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Theorem (Mordell-Weil, 1922/1928)

Let K be a number field and A/K be an abelian variety. Then the
group of K-rational points on A, denoted A(K), is a finitely generated
abelian group. In particular,

A(K) ∼= ZrA/K ⊕ A(K)tors

Louis J. Mordell André Weil



Theorem (Levi-Ogg Conjecture; Mazur, 1977)

If E/Q is a rational elliptic curve, then the possible torsion subgroups
E(Q)tors are precisely:{

Z/nZ, n = 1, 2, . . . , 10, 12
Z/2Z⊕ Z/2nZ, n = 1, . . . , 4

Furthermore, each possibility occurs infinitely often.

Beppo Levi
Andrew Ogg

Barry Mazur



Theorem (Kenku, Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic number field and E/K be an elliptic curve.
Then the possible torsion subgroups E(K)tors are precisely:

Z/nZ, n = 1, 2, . . . , 16, 18
Z/2Z⊕ Z/2nZ, n = 1, . . . , 6
Z/3Z⊕ Z/3nZ, n = 1, 2
Z/4Z⊕ Z/4Z

Moreover, each possibility occurs infinitely often.

Monsur Kenku Fumiyuki Momose Sheldon Kamienny



Theorem (Jeon,Kim,Schweizer, 2004;
Etropolski-Morrow-Zureick Brown; Derickx, 2016)

Let K/Q be a cubic number field and E/K be an elliptic curve. Then
the possible torsion subgroups E(K)tors are precisely:{

Z/nZ, n = 1, 2, . . . , 16, 18, 20, 21
Z/2nZ, n = 1, . . . , 7

Each of these possibilities occurs infinitely many times except Z/21Z.

Jeon Kim Schweizer

Etropolski Morrow Z-B. Derickx



Theorem (Jeon, Kim, Park, 2006)

Let K/Q be a quartic number field and E/K be an elliptic curve. Then
the possible torsion subgroups E(K)tors appearing infinitely often are
precisely: 

Z/nZ, n = 1, 2, . . . , 18, 20, 21, 22
Z/2Z⊕ Z/2nZ, n = 1, . . . , 9
Z/3Z⊕ Z/3nZ, n = 1, 2, 3
Z/4Z⊕ Z/4nZ, n = 1, 2
Z/5Z⊕ Z/5Z
Z/6Z⊕ Z/6Z

Daeyeol Jeon Chang Kim Eui-Sung Park



Theorem (Derickx, Sutherland, 2016)

Let K/Q be a quintic number field and E/K be an elliptic curve. Then
the possible torsion subgroups E(K)tors appearing infinitely often are
precisely: {

Z/nZ, n = 1, . . . , 22, 24, 25
Z/2Z⊕ Z/2nZ, n = 1, . . . , 8

Maarten Derickx Drew Sutherland



Theorem (Derickx, Sutherland, 2016)

Let K/Q be a sextic number field and E/K be an elliptic curve. Then
the possible torsion subgroups E(K)tors appearing infinitely often are
precisely:

Z/nZ, n = 1, . . . , 30; n 6= 23, 25, 29
Z/2Z⊕ Z/2nZ, n = 1, . . . , 10
Z/3Z⊕ Z/3nZ, n = 1, . . . , 4
Z/4Z⊕ Z/4nZ, n = 1, 2
Z/6Z⊕ Z/6Z

Maarten Derickx Drew Sutherland



Theorem (Clark, Corn, Rice, Stankewicz; 2013)

Let K be a number field of degree d = 1, 2, . . . , 13 and E/K be an
elliptic curve with CM. Then all possible torsion subgroups are given,
and an algorithm to compute the list.

Pete Clark Patrick Corn Alex Rice James Stankewicz



Theorem (Bourdon, Pollack; 2018)

Let K be an odd degree number field and E/K be an elliptic curve with
CM. Then the torsion subgroups E(K)tors are computable.

Abbey Bourdon Paul Pollack



Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et
al.)

If E/Q has an n-isogeny over Q, then

n ∈ {1, 2, . . . , 19, 21, 25, 27, 37, 43, 67, 163}.

If E does not have CM, then n ≤ 18 or n ∈ {21, 25, 37}.



Theorem (Chou,Daniels,González-Jimenez,Lozano-
Robledo,Najman,Tornero,et al.)

Let Cn denote the cyclic subgroup of order n. Then

ΦQ(2) = {Cn : n = 1, 2, . . . , 10, 12, 15, 16}
∪ {C2 ⊕ C2n : 1, 2, . . . , 6} ∪ {C3 ⊕ C3, C3 ⊕ C6, C4 ⊕ C4}

ΦQ(3) = {Cn : n = 1, 2, . . . , 10, 12, 13, 14, 18, 21}
∪ {C2 ⊕ C2n : n = 1, 2, 3, 4, 7}

ΦQ(4) = {Cn : n = 12, . . . , 10, 12, 13, 15, 16, 20, 24}
∪ {C2 ⊕ C2n : n = 1, 2, . . . , 6, 8} ∪ {C3 ⊕ C3n : n = 1, 2}
∪ {C4 ⊕ C4n : n = 1, 2} ∪ {C5 ⊕ C5} ∪ {C6 ⊕ C6}

ΦQ(5) = {Cn : n = 1, 2, . . . , 12, 25} ∪ {C2 ⊕ C2n : n = 1, 2, 3, 4}
ΦQ(6) ⊇ {Cn : n = 1, 2, . . . , 21, 30 : n 6= 11, 17, 19, 20}

∪ {C2 ⊕ C2n : n = 1, 2, . . . , 7, 9}
∪ {C3 ⊕ C3n : n = 1, 2, 3, 4} ∪ {C4 ⊕ C4, C6 ⊕ C6}

ΦQ(d∗) = ΦQ(1)



Michael Chou Harris Daniels Enrique González-Jiménez

Álvaro Lozano-Robledo Filip Najman José Tornero



The Results



Theorem (M.)

Let K/Q be a nonic Galois field, and let E/Q be a rational elliptic
curve. Then the possible torsion subgroups E(K)tors are precisely:{

Z/nZ, n = 1, 2, . . . , 10, 12, 13, 14, 18, 19, 21, 27
Z/2Z⊕ Z/2nZ, n = 1, 2, 3, 4, 7



Theorem (M.)

Let K/Q be a nonic Galois field with Gal(K/Q) ∼= Z/3Z⊕ Z/3Z,
and let E/Q be a rational elliptic curve. Then the possible torsion
subgroups E(K)tors are precisely:{

Z/nZ, n = 1, 2, . . . , 10, 12, 13, 14, 18, 21
Z/2Z⊕ Z/2nZ, n = 1, 2, 3, 4, 7



Theorem (M.)

Let K/Q be a nonic Galois field with Gal(K/Q) ∼= Z/9Z, and let
E/Q be a rational elliptic curve. Then the possible torsion subgroups
E(K)tors are:{

Z/nZ, n = 1, 2, . . . , 10, 12, 13∗, 18∗, 19, 21, 27
Z/2Z⊕ Z/2nZ, n = 1, 2, 3, 4



Outline of the Method



Step 1. Determine the Possible Prime Orders



Theorem (Lozano-Robledo)

Let SQ(d) be the set of primes such that there exists an elliptic curve
E/Q with a point of order p defined in an extension K/Q of degree at
most d. Then SQ(9) = {2, 3, 5, 7, 11, 13, 17, 19}.

Álvaro Lozano-Robledo

Remark
Lozano-Robledo computes SQ(d) for 1 ≤ d ≤ 21, and gives a
conjecturally formula valid for all 1 ≤ d ≤ 42, following from a
positive answer to Serre’s uniformity question.



Proposition (González-Jiménez, Najman)

i 11 ∈ RQ(d) if and only if 5 | d.
ii 13 ∈ RQ(d) if and only if 3 | d or 4 | d.
iii 17 ∈ RQ(d) if and only if 8 | d.

Enrique González-Jiménez Filip Najman



Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then if P ∈ E(K) is a point of prime order p, then
p ∈ {2, 3, 5, 7, 13, 19}.



Step 2. Bound the Size of the Sylow
Subgroups



Lemma
Let K/Q be an odd degree number field, and let E/Q be a rational
elliptic curve. Then E(K)tors does not contain full p-torsion for all odd
primes.

Proof. If E(K) contains full n-torsion, then Q(ζn) ⊆ K.

But

[K : Q] = [K : Q(ζn)][Q(ζn) : Q] = [K : Q(ζn)]φ(n),

and φ(n) is even for n > 2.
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Lemma
Let K/Q be a Galois extension, and let E/Q be a rational elliptic
curve. If E(K)[n] ∼= Z/nZ, then E has a rational n-isogeny.

Proof. Let {P,Q} be a basis for E[n]. Without loss of generality,
assume that P ∈ E(K) and Q /∈ E(K). Let σ ∈ Gal(Q/Q).
Because K/Q is Galois and P ∈ E(K), Pσ ∈ E(K)[n] = 〈P〉. But
then E(K)[n] = 〈P〉 is Galois stable, which implies that E has an
n-isogeny over Q.
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Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et
al.)

If E/Q has an n-isogeny over Q, then

n ∈ {1, 2, . . . , 19, 21, 25, 27, 37, 43, 67, 163}.

If E does not have CM, then n ≤ 18 or n ∈ {21, 25, 37}.



Lemma
Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then

E(K)[3∞] ⊆ Z/27Z
E(K)[5∞] ⊆ Z/25Z
E(K)[7∞] ⊆ Z/7Z

E(K)[13∞] ⊆ Z/13Z
E(K)[19∞] ⊆ Z/19Z



Theorem (Rouse,Zureick-Brown, 2015)

Let E/Q be a rational elliptic curve without CM. Then the index of
ρE,2∞(Gal(Q/Q)) divides 64 or 96, and all such indices occur.
Furthermore, the image of ρE,2∞(Gal(Q/Q)) is the inverse image in
GL2(Z2) of the image of ρE,32(Gal(Q/Q)).

Jeremy Rouse David Zureick-Brown

Remark
They also enumerate all 1,208 possibilities and find their
rational points.



Theorem (González-Jiménez, Lozano-Robledo)

Let E/Q be an elliptic curve without CM. Let 1 ≤ s ≤ N be fixed
integers, and let T ⊆ E[2N] be a subgroup isomorphic to
Z/2s/Z⊕ Z/2NZ. Then [Q(T) : Q] is divisible by 2 if s = N = 2,
and otherwise by 22N+2s−8 if N ≥ 3, unless s ≥ 4 and j(E) is one of
the two values:

−3 · 182499203

1716 or − 7 · 17231878060803

7916

in which case [Q(T) : Q] is divisible by 3 · 22N+2s−9. Moreover, this is
best possible in that there are one-parameter families Es,N(t) of elliptic
curves over Q such that for each s,N ≥ 0 and each t ∈ Q, and
subgroups Ts,N ∈ Es,N(t)(Q) isomorphic to Z/2sZ⊕ Z/2NZ such
that [Q(Ts,N) : Q] is equal to the bound given above.



Lemma
Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then E(K)[2∞] ⊆ Z/2Z⊕ Z/16Z.



Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then

E(K)tors ⊆ (Z/2Z⊕Z/16Z)⊕Z/27Z⊕Z/25Z⊕Z/7Z⊕Z/13Z⊕Z/19Z.



Step 3. Eliminate Possibilities



Lemma
Let K/Q be a nonic Galois field, and let E/Q be a rational elliptic
curve. Let P ∈ E(K) be a point of order p.

1 If p = 2, 3, 5, then P is rational or defined over a cubic field.
2 If p = 7, 13, 19, then P is defined over a cubic field.



Lemma (Najman)

Let p, q be distinct odd primes, F2/F1 a Galois extension of number
fields such that Gal(F2/F1) ' Z/qZ and E/F1 an elliptic curve with
no p-torsion over F1. Then if q does not divide p− 1 and Q(ζp) 6⊂ F2,
then E(F2)[p] = 0.

Lemma (Najman)

Let p be an odd prime number, q a prime not dividing p, F2/F1 a
Galois extension of number fields such that Gal(F2/F1) ' Z/qZ,
E/F1 an elliptic curve, and suppose E(F1) ⊃ Z/pZ, E(F1) 6⊃ Z/p2Z,
and ζp /∈ F2. Then E(F2) 6⊃ Z/p2Z.



Proposition (Najman)

Let K be a cubic field. Then the 5-Sylow groups of E(Q) and E(K) are
equal.

Proposition (Najman)

If the torsion subgroup of an elliptic curve E over Q has a nontrivial
2-Sylow subgroup, then over any number field of odd degree the
torsion of E will have the same 2-Sylow subgroup as over Q.

Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Let F be cubic subfield of K. If the 2-Sylow subgroup of E(F)tors
is nontrivial, then E(K)[2∞] = E(F)[2∞].
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Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then E(K)tors does not contain Z/2Z⊕ Z/10Z.

Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then E(K)tors does not contain Z/15Z.
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Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then E(K)tors does not contain Z/16Z.

Proof.
• We know Z/2Z⊕ Z/16Z is not an option.

• If E(Q)[2∞] 6= {O}, then E(Q)[2∞] ⊇ Z/16Z.
• E(K)[16] ∼= Z/16Z so E has a 16-isogeny.
• Choose a model E : y2 = x3 + Ax + B.
• Then Q(x3 + Ax + B) ⊆ K is a cubic field.
• We must have disc f (x) = �.

• j =
(h8 − 16h4 + 16)3

h4(h4 − 16)
for h ∈ Q \ {0,±2}.
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For h ∈ Q \ {0,±2}, E must be

y2 = x3− 27(h8 − 16h4 + 16)3

(h12 − 24h8 + 120h4 + 64)2 x+
54(h8 − 16h4 + 16)3

(h12 − 24h8 + 120h4 + 64)2

Its discriminant must be a square, so

M2 =
136048896h4(h4 − 16)(h8 − 16h4 + 16)6

(h12 − 24h8 + 120h4 + 64)6

Any solution is a subset of the rational points on the curve

X : y2 = h4 − 16

X(Q) = {O, (8, 24), (0, 8), (−4, 0), (0,−8), (8,−24)}, none of
which are solutions.



For h ∈ Q \ {0,±2}, E must be

y2 = x3− 27(h8 − 16h4 + 16)3

(h12 − 24h8 + 120h4 + 64)2 x+
54(h8 − 16h4 + 16)3

(h12 − 24h8 + 120h4 + 64)2

Its discriminant must be a square, so

M2 =
136048896h4(h4 − 16)(h8 − 16h4 + 16)6

(h12 − 24h8 + 120h4 + 64)6

Any solution is a subset of the rational points on the curve

X : y2 = h4 − 16

X(Q) = {O, (8, 24), (0, 8), (−4, 0), (0,−8), (8,−24)}, none of
which are solutions.



For h ∈ Q \ {0,±2}, E must be

y2 = x3− 27(h8 − 16h4 + 16)3

(h12 − 24h8 + 120h4 + 64)2 x+
54(h8 − 16h4 + 16)3

(h12 − 24h8 + 120h4 + 64)2

Its discriminant must be a square, so

M2 =
136048896h4(h4 − 16)(h8 − 16h4 + 16)6

(h12 − 24h8 + 120h4 + 64)6

Any solution is a subset of the rational points on the curve

X : y2 = h4 − 16

X(Q) = {O, (8, 24), (0, 8), (−4, 0), (0,−8), (8,−24)}, none of
which are solutions.



For h ∈ Q \ {0,±2}, E must be

y2 = x3− 27(h8 − 16h4 + 16)3

(h12 − 24h8 + 120h4 + 64)2 x+
54(h8 − 16h4 + 16)3

(h12 − 24h8 + 120h4 + 64)2

Its discriminant must be a square, so

M2 =
136048896h4(h4 − 16)(h8 − 16h4 + 16)6

(h12 − 24h8 + 120h4 + 64)6

Any solution is a subset of the rational points on the curve

X : y2 = h4 − 16

X(Q) = {O, (8, 24), (0, 8), (−4, 0), (0,−8), (8,−24)}, none of
which are solutions.



Nonic Bicyclic Galois Fields



Theorem (Daniels, Lozano-Robledo, Najman, Sutherland, 2017)

Let E/Q be a rational elliptic curve. Then E(Q(3∞))tors is finite and
is isomorphic to one of the following:

Z/2Z⊕ Z/2nZ, n = 1, 2, 4, 5, 7, 8, 13
Z/4Z⊕ Z4nZ, n = 1, 2, 4, 7
Z/6Z⊕ Z/6nZ, n = 1, 2, 3, 5, 7
Z/2nZ⊕ Z/2nZ, n = 4, 6, 7, 9

Pete Clark Patrick Corn Alex Rice James Stankewicz



Theorem (Najman)

Let K/Q be a cubic number field, and let E/Q be a rational elliptic
curve. Then

E(F)tors ∼=

{
Z/nZ, n = 1, . . . , 10, 12, 13, 14, 18, 21
Z/2Z⊕ Z/2nZ, n = 1, . . . , 4, 7

Moreover, the elliptic curve 162B1 over Q(ζ9)+ is the unique rational
elliptic curve over a cubic number field with torsion subgroup Z/21Z.

Filip Najman



Nonic Cyclic Galois Fields



Proposition

Let K/Q be a nonic Galois field with Gal(K/Q) ∼= Z/9Z, and let
E/Q be a rational elliptic curve. Then E(K)tors does not contain a
subgroup isomorphic to Z/14Z.

Proof (Sketch).
• Assume K/F/Q exists. Then E(K) has a 14-isogeny.

• Then E has j-invariant j = −33 · 53 or 33 · 53 · 173, so E must
be the latter.

• Using division polynomials, it must be that F = Q(ζ7)+.
• F ⊆ K ⊆ Q(ζN) for some N = 7sm.
• |(Z/7sZ)×| = 7s−1(7− 1) = 6 · 7s−1 = 2 · 3 · 7s−1

• CRT produces u ∈ N with ζN 7→ ζu
N automorphism of K of

order 3
• ζN 7→ ζu

N non-trivial in F,K, contradiction
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Questions?


