and that G need be torsion free for G ⊆ RG. If G
contained any torsion element g of order n > 2, then x = 1− g would be a torsion element in RG by letting
y = 1 + g + · · ·+ gn−1, which is nonzero so that we have

0 = gn − 1 = (1− g)(1 + g + · · ·+ gn−1) = xy

This conjecture has been shown for several classes of groups. For example in 1976, Brown, Farkas, Snider
confirmed the conjecture for polycyclic-by-finite groups over fields of characteristic 0.

Definition 3.10 (Polycyclic Groups). A polycyclic group is a solvable group with cyclic factors. That is, we have a
chain of normal subgroups

1 = G0 E G1 E G2 · · ·E Gn = G

such that Gi+1/Gi is cyclic for i = 0, 1, · · · , n− 1. A group is called a polycyclic-by-finte if it contains a polycyclic
normal subgroup H of finite index.

It is also known that if k is a field and G is a torsion free group, then kG has no nontrivial central zero
divisors. The result has also been shown for finite conjugacy class groups (FCC-groups) and unique product
groups (up-groups). However, the conjecture has not even been shown for any torsion free group G over
F2. There are some results that give equivalencies for the conjecture, but none of which are of any particular
use.

Proposition 3.11. Let k be a finite field and G be a torsion free group. If kG is a domain then CG is a domain.

Proposition 3.12. Let G be a torsion free group. The following are equivalent:

(i) For any field k, kG is a domain.

(ii) For any finite field k, kG is a domain.

Remark 3.13. There is actually a stronger conjecture which would imply the two given above: Let k be
a field and G a torsion free group. Then kG contains no nontrivial unit. This is known as the Kadison-
Kaplanksy conjecture. If one can show this conjecture holds for the reduced C∗-algebra, then the conjecture
holds and we obtain the above conjectures as corollaries. The Kadison-Kaplanksy conjecture was shown
to hold in 1997 by Higson and Kasparov for groups a-(T)-menable groups or those with the Haagerup
property; that is, groups admitting a metrically proper affine isometric action on Hilbert spaces. Examples
of such groups are amenable, free coxeter, countable subgroups of GL2(k), or any discrete subgroups of
SO(n, 1) or SU(m, 1).
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4 Hopf Algebras

Definition 4.1 (k-algebra). A k-algebra is a k-vector space with two linear maps

m : A⊗k A→ A and u : k→ A

called multiplication and unit, respectively, such that the following diagrams are commutative

A⊗ A⊗ A A⊗ A A⊗ A

k⊗ A A⊗ k

A⊗ A A A

m⊗1

1⊗m m

u⊗1 1⊗u

m

The right diagram gives the identity element in A by setting 1A = u(1k).

Definition 4.2 (Twist Map). For any k-spaces V, W, the twist map τ : V ⊗W → W ⊗ V is given by v⊗ w 7→
w⊗ v.

Definition 4.3 (Coalgebra). A k-coalgebra (with counit) is a k-vector space, A, with two k-linear maps

∆ : A→ A⊗ A and ε : A→ k

called co-multiplication/co-product and counit, respectively, such that the following diagrams commute

A⊗ A⊗ A A⊗ A A⊗ A

k⊗ A A⊗ k

A⊗ A A A

∆⊗1

ε⊗1 1⊗ε

1⊗∆ ∆

∆
1⊗− −⊗1

This and the previous definition give that ∆ is injective and m is surjective.

Definition 4.4 (Bialgebra). A bialgebra A is a k-vector space, A = (A, m, u, ∆, ε), where (A, m, u) is an algebra
and (A, ∆, ε) is a coalgebra such that it satisfies the equivalent conditions.

(i) ∆, ε are algebra homomorphisms

(ii) m, u are coalgebra homomorphisms.

Example 4.5. If G is any group, let B = kG be the group ring. Then B is a bialgebra via ∆g = g× g and
ε(g) = 1 for all g ∈ G. /

Example 4.6. If g is any k-Lie algebra and B = U(g) is its universal enveloping algebra, then B becomes a
bialgebra via ∆x = x⊗ 1 + 1⊗ x and ε(x) = 0 for all x ∈ g. /

Definition 4.7 (Bialgebra Morphism). A bialgebra morphism is a morphism which is both an algebra and coalgebra
morphism.

Remark 4.8. If A, B are k-algebras, then A⊗ B is a k-algebra with operation (a⊗ b)(c⊗ d) = ac⊗ db. That
is,

A⊗ B⊗ A⊗ B 1⊗τ⊗1−→ A⊗ A⊗ B⊗ B
mA⊗mB−→ A⊗ B

6



where τ : B⊗ A→ A⊗ B is the flip b⊗ a a−→ ⊗b. The unit uA⊗B of A⊗ B is given by

k ∼= k⊗ k
uA⊗uB−→ A⊗ B

Likewise, if C, D are coalgebras, then ⊗D with ∆C⊗D given by

C⊗ D
∆C⊗∆D−→ C⊗ C⊗ D⊗ D 1⊗τ⊗1−→ C⊗ D⊗ C⊗ D

and counit
C⊗ D

εC⊗εD−→ k⊗ k ∼= k

In particular, this applies for A = B and C = D.

Definition 4.9. Let A be a k-algebra. The finite dual of A is A◦ = { f ∈ A∗ | f (I) = 0 for some ideal I of A such that dim A/I <
∞}, where A∗ = Homk(A, k) is the linear dual of V. Note that A, A∗ determine a nondegenerate bilinear form
〈 , 〉 : A∗ ⊗ A→ k via 〈 f , a〉 = f (a).

Proposition 4.10. If A is an algebra, then A◦ is a coalgebra with comultiplication ∆ = m∗ and counit ε = u∗. If A
is commutative, then A◦ is cocommutative.

Remark 4.11. A◦ is the largest subspace V of A∗ such that m∗(V) ⊆ V ⊗V.

Definition 4.12 (Convolution Product). Let C be a coalgebra and A an algebra. Then Homk(C, A) becomes an
algebra under the convolution product

( f ∗ g)(c) = m ◦ ( f ⊗ g)(∆c)

for all f , g ∈ Homk(C, A), c ∈ C. The unit element in Homk(C, A) = uε. One defines the twist convolution, or
anti-convolution, om Homk(C, A) by

( f × g)(c) = m ◦ ( f ⊗ g)(τ ◦ ∆(c))

Definition 4.13 (Hopf Algebra). Let A = (A, m, u, ∆, ε) be a bialgebra. Then a linear endomorphism S from A to
A is an antipode for A if the following diagram commutes

A⊗ A A A⊗ A

A⊗ A A A⊗ A

m m

1⊗s

∆

uε

∆

s⊗1

That is for all a ∈ A, ε(a) = ∑ a1S(a2) = ∑ S(a1)a2. A Hopf algebra is a bialgebra with an antipode. Equivalently,
there is an element S ∈ Homk(H, H) which is an inverse to 1H under convolution.

Example 4.14. Let G be any group and k a field. Then kG is a Hopf algebra by defining S(g) = g−1 for all
g ∈ G. Since S is linear, we know 1 = ε(g) = gg−1 = g−1g for all g ∈ G. We define ∆(g) = g⊗ g and
ε(g) = 1 for all g ∈ G. /

Remark 4.15. In particular, this example shows that a proof of the zero divisor conjecture for Hopf algebras
may very well prove the Kaplansky Zero Divisor Conjecture.

Proposition 4.16. Let H be a Hopf algebra with antipode S. Then

(i) S is an anti-algebra morphism. That is,

S(hk) = S(k)S(h) for all h, k ∈ H; and S(1) = 1
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(ii) S is an anti-coalgebra morphism; that is,

∆ ◦ S = τ ◦ (S⊗ S) ◦ ∆ and ε ◦ S = ε

Definition 4.17 (Group-Like Elements). Let A be any coalgebra. Then a ∈ A is a group-like element if ∆a = a⊗ a
and ε(a) = 1.

Remark 4.18. One can see the nomenclature for a group like element by examining Example 4.5 and Exam-
ple 4.14

The structure of Hopf algebras is similar to that of group rings led Peter Linnell to conjecture a variant
of the Kaplansky Zero Divisor Conjecture for Hopf Algebras.

Conjecture 3 (Linnell’s Conjecture). Let H be a Hopf algebra and G be a torsion free subgroup of its group-like
elements. Then if α ∈ kG and β ∈ H are nonzero the product αβ is nonzero.

If G is an infinite cyclic group generated by x and k is a field. Consider the Hopf algebra

H = 〈g, h, x | gh = 1, gx = qxg〉 =
⊕
i≥0

kGxi

where 0 6= q ∈ k \ {ζn}, ζ is a root of unity, n ∈ Z, and g, h ∈ G are group-like elements. We note that
comultiplication ∆, counit ε, and antipode S are defined as

∆(g) = g⊗ g ε(g) = 1 S(g) = h
∆(h) = h⊗ h ε(h) = 1 S(h) = g
∆(x) = g⊗ x + x⊗ 1 ε(x) = 0 S(x) = −hx

It is clear that S is invertible as

S2(x) = S(−hx) = −S(h)S(x) = −gS(x) = −g(−hx) = ghx = 1x = x

Furthermore, S2(g) = S(h) = g and S2(h) = S(g) = h. It is clear that H is of infinite order as 0 6= q ∈ k is
not a root of unity.

Proposition 4.19. Let G = Z and k is a field and H is the Hopf Algebra H =
⊕

i≥0 kGxi. If α ∈ kG and β ∈ H
are nonzero, then αβ 6= 0.

Proof: Suppose that α ∈ kG and β ∈ H are nonzero. By definition and assumption, β = ∑i αixi, where
the αi are not all zero i ∈ Z. Again by definition, α = ∑j ajgj, where the aj ∈ k are not all zero for j ∈ Z.
Then αβ = ∑i ααixi. So it suffices to show that ααi 6= 0 for some i ∈ Z as the product is taken pointwise.
But as αi ∈ kG, we have αi = ∑ki

aki
gki , where ki ∈ Z. Then for some i ∈ Z,

ααi =

(
∑

j
ajgj

)(
∑
ki

aki
gki

)

is the product of two nonzero elements of kG, which is never zero (we showed this in Proposition 3.9).
Hence, ααi 6= 0 for some i ∈ Z. Hence, αβ has at least one nonzero coefficient.

Roman and Linnell have managed to show that CG0 (the Hopf algebra of C linear maps α : CG → C

such that ker α contains an ideal I of finite co-dimension d in CG) has no nontrivial zero divisors for any
infinite finitely generated group G as well as a special case for Hopf algebras of representative functions
over compact groups.
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