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Theorem (Mordell-Weil, 1922 /1928)

Let K be a number field and A/K be an abelian variety. Then the
group of K-rational points on A, denoted A(K), is a finitely generated
abelian group. In particular,

A(K) = 7K @A(K)tors

Louis J. Mordell André Weil



Theorem (Levi-Ogg Conjecture; Mazur, 1977)

If E/Q is a rational elliptic curve, then the possible torsion subgroups
E(Q)tors are precisely:

Z/nZ, n=1,2,...,10,12
22L& Z)2nZ, n=1,...,4

Furthermore, each possibility occurs infinitely often.

Andrew Ogg
Beppo Levi Barry Mazur



Theorem (Kenku, Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic number field and E /K be an elliptic curve.
Then the possible torsion subgroups E (K)o are precisely:

Z/nZ, n=1,2,...,16,18
222 ®Z/2nZ, n=1,...,6
Z/328Z/3nZ, n=1,2
Z)A7 © 7.]AZ

Moreover, each possibility occurs infinitely often.

Monsur Kenku Fumiyuki Momose Sheldon Kamienny



Theorem (Jeon,Kim,Schweizer, 2004;

Etropolski-Morrow-Zureick Brown; Derickx, 2016)

Let K/Q be a cubic number field and E /K be an elliptic curve. Then
the possible torsion subgroups E(K)ors are precisely:

Z/nZ, n=1.2,...,16,18,20,21
Z/2nZ, n=1,...,7

Each of these possibilities occurs infinitely many times except Z/217.

Etropolski

Derickx



Theorem (Jeon, Kim, Park, 2006)

Let K/Q be a quartic number field and E /K be an elliptic curve. Then
the possible torsion subgroups E(K)ors appearing infinitely often are
precisely:

(2/nz, n=1,2,...,18,20,21,22
2L ®L/2nZ, n=1,...,9
Z/3Z®Z)3nZ, n=1,2,3
Z/AZ & Z/4nZ, n=1,2
7./57 & 7./5Z.

| Z/6Z & Z/6L

Daeyeol Jeon Chang Kim Eui-Sung Park



Theorem (Derickx, Sutherland, 2016)

Let K/Q be a quintic number field and E /K be an elliptic curve. Then
the possible torsion subgroups E(K)rs appearing infinitely often are
precisely:

Z/nZ, n=1,...,22,24,25
7228 7/2nZ, n=1,...,8

Maarten Derickx Drew Sutherland



Theorem (Derickx, Sutherland, 2016)

Let K/Q be a sextic number field and E /K be an elliptic curve. Then
the possible torsion subgroups E(K)rs appearing infinitely often are

precisely:

Z/nZ,

7./27. & 7./2nZ,
Z./37. & 7./3nZ,
Z.JAZ & 7,/4nZ,
Z/6Z & L./61.

n=1,...,30;n # 23,25,29
n=1,...,10

n=1,...,4

n=1,2

Maarten Derickx Drew Sutherland



Theorem (Clark, Corn, Rice, Stankewicz; 2013)

Let K be a number field of degreed = 1,2, ...,13 and E/K be an
elliptic curve with CM. Then all possible torsion subgroups are given,
and an algorithm to compute the list.

Photo Not Yet
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Pete Clark Patrick Corn Alex Rice James Stankewicz



Theorem (Bourdon, Pollack; 2018)

Let K be an odd degree number field and E /K be an elliptic curve with
CM. Then the torsion subgroups E(K)ors are computable.

Abbey Bourdon Paul Pollack



Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et

al.)
If E/Q has an n-isogeny over Q, then

ne{l,2,...,19,21,25,27,37,43,67,163}.

If E does not have CM, then n < 18 or n € {21,25,37}.




Theorem (Chou,Daniels,Gonzélez-Jimenez,l.ozano-
Robledo,Najman, Tornero,et al.)

Let C,, denote the cyclic subgroup of order n. Then

do(2) = {Cr:n=1,2,...,10,12,15,16}
U{C®Cop: 1,2,...,6} U{C3®C3,C3 P Cq,Cq B Cy}
do(3) = {Cy:n=1,2,...,10,12,13,14,18,21}
U{Ca®Cp:n=1,2,3,4,7}
dg(4) = {Cy: n =12,...,10,12,13,15,16, 20,24}
U{C®Cy:n=1,2,...,6,8 U{C3®DC3y: n=1,2}
U{Cs B Cay:n=1,2 U{Cs ®C5} U{Cs ® Cs}
Dp((5) ={Cr:n=1,2,...,12,25} U{Ca ® Cpy: n = 1,2,3,4}
Dp(6) 2 {Cy:n=1,2,...,21,30: n #11,17,19,20}
U{C®Cop:n=1,2,...,7,9}
U{Cs® Can: 1 =1,2,3,4} U{Cys & C4,Cs ® Cs}
B (d") = Do(1)




Michael Chou Harris Daniels Enrique Gonzélez-Jiménez

Alvaro Lozano-Robledo Filip Najman José Tornero



The Results



Theorem (M.)
Let K/Q be a nonic Galois field, and let E/Q be a rational elliptic
curve. Then the possible torsion subgroups E(K ) are precisely:

Z/nZ, n=1,2,...,10,12,13,14,18,19,21,27
Z)2Z&Z/2nZ, n=1,2,3,4,7




Theorem (M.)

Let K/Q be a nonic Galois field with Gal(K/Q) = Z/3Z & Z/3Z,
and let E/Q be a rational elliptic curve. Then the possible torsion
subgroups E(K);ors are precisely:

Z/nZ, n=1,2...,10,12,13,14,18,21
Z)2Z®Z/2nZ, n=1,2,3,4,7




Theorem (M.)

Let K/Q be a nonic Galois field with Gal(K/Q) = Z/9Z, and let
E/Q be a rational elliptic curve. Then the possible torsion subgroups
E(K)tors are:

7/nZ, n=1,2,...,10,12,13* 18%19,21,27
Z2Z & Z/2nZ, n=1,2,3,4




Outline of the Method



Step 1. Determine the Possible Prime Orders



Theorem (Lozano-Robledo)

Let Sq(d) be the set of primes such that there exists an elliptic curve
E/Q with a point of order p defined in an extension K/Q of degree at
most d. Then Sg(9) = {2,3,5,7,11,13,17,19}.

Alvaro Lozano-Robledo

Lozano-Robledo computes Sg(d) for 1 < d < 21, and gives a
conjecturally formula valid for all 1 < d < 42, following from a
positive answer to Serre’s uniformity question.




Proposition (Gonzalez-Jiménez, Najman)

@ 11 € Ro(d) if and only if 5 | d.
@ 13 € Ro(d) ifand only if 3 | d or 4 | d.
@ 17 € Ro(d) if and only if 8 | d.

Enrique Gonzélez-Jiménez Filip Najman



Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then if P € E(K) is a point of prime order p, then
p€{2,3,5,7,13,19}.




Step 2. Bound the Size of the Sylow
Subgroups



Let K/Q be an odd degree number field, and let E/Q be a rational
elliptic curve. Then E(K)4oys does not contain full p-torsion for all odd
primes.
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Let K/Q be an odd degree number field, and let E/Q be a rational
elliptic curve. Then E(K)4oys does not contain full p-torsion for all odd
primes.

Proof. If E(K) contains full n-torsion, then Q(¢,) C K. But

[K: Q] = [K: Q(6n)][Q(Gn): Q] = [K: Q(Cu)o(n),

and ¢(n) is even for n > 2. O
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curve. If E(K)[n] = Z/nZ, then E has a rational n-isogeny.




Let K/Q be a Galois extension, and let E/Q be a rational elliptic
curve. If E(K)[n] = Z/nZ, then E has a rational n-isogeny.

Proof. Let {P, Q} be a basis for E[n]. Without loss of generality,
assume that P € E(K) and Q ¢ E(K). Let 0 € Gal(Q/Q).
Because K/Q is Galois and P € E(K), P? € E(K)[n] = (P). But
then E(K)[n] = (P) is Galois stable, which implies that E has an
n-isogeny over Q. O



Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et

al.)
If E/Q has an n-isogeny over Q, then

ne{l,2,...,19,21,25,27,37,43,67,163}.

If E does not have CM, then n < 18 or n € {21,25,37}.




Lemma

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then

~— —
— —




Theorem (Rouse,Zureick-Brown, 2015)

Let E/Q be a rational elliptic curve without CM. Then the index of
pE2 (Gal(Q/Q)) divides 64 or 96, and all such indices occur.
Furthermore, the image of pg - (Gal(Q/Q)) is the inverse image in
GL2(Zy) of the image of pg 32(Gal(Q/Q)).

Jeremy Rouse David Zureick-Brown

They also enumerate all 1,208 possibilities and find their
rational points.




Let E/Q be an elliptic curve without CM. Let 1 < s < N be fixed
integers, and let T C E[2N] be a subgroup isomorphic to

7)2°/Z ® Z)2N 7. Then [Q(T): Q] is divisible by 2 ifs = N = 2,
and otherwise by 2°N+t23=8 if N > 3, unless s > 4 and j(E) is one of
the two values:

3 - 182499203 7 - 17231878060803
B 1716 o= 7916

in which case [Q(T): Q)] is divisible by 3 - 22N+25=9. Moreover, this is
best possible in that there are one-parameter families Es n(t) of elliptic
curves over Q such that for each s,N > 0 and each t € Q, and
subgroups Ts € Es n(t)(Q) isomorphic to 7./2°7 & 7./2N7Z such
that (Q(Tsn): Q] is equal to the bound given above.




Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then E(K)[2*°] C Z/2Z & Z/16Z.




Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then

E(K)tors C (Z/2Z®Z/16Z) B Z/27LH L/25L. & Z./77.8 7,/ 13Z. & Z./19Z.




Step 3. Eliminate Possibilities



Let K/Q be a nonic Galois field, and let E/Q be a rational elliptic
curve. Let P € E(K) be a point of order p.

® Ifp =2,3,5, then P is rational or defined over a cubic field.
@ Ifp =7,13,19, then P is defined over a cubic field.




Lemma (Najman)

Let p, q be distinct odd primes, F,/Fy a Galois extension of number
fields such that Gal(Fy/F1) ~ Z/qZ and E/F; an elliptic curve with
no p-torsion over Fy. Then if q does not divide p — 1 and Q(¢p) ¢ F»,
then E(F,)[p] = 0.

| A\

Lemma (Najman)

Let p be an odd prime number, q a prime not dividing p, F2/F1 a
Galois extension of number fields such that Gal(Fy/F,) ~ Z/qZ,
E/F; an elliptic curve, and suppose E(F1) D Z/pZ, E(F1) 7 Z/p*Z,
and ¢, ¢ F». Then E(F;) $ Z/p*Z.




Proposition (Najman)

Let K be a cubic field. Then the 5-Sylow groups of E(Q) and E(K) are
equal.
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Proposition (Najman)
Let K be a cubic field. Then the 5-Sylow groups of E(Q) and E(K) are
equal.

| A\

Proposition (Najman)

If the torsion subgroup of an elliptic curve E over Q has a nontrivial
2-Sylow subgroup, then over any number field of odd degree the
torsion of E will have the same 2-Sylow subgroup as over Q.

Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Let F be cubic subfield of K. If the 2-Sylow subgroup of E(F)ors
is nontrivial, then E(K)[2°°] = E(F)[2*°].

| A

A\




Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then E(K)ors does not contain 7./27 & Z/10Z.
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Proposition

Let E/Q be a rational elliptic curve, and let K/Q be a nonic Galois
field. Then E(K)ors does not contain 7./ 16Z.

Proof.

® We know Z/2Z & Z/16Z is not an option.
If E(Q)[2%°] # {O}, then E(Q)[2*°] D Z/16Z.
E(K)[16] = Z/16Z so E has a 16-isogeny.
Choose a model E : y? = x* + Ax + B.
Then Q(x* + Ax + B) C K is a cubic field.
We must have discf(x) = O.

(h8 — 16h* + 16)3

oj= W =16 forh € Q\ {0, £2}.
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Forh € Q\ {0,£2}, E must be

2o 27(h® — 16h* + 16)3 - 54(h® — 16h* + 16)3
VTN 24k 12008 1 64)2 " (W12 — 2448 + 1204% 1 64)2

Its discriminant must be a square, so

2 1360488961 (" — 16)(h® — 161 + 16)°
- (h12 — 2418 + 1201 + 64)°

Any solution is a subset of the rational points on the curve
X:y*=nh*-16

X(Q) ={0,(8,24),(0,8),(—4,0),(0,—-8), (8, —24)}, none of
which are solutions.



Nonic Bicyclic Galois Fields



Theorem (Daniels, Lozano-Robledo, Najman, Sutherland, 2017

Let E/Q be a rational elliptic curve. Then E(Q(3°°));ors is finite and
is isomorphic to one of the following:

7.)27. & 7./2nZ,
Z/AZ & ZAnZ,
7./6Z. & 7./6nZ,
Z7/2nZ @® Z./2nZ,

n=124,578,13

n=1247
n=123,5,7
n=4,6,7,9

)
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Theorem (Najman)

Let K/Q be a cubic number field, and let E/Q be a rational elliptic
curve. Then

Z/nZ, n=1,...,10,12,13,14,18,21

E(F =
(Btors {Z/ZZ@Z/znZ, n=1,...,4,7

Moreover, the elliptic curve 162B1 over Q((o)™ is the unique rational
elliptic curve over a cubic number field with torsion subgroup Z/217.

Filip Najman



Nonic Cyclic Galois Fields



Proposition

Let K/Q be a nonic Galois field with Gal(K/Q) = Z/9Z, and let
E/Q be a rational elliptic curve. Then E(K)ors does not contain a
subgroup isomorphic to Z/147.
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Proposition

Let K/Q be a nonic Galois field with Gal(K/Q) = Z/9Z, and let
E/Q be a rational elliptic curve. Then E(K)ors does not contain a
subgroup isomorphic to Z/147.

Proof (Sketch).
¢ Assume K/F/Q exists. Then E(K) has a 14-isogeny.

e Then E has j-invariant j = —3% - 5% or 3% - 5% - 173, so E must
be the latter.

Using division polynomials, it must be that F = Q(¢7)*.
F C K C Q(¢y) for some N = 7°m.

(Z)7°2) | =71 (7-1)=6-7"1=2.3.75"1

CRT produces u € N with ¢y > (§; automorphism of K of
order 3

® (n = (y non-trivial in F, K, contradiction



Questions?



