Torsion Subgroups of Rational Elliptic Curves over Nonic Galois Fields

Caleb McWhorter Syracuse University

Maine/Québec Number Theory Conference October 5, 2019

Theorem (Mordell-Weil, 1922/1928)

Let K be a number field and A/K be an abelian variety. Then the group of K-rational points on A, denoted A(K), is a finitely generated abelian group. In particular,

$$A(K) \cong \mathbb{Z}^{r_{A/K}} \oplus A(K)_{tors}$$



Louis J. Mordell

André Weil

Theorem (Levi-Ogg Conjecture; Mazur, 1977)

If E/\mathbb{Q} is a rational elliptic curve, then the possible torsion subgroups $E(\mathbb{Q})_{tors}$ are precisely:

$$\begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, 2, \dots, 10, 12 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, \dots, 4 \end{cases}$$

Furthermore, each possibility occurs infinitely often.

Beppo Levi

Andrew Ogg

Barry Mazur

Theorem (Kenku, Momose, 1988; Kamienny, 1992)

Let K/\mathbb{Q} be a quadratic number field and E/K be an elliptic curve. Then the possible torsion subgroups $E(K)_{tors}$ are precisely:

$$\begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, 2, \dots, 16, 18 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, \dots, 6 \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3n\mathbb{Z}, & n = 1, 2 \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \end{cases}$$

Moreover, each possibility occurs infinitely often.

Monsur Kenku

Fumiyuki Momose

Sheldon Kamienny

Theorem (Jeon, Kim, Schweizer, 2004; Etropolski-Morrow-Zureick Brown; Derickx, 2016)

Let K/\mathbb{Q} be a cubic number field and E/K be an elliptic curve. Then the possible torsion subgroups $E(K)_{tors}$ are precisely:

$$\begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, 2, \dots, 16, 18, 20, 21 \\ \mathbb{Z}/2n\mathbb{Z}, & n = 1, \dots, 7 \end{cases}$$

Each of these possibilities occurs infinitely many times except $\mathbb{Z}/21\mathbb{Z}$.

Ieon

on Kim

Schweizer

Z-B.

Derickx

Etropolski

Morrow

Theorem (Jeon, Kim, Park, 2006)

Let K/\mathbb{Q} be a quartic number field and E/K be an elliptic curve. Then the possible torsion subgroups $E(K)_{tors}$ appearing infinitely often are precisely:

```
\begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, 2, \dots, 18, 20, 21, 22 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, \dots, 9 \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3n\mathbb{Z}, & n = 1, 2, 3 \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4n\mathbb{Z}, & n = 1, 2 \\ \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z} \\ \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \end{cases}
```


Daeyeol Jeon

Chang Kim

Eui-Sung Park

Theorem (Derickx, Sutherland, 2016)

Let K/\mathbb{Q} be a quintic number field and E/K be an elliptic curve. Then the possible torsion subgroups $E(K)_{tors}$ appearing infinitely often are precisely:

$$\begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, \dots, 22, 24, 25 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, \dots, 8 \end{cases}$$

Maarten Derickx



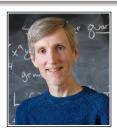
Drew Sutherland

Theorem (Derickx, Sutherland, 2016)

Let K/\mathbb{Q} be a sextic number field and E/K be an elliptic curve. Then the possible torsion subgroups $E(K)_{tors}$ appearing infinitely often are precisely:

$$\begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, \dots, 30; n \neq 23, 25, 29 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, \dots, 10 \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3n\mathbb{Z}, & n = 1, \dots, 4 \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4n\mathbb{Z}, & n = 1, 2 \\ \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \end{cases}$$

Maarten Derickx



Drew Sutherland

Theorem (Clark, Corn, Rice, Stankewicz; 2013)

Let K be a number field of degree $d=1,2,\ldots,13$ and E/K be an elliptic curve with CM. Then all possible torsion subgroups are given, and an algorithm to compute the list.

Patrick Corn

Alex Rice

James Stankewicz

Theorem (Bourdon, Pollack; 2018)

Let K be an odd degree number field and E/K be an elliptic curve with CM. Then the torsion subgroups $E(K)_{tors}$ are computable.

Abbey Bourdon

Paul Pollack

Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et al.)

If E/\mathbb{Q} has an n-isogeny over \mathbb{Q} , then

 $n \in \{1, 2, \dots, 19, 21, 25, 27, 37, 43, 67, 163\}.$

If E does not have CM, then $n \le 18$ or $n \in \{21, 25, 37\}$.

Theorem (Chou, Daniels, González-Jimenez, Lozano-Robledo, Najman, Tornero, et al.)

Let C_n denote the cyclic subgroup of order n. Then

$$\Phi_{\mathbb{Q}}(6) \supseteq \{C_n \colon n = 1, 2, \dots, 21, 30 \colon n \neq 11, 17, 19, 20\}
\cup \{C_2 \oplus C_{2n} \colon n = 1, 2, \dots, 7, 9\}
\cup \{C_3 \oplus C_{3n} \colon n = 1, 2, 3, 4\} \cup \{C_4 \oplus C_4, C_6 \oplus C_6\}
\Phi_{\mathbb{Q}}(d^*) = \Phi_{\mathbb{Q}}(1)$$

Michael Chou

Álvaro Lozano-Robledo

Harris Daniels

Filip Najman

Enrique González-Jiménez

José Tornero

Theorem (M.)

Let K/\mathbb{Q} be a nonic Galois field, and let E/\mathbb{Q} be a rational elliptic curve. Then the possible torsion subgroups $E(K)_{tors}$ are precisely:

$$\begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, 2, \dots, 10, 12, 13, 14, 16, 18, 19, 21, 27 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, 2, 3, 4, 7 \end{cases}$$

Theorem (M.)

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then the possible torsion subgroups $E(K)_{tors}$ are precisely:

$$\begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, 2, \dots, 10, 12, 13, 14, 18, 21 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, 2, 3, 4, 7 \end{cases}$$

Theorem (M.)

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/9\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then the possible torsion subgroups

$$E/\mathbb{Q}$$
 be a rational elliptic curve. Then the possible torsion subgroups $E(K)_{tors}$ are:

$$\begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, 2, \dots, 10, 12, 13^*, 18^*, 19, 21, 27 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, 2, 3, 4 \end{cases}$$

Theorem (Lozano-Robledo)

Let $S_{\mathbb{Q}}(d)$ be the set of primes such that there exists an elliptic curve E/\mathbb{Q} with a point of order p defined in an extension K/\mathbb{Q} of degree at most d. Then $S_{\mathbb{Q}}(9) = \{2, 3, 5, 7, 11, 13, 17, 19\}$.

Álvaro Lozano-Robledo

Remark

Lozano-Robledo computes $S_{\mathbb{Q}}(d)$ for $1 \le d \le 21$, and gives a conjecturally formula valid for all $1 \le d \le 42$, following from a positive answer to Serre's uniformity question.

Proposition (González-Jiménez, Najman)

- **1** $11 \in R_{\mathbb{Q}}(d)$ if and only if $5 \mid d$.
- 1 13 $\in R_{\mathbb{Q}}(d)$ if and only if 3 | d or 4 | d.
- \bigoplus 17 \in $R_{\mathbb{Q}}(d)$ if and only if $8 \mid d$.

Enrique González-Jiménez

Filip Najman

Let K/\mathbb{Q} be an odd degree number field, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain full p-torsion for all odd primes.

Let K/\mathbb{Q} be an odd degree number field, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain full p-torsion for all odd primes.

Proof. If E(K) contains full n-torsion, then $\mathbb{Q}(\zeta_n) \subseteq K$.

Let K/\mathbb{Q} be an odd degree number field, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain full p-torsion for all odd primes.

Proof. If E(K) contains full n-torsion, then $\mathbb{Q}(\zeta_n) \subseteq K$. But

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(\zeta_n)][\mathbb{Q}(\zeta_n):\mathbb{Q}] = [K:\mathbb{Q}(\zeta_n)]\phi(n),$$

and $\phi(n)$ is even for n > 2.

Let K/\mathbb{Q} be a Galois extension, and let E/\mathbb{Q} be a rational elliptic curve. If $E(K)[n] \cong \mathbb{Z}/n\mathbb{Z}$, then E has a rational n-isogeny.

Let K/\mathbb{Q} be a Galois extension, and let E/\mathbb{Q} be a rational elliptic curve. If $E(K)[n] \cong \mathbb{Z}/n\mathbb{Z}$, then E has a rational n-isogeny.

Proof. Let $\{P,Q\}$ be a basis for E[n]. Without loss of generality, assume that $P \in E(K)$ and $Q \notin E(K)$. Let $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Because K/\mathbb{Q} is Galois and $P \in E(K)$, $P^{\sigma} \in E(K)[n] = \langle P \rangle$. But then $E(K)[n] = \langle P \rangle$ is Galois stable, which implies that E has an n-isogeny over \mathbb{Q} .

Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et al.)

If E/\mathbb{Q} has an n-isogeny over \mathbb{Q} , then

 $n \in \{1, 2, \dots, 19, 21, 25, 27, 37, 43, 67, 163\}.$

If E does not have CM, then $n \le 18$ or $n \in \{21, 25, 37\}$.

Theorem (Rouse, Zureick-Brown, 2015)

Let E/\mathbb{Q} be a rational elliptic curve without CM. Then the index of $\rho_{E,2^{\infty}}(\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ divides 64 or 96, and all such indices occur. Furthermore, the image of $\rho_{E,2^{\infty}}(\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ is the inverse image in $\operatorname{GL}_2(\mathbb{Z}_2)$ of the image of $\rho_{E,3^2}(\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$.

Jeremy Rouse

David Zureick-Brown

Remark

They also enumerate all 1,208 possibilities and find their rational points.

Theorem (González-Jiménez, Lozano-Robledo)

Let E/\mathbb{Q} be an elliptic curve without CM. Let $1 \le s \le N$ be fixed integers, and let $T \subseteq E[2^N]$ be a subgroup isomorphic to $\mathbb{Z}/2^s/Z \oplus \mathbb{Z}/2^N\mathbb{Z}$. Then $[\mathbb{Q}(T):\mathbb{Q}]$ is divisible by 2 if s = N = 2, and otherwise by $2^{2N+2s-8}$ if $N \ge 3$, unless $s \ge 4$ and j(E) is one of the two values:

$$-\frac{3 \cdot 18249920^3}{17^{16}} \quad or \quad -\frac{7 \cdot 1723187806080^3}{79^{16}}$$

in which case $[\mathbb{Q}(T):\mathbb{Q}]$ is divisible by $3\cdot 2^{2N+2s-9}$. Moreover, this is best possible in that there are one-parameter families $E_{s,N}(t)$ of elliptic curves over \mathbb{Q} such that for each $s,N\geq 0$ and each $t\in\mathbb{Q}$, and subgroups $T_{s,N}\in E_{s,N}(t)(\overline{\mathbb{Q}})$ isomorphic to $\mathbb{Z}/2^s\mathbb{Z}\oplus\mathbb{Z}/2^N\mathbb{Z}$ such that $[\mathbb{Q}(T_{s,N}):\mathbb{Q}]$ is equal to the bound given above.

Theorem (Knapp)

Let E/K be an elliptic curve over a field of characteristic not equal to 2 or 3. Suppose E is given by

$$y^2 = (x - \alpha)(x - \beta)(x - \gamma),$$

where $\alpha, \beta, \gamma \in K$. For $P = (x_0, y_0) \in E(K)$, there exists a point Q with $Q \in E(K)$ with 2Q = P if and only if $x_0 - \alpha$, $x_0 - \beta$, $x_0 - \gamma$ are squares in K.

Anthony Knapp

Lemma (Najman)

Let p, q be distinct odd primes, F_2/F_1 a Galois extension of number fields such that $\operatorname{Gal}(F_2/F_1) \simeq \mathbb{Z}/q\mathbb{Z}$ and E/F_1 an elliptic curve with no p-torsion over F_1 . Then if q does not divide p-1 and $\mathbb{Q}(\zeta_p) \not\subset F_2$, then $E(F_2)[p]=0$.

Lemma (Najman)

Let p be an odd prime number, q a prime not dividing p, F_2/F_1 a Galois extension of number fields such that $Gal(F_2/F_1) \simeq \mathbb{Z}/q\mathbb{Z}$, E/F_1 an elliptic curve, and suppose $E(F_1) \supset \mathbb{Z}/p\mathbb{Z}$, $E(F_1) \not\supset \mathbb{Z}/p^2\mathbb{Z}$, and $\zeta_p \notin F_2$. Then $E(F_2) \not\supset \mathbb{Z}/p^2\mathbb{Z}$.

Let K/\mathbb{Q} be a nonic Galois field, and let E/\mathbb{Q} be a rational elliptic curve. If $P \in E(K)$ is a point of order n and $E(K)[n] \cong \mathbb{Z}/n\mathbb{Z}$, then $\operatorname{Gal}(\mathbb{Q}(P)/\mathbb{Q})$ is isomorphic to a subgroup of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Lemma

Let K/\mathbb{Q} be a nonic Galois field, and let E/\mathbb{Q} be a rational elliptic curve. Let $P \in E(K)$ be a point of order p.

- **1** If p = 2, 3, 5, then P is rational or defined over a cubic field.
- **2** If p = 7, 13, then P is defined over a cubic field.

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland, 2017)

Let E/\mathbb{Q} be a rational elliptic curve. Then $E(\mathbb{Q}(3^{\infty}))_{tors}$ is finite and is isomorphic to one of the following:

$$\begin{cases} \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, 2, 4, 5, 7, 8, 13 \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}4n\mathbb{Z}, & n = 1, 2, 4, 7 \\ \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6n\mathbb{Z}, & n = 1, 2, 3, 5, 7 \\ \mathbb{Z}/2n\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 4, 6, 7, 9 \end{cases}$$

Pete Clark

Photo Not Yet Available

Patrick Corn

Alex Rice

James Stankewicz

Theorem (Najman)

Let K/\mathbb{Q} be a cubic number field, and let E/\mathbb{Q} be a rational elliptic curve. Then

$$E(F)_{tors} \cong \begin{cases} \mathbb{Z}/n\mathbb{Z}, & n = 1, \dots, 10, 12, 13, 14, 18, 21 \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2n\mathbb{Z}, & n = 1, \dots, 4, 7 \end{cases}$$

Moreover, the elliptic curve 162B1 over $\mathbb{Q}(\zeta_9)^+$ is the unique rational elliptic curve over a cubic number field with torsion subgroup $\mathbb{Z}/21\mathbb{Z}$.

Filip Najman

Nonic Cyclic Galois Fields

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/9\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain a subgroup isomorphic to $\mathbb{Z}/14\mathbb{Z}$.

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/9\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain a subgroup isomorphic to $\mathbb{Z}/14\mathbb{Z}$.

Proof (Sketch).

• Assume $K/F/\mathbb{Q}$ exists. Then E(K) has a 14-isogeny.

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/9\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain a subgroup isomorphic to $\mathbb{Z}/14\mathbb{Z}$.

- Assume $K/F/\mathbb{Q}$ exists. Then E(K) has a 14-isogeny.
- Then *E* has *j*-invariant $j = -3^3 \cdot 5^3$ or $3^3 \cdot 5^3 \cdot 17^3$, so *E* must be the latter.

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/9\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain a subgroup isomorphic to $\mathbb{Z}/14\mathbb{Z}$.

- Assume $K/F/\mathbb{Q}$ exists. Then E(K) has a 14-isogeny.
- Then *E* has *j*-invariant $j = -3^3 \cdot 5^3$ or $3^3 \cdot 5^3 \cdot 17^3$, so *E* must be the latter.
- Using division polynomials, it must be that $F = \mathbb{Q}(\zeta_7)^+$.

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/9\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain a subgroup isomorphic to $\mathbb{Z}/14\mathbb{Z}$.

- Assume $K/F/\mathbb{Q}$ exists. Then E(K) has a 14-isogeny.
- Then *E* has *j*-invariant $j = -3^3 \cdot 5^3$ or $3^3 \cdot 5^3 \cdot 17^3$, so *E* must be the latter.
- Using division polynomials, it must be that $F = \mathbb{Q}(\zeta_7)^+$.
- $F \subseteq K \subseteq \mathbb{Q}(\zeta_N)$ for some $N = 7^s m$.

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/9\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain a subgroup isomorphic to $\mathbb{Z}/14\mathbb{Z}$.

- Assume $K/F/\mathbb{Q}$ exists. Then E(K) has a 14-isogeny.
- Then *E* has *j*-invariant $j = -3^3 \cdot 5^3$ or $3^3 \cdot 5^3 \cdot 17^3$, so *E* must be the latter.
- Using division polynomials, it must be that $F = \mathbb{Q}(\zeta_7)^+$.
- $F \subseteq K \subseteq \mathbb{Q}(\zeta_N)$ for some $N = 7^s m$.
- $|(\mathbb{Z}/7^s\mathbb{Z})^{\times}| = 7^{s-1}(7-1) = 6 \cdot 7^{s-1} = 2 \cdot 3 \cdot 7^{s-1}$

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/9\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain a subgroup isomorphic to $\mathbb{Z}/14\mathbb{Z}$.

- Assume $K/F/\mathbb{Q}$ exists. Then E(K) has a 14-isogeny.
- Then *E* has *j*-invariant $j = -3^3 \cdot 5^3$ or $3^3 \cdot 5^3 \cdot 17^3$, so *E* must be the latter.
- Using division polynomials, it must be that $F = \mathbb{Q}(\zeta_7)^+$.
- $F \subseteq K \subseteq \mathbb{Q}(\zeta_N)$ for some $N = 7^s m$.
- $|(\mathbb{Z}/7^s\mathbb{Z})^{\times}| = 7^{s-1}(7-1) = 6 \cdot 7^{s-1} = 2 \cdot 3 \cdot 7^{s-1}$
- CRT produces $u \in \mathbb{N}$ with $\zeta_N \mapsto \zeta_N^u$ automorphism of K of order 3

Let K/\mathbb{Q} be a nonic Galois field with $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/9\mathbb{Z}$, and let E/\mathbb{Q} be a rational elliptic curve. Then $E(K)_{tors}$ does not contain a subgroup isomorphic to $\mathbb{Z}/14\mathbb{Z}$.

- Assume $K/F/\mathbb{Q}$ exists. Then E(K) has a 14-isogeny.
- Then *E* has *j*-invariant $j = -3^3 \cdot 5^3$ or $3^3 \cdot 5^3 \cdot 17^3$, so *E* must be the latter.
- Using division polynomials, it must be that $F = \mathbb{Q}(\zeta_7)^+$.
- $F \subseteq K \subseteq \mathbb{Q}(\zeta_N)$ for some $N = 7^s m$.
- $|(\mathbb{Z}/7^s\mathbb{Z})^{\times}| = 7^{s-1}(7-1) = 6 \cdot 7^{s-1} = 2 \cdot 3 \cdot 7^{s-1}$
- CRT produces $u \in \mathbb{N}$ with $\zeta_N \mapsto \zeta_N^u$ automorphism of K of order 3
- $\zeta_N \mapsto \zeta_N^u$ non-trivial in F, K, contradiction

