Torsion Subgroups of Rational Elliptic Curves over Nonic Galois Fields

Caleb McWhorter
Syracuse University

Maine/Québec Number Theory Conference
October 5, 2019

Theorem (Mordell-Weil, 1922/1928)

Let K be a number field and A / K be an abelian variety. Then the group of K-rational points on A, denoted $A(K)$, is a finitely generated abelian group. In particular,

$$
A(K) \cong \mathbb{Z}^{r_{A / K}} \oplus A(K)_{\text {tors }}
$$

Louis J. Mordell

André Weil

Theorem (Levi-Ogg Conjecture; Mazur, 1977)

If E / \mathbb{Q} is a rational elliptic curve, then the possible torsion subgroups $E(\mathbb{Q})_{\text {tors }}$ are precisely:

$$
\begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1,2, \ldots, 10,12 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1, \ldots, 4\end{cases}
$$

Furthermore, each possibility occurs infinitely often.

Beppo Levi

Andrew Ogg

Barry Mazur

Theorem (Kenku, Momose, 1988; Kamienny, 1992)

Let K / \mathbb{Q} be a quadratic number field and E / K be an elliptic curve. Then the possible torsion subgroups $E(K)_{\text {tors }}$ are precisely:

$$
\begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1,2, \ldots, 16,18 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1, \ldots, 6 \\ \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 n \mathbb{Z}, & n=1,2 \\ \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} & \end{cases}
$$

Moreover, each possibility occurs infinitely often.

Monsur Kenku

Fumiyuki Momose

Sheldon Kamienny

Theorem (Jeon,Kim,Schweizer, 2004;
 Etropolski-Morrow-Zureick Brown; Derickx, 2016)

Let K / \mathbb{Q} be a cubic number field and E / K be an elliptic curve. Then the possible torsion subgroups $E(K)_{\text {tors }}$ are precisely:

$$
\begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1,2, \ldots, 16,18,20,21 \\ \mathbb{Z} / 2 n \mathbb{Z}, & n=1, \ldots, 7\end{cases}
$$

Each of these possibilities occurs infinitely many times except $\mathbb{Z} / 21 \mathbb{Z}$.

Theorem (Jeon, Kim, Park, 2006)

Let K / \mathbb{Q} be a quartic number field and E / K be an elliptic curve. Then the possible torsion subgroups $E(K)_{\text {tors }}$ appearing infinitely often are precisely:

$$
\begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1,2, \ldots, 18,20,21,22 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1, \ldots, 9 \\ \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 n \mathbb{Z}, & n=1,2,3 \\ \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 n \mathbb{Z}, & n=1,2 \\ \mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z} & \\ \mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & \end{cases}
$$

Daeyeol Jeon

Chang Kim

Eui-Sung Park

Theorem (Derickx, Sutherland, 2016)

Let K / \mathbb{Q} be a quintic number field and E / K be an elliptic curve. Then the possible torsion subgroups $E(K)_{\text {tors }}$ appearing infinitely often are precisely:

$$
\begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1, \ldots, 22,24,25 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1, \ldots, 8\end{cases}
$$

Maarten Derickx

Drew Sutherland

Theorem (Derickx, Sutherland, 2016)

Let K / \mathbb{Q} be a sextic number field and E / K be an elliptic curve. Then the possible torsion subgroups $E(K)_{\text {tors }}$ appearing infinitely often are precisely:

$$
\begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1, \ldots, 30 ; n \neq 23,25,29 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1, \ldots, 10 \\ \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 n \mathbb{Z}, & n=1, \ldots, 4 \\ \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 n \mathbb{Z}, & n=1,2 \\ \mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & \end{cases}
$$

Maarten Derickx

Drew Sutherland

Theorem (Clark, Corn, Rice, Stankewicz; 2013)

Let K be a number field of degree $d=1,2, \ldots, 13$ and E / K be an elliptic curve with CM. Then all possible torsion subgroups are given, and an algorithm to compute the list.

Pete Clark

Patrick Corn

Alex Rice

James Stankewicz

Theorem (Bourdon, Pollack; 2018)

Let K be an odd degree number field and E / K be an elliptic curve with $C M$. Then the torsion subgroups $E(K)_{\text {tors }}$ are computable.

Abbey Bourdon

Paul Pollack

Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et al.)
If E / \mathbb{Q} has an n-isogeny over \mathbb{Q}, then

$$
n \in\{1,2, \ldots, 19,21,25,27,37,43,67,163\} .
$$

If E does not have $C M$, then $n \leq 18$ or $n \in\{21,25,37\}$.

Theorem (Chou,Daniels,González-Jimenez,LozanoRobledo,Najman,Tornero,et al.)

Let \mathcal{C}_{n} denote the cyclic subgroup of order n. Then

$$
\begin{aligned}
\Phi_{\mathbb{Q}}(2)= & \left\{\mathcal{C}_{n}: n=1,2, \ldots, 10,12,15,16\right\} \\
& \cup\left\{\mathcal{C}_{2} \oplus \mathcal{C}_{2 n}: 1,2, \ldots, 6\right\} \cup\left\{\mathcal{C}_{3} \oplus \mathcal{C}_{3}, \mathcal{C}_{3} \oplus \mathcal{C}_{6}, \mathcal{C}_{4} \oplus \mathcal{C}_{4}\right\} \\
\Phi_{\mathbb{Q}}(3)= & \left\{\mathcal{C}_{n}: n=1,2, \ldots, 10,12,13,14,18,21\right\} \\
& \cup\left\{\mathcal{C}_{2} \oplus \mathcal{C}_{2 n}: n=1,2,3,4,7\right\} \\
\Phi_{\mathbb{Q}}(4)= & \left\{\mathcal{C}_{n}: n=12, \ldots, 10,12,13,15,16,20,24\right\} \\
& \cup\left\{\mathcal{C}_{2} \oplus \mathcal{C}_{2 n}: n=1,2, \ldots, 6,8\right\} \cup\left\{\mathcal{C}_{3} \oplus \mathcal{C}_{3 n}: n=1,2\right\} \\
& \cup\left\{\mathcal{C}_{4} \oplus \mathcal{C}_{4 n}: n=1,2\right\} \cup\left\{\mathcal{C}_{5} \oplus \mathcal{C}_{5}\right\} \cup\left\{\mathcal{C}_{6} \oplus \mathcal{C}_{6}\right\} \\
\Phi_{\mathbb{Q}}(5)=\{ & \left\{\mathcal{C}_{n}: n=1,2, \ldots, 12,25\right\} \cup\left\{\mathcal{C}_{2} \oplus \mathcal{C}_{2 n}: n=1,2,3,4\right\} \\
\Phi_{\mathbb{Q}}(6) \supseteq & \left\{\mathcal{C}_{n}: n=1,2, \ldots, 21,30: n \neq 11,17,19,20\right\} \\
& \cup\left\{\mathcal{C}_{2} \oplus \mathcal{C}_{2 n}: n=1,2, \ldots, 7,9\right\} \\
& \cup\left\{\mathcal{C}_{3} \oplus \mathcal{C}_{3 n}: n=1,2,3,4\right\} \cup\left\{\mathcal{C}_{4} \oplus \mathcal{C}_{4}, \mathcal{C}_{6} \oplus \mathcal{C}_{6}\right\}
\end{aligned}
$$

Michael Chou

Álvaro Lozano-Robledo

Harris Daniels

Filip Najman

Enrique González-Jiménez

José Tornero

Theorem (M.)

Let K / \mathbb{Q} be a nonic Galois field, and let E / \mathbb{Q} be a rational elliptic curve. Then the possible torsion subgroups $E(K)_{\text {tors }}$ are precisely:

$$
\begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1,2, \ldots, 10,12,13,14,16,18,19,21,27 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1,2,3,4,7\end{cases}
$$

Theorem (M.)

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then the possible torsion subgroups $E(K)_{\text {tors }}$ are precisely:

$$
\begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1,2, \ldots, 10,12,13,14,18,21 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1,2,3,4,7\end{cases}
$$

Theorem (M.)

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 9 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then the possible torsion subgroups $E(K)_{\text {tors }}$ are:

$$
\begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1,2, \ldots, 10,12,13^{*}, 18^{*}, 19,21,27 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1,2,3,4\end{cases}
$$

Outline of the Method

Theorem (Lozano-Robledo)

Let $S_{\mathbb{Q}}(d)$ be the set of primes such that there exists an elliptic curve E / \mathbb{Q} with a point of order p defined in an extension K / \mathbb{Q} of degree at most d. Then $S_{\mathbb{Q}}(9)=\{2,3,5,7,11,13,17,19\}$.

Álvaro Lozano-Robledo

Remark

Lozano-Robledo computes $S_{\mathbb{Q}}(d)$ for $1 \leq d \leq 21$, and gives a conjecturally formula valid for all $1 \leq d \leq 42$, following from a positive answer to Serre's uniformity question.

Proposition (González-Jiménez, Najman)

(i) $11 \in R_{\mathbb{Q}}(d)$ if and only if $5 \mid d$.
(ii) $13 \in R_{\mathbb{Q}}(d)$ if and only if $3 \mid d$ or $4 \mid d$.
(iil) $17 \in R_{\mathbb{Q}}(d)$ if and only if $8 \mid d$.

Enrique González-Jiménez

Filip Najman

Lemma
Let K / \mathbb{Q} be an odd degree number field, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain full p-torsion for all odd primes.

Lemma
Let K / \mathbb{Q} be an odd degree number field, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain full p-torsion for all odd primes.

Proof. If $E(K)$ contains full n-torsion, then $\mathbb{Q}\left(\zeta_{n}\right) \subseteq K$.

Lemma

Let K / \mathbb{Q} be an odd degree number field, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain full p-torsion for all odd primes.

Proof. If $E(K)$ contains full n-torsion, then $\mathbb{Q}\left(\zeta_{n}\right) \subseteq K$. But

$$
[K: \mathbb{Q}]=\left[K: \mathbb{Q}\left(\zeta_{n}\right)\right]\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]=\left[K: \mathbb{Q}\left(\zeta_{n}\right)\right] \phi(n),
$$

and $\phi(n)$ is even for $n>2$.

Lemma

Let K / \mathbb{Q} be a Galois extension, and let E / \mathbb{Q} be a rational elliptic curve. If $E(K)[n] \cong \mathbb{Z} / n \mathbb{Z}$, then E has a rational n-isogeny.

Lemma

Let K / \mathbb{Q} be a Galois extension, and let E / \mathbb{Q} be a rational elliptic curve. If $E(K)[n] \cong \mathbb{Z} / n \mathbb{Z}$, then E has a rational n-isogeny.

Proof. Let $\{P, Q\}$ be a basis for $E[n]$. Without loss of generality, assume that $P \in E(K)$ and $Q \notin E(K)$. Let $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. Because K / \mathbb{Q} is Galois and $P \in E(K), P^{\sigma} \in E(K)[n]=\langle P\rangle$. But then $E(K)[n]=\langle P\rangle$ is Galois stable, which implies that E has an n-isogeny over \mathbb{Q}.

Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et al.)
If E / \mathbb{Q} has an n-isogeny over \mathbb{Q}, then

$$
n \in\{1,2, \ldots, 19,21,25,27,37,43,67,163\} .
$$

If E does not have $C M$, then $n \leq 18$ or $n \in\{21,25,37\}$.

Theorem (Rouse,Zureick-Brown, 2015)

Let E / \mathbb{Q} be a rational elliptic curve without $C M$. Then the index of $\rho_{E, 2^{\infty}}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$ divides 64 or 96 , and all such indices occur. Furthermore, the image of $\rho_{E, 2 \infty}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$ is the inverse image in $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ of the image of $\rho_{E, 32}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$.

Jeremy Rouse

David Zureick-Brown

Remark

They also enumerate all 1,208 possibilities and find their rational points.

Theorem (González-Jiménez, Lozano-Robledo)

Let E / \mathbb{Q} be an elliptic curve without $C M$. Let $1 \leq s \leq N$ be fixed integers, and let $T \subseteq E\left[2^{N}\right]$ be a subgroup isomorphic to $\mathbb{Z} / 2^{s} / Z \oplus \mathbb{Z} / 2^{N} \mathbb{Z}$. Then $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by 2 if $s=N=2$, and otherwise by $2^{2 N+2 s-8}$ if $N \geq 3$, unless $s \geq 4$ and $j(E)$ is one of the two values:

$$
-\frac{3 \cdot 18249920^{3}}{17^{16}} \text { or }-\frac{7 \cdot 1723187806080^{3}}{79^{16}}
$$

in which case $[\mathbb{Q}(T): \mathbb{Q}]$ is divisible by $3 \cdot 2^{2 N+2 s-9}$. Moreover, this is best possible in that there are one-parameter families $E_{s, N}(t)$ of elliptic curves over \mathbb{Q} such that for each $s, N \geq 0$ and each $t \in \mathbb{Q}$, and subgroups $T_{s, N} \in E_{s, N}(t)(\overline{\mathbb{Q}})$ isomorphic to $\mathbb{Z} / 2^{s} \mathbb{Z} \oplus \mathbb{Z} / 2^{N} \mathbb{Z}$ such that $\left[\mathbb{Q}\left(T_{s, N}\right): \mathbb{Q}\right]$ is equal to the bound given above.

Theorem (Knapp)

Let E / K be an elliptic curve over a field of characteristic not equal to 2 or 3. Suppose E is given by

$$
y^{2}=(x-\alpha)(x-\beta)(x-\gamma)
$$

where $\alpha, \beta, \gamma \in K$. For $P=\left(x_{0}, y_{0}\right) \in E(K)$, there exists a point Q with $Q \in E(K)$ with $2 Q=P$ if and only if $x_{0}-\alpha, x_{0}-\beta, x_{0}-\gamma$ are squares in K.

Anthony Knapp

Lemma (Najman)

Let p, q be distinct odd primes, F_{2} / F_{1} a Galois extension of number fields such that $\operatorname{Gal}\left(F_{2} / F_{1}\right) \simeq \mathbb{Z} / q \mathbb{Z}$ and E / F_{1} an elliptic curve with no p-torsion over F_{1}. Then if q does not divide $p-1$ and $\mathbb{Q}\left(\zeta_{p}\right) \not \subset F_{2}$, then $E\left(F_{2}\right)[p]=0$.

Lemma (Najman)

Let p be an odd prime number, q a prime not dividing $p, F_{2} / F_{1}$ a Galois extension of number fields such that $\operatorname{Gal}\left(F_{2} / F_{1}\right) \simeq \mathbb{Z} / q \mathbb{Z}$, E / F_{1} an elliptic curve, and suppose $E\left(F_{1}\right) \supset \mathbb{Z} / p \mathbb{Z}, E\left(F_{1}\right) \not \supset \mathbb{Z} / p^{2} \mathbb{Z}$, and $\zeta_{p} \notin F_{2}$. Then $E\left(F_{2}\right) \not \supset \mathbb{Z} / p^{2} \mathbb{Z}$.

Lemma

Let K / \mathbb{Q} be a nonic Galois field, and let E / \mathbb{Q} be a rational elliptic curve. If $P \in E(K)$ is a point of order n and $E(K)[n] \cong \mathbb{Z} / n \mathbb{Z}$, then $\operatorname{Gal}(\mathbb{Q}(P) / \mathbb{Q})$ is isomorphic to a subgroup of $(\mathbb{Z} / n \mathbb{Z})^{\times}$.

Lemma

Let K / \mathbb{Q} be a nonic Galois field, and let E / \mathbb{Q} be a rational elliptic curve. Let $P \in E(K)$ be a point of order p.
(1) If $p=2,3,5$, then P is rational or defined over a cubic field.
(2) If $p=7,13$, then P is defined over a cubic field.

Nonic Bicyclic Galois Fields

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland, 2017)

Let E / \mathbb{Q} be a rational elliptic curve. Then $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$ is finite and is isomorphic to one of the following:

$$
\begin{cases}\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1,2,4,5,7,8,13 \\ \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} 4 n \mathbb{Z}, & n=1,2,4,7 \\ \mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 6 n \mathbb{Z}, & n=1,2,3,5,7 \\ \mathbb{Z} / 2 n \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=4,6,7,9\end{cases}
$$

Pete Clark

Patrick Corn

Alex Rice

James Stankewicz

Theorem (Najman)

Let K / \mathbb{Q} be a cubic number field, and let E / \mathbb{Q} be a rational elliptic curve. Then

$$
E(F)_{\text {tors }} \cong \begin{cases}\mathbb{Z} / n \mathbb{Z}, & n=1, \ldots, 10,12,13,14,18,21 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 n \mathbb{Z}, & n=1, \ldots, 4,7\end{cases}
$$

Moreover, the elliptic curve 162 B1 over $\mathbb{Q}\left(\zeta_{9}\right)^{+}$is the unique rational elliptic curve over a cubic number field with torsion subgroup $\mathbb{Z} / 21 \mathbb{Z}$.

Filip Najman

Nonic Cyclic Galois Fields

Proposition

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 9 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain a subgroup isomorphic to $\mathbb{Z} / 14 \mathbb{Z}$.

Proposition

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 9 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain a subgroup isomorphic to $\mathbb{Z} / 14 \mathbb{Z}$.

Proof (Sketch).

- Assume $K / F / \mathbb{Q}$ exists. Then $E(K)$ has a 14-isogeny.

Proposition

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 9 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain a subgroup isomorphic to $\mathbb{Z} / 14 \mathbb{Z}$.

Proof (Sketch).

- Assume $K / F / \mathbb{Q}$ exists. Then $E(K)$ has a 14 -isogeny.
- Then E has j-invariant $j=-3^{3} \cdot 5^{3}$ or $3^{3} \cdot 5^{3} \cdot 17^{3}$, so E must be the latter.

Proposition

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 9 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain a subgroup isomorphic to $\mathbb{Z} / 14 \mathbb{Z}$.

Proof (Sketch).

- Assume $K / F / \mathbb{Q}$ exists. Then $E(K)$ has a 14 -isogeny.
- Then E has j-invariant $j=-3^{3} \cdot 5^{3}$ or $3^{3} \cdot 5^{3} \cdot 17^{3}$, so E must be the latter.
- Using division polynomials, it must be that $F=\mathbb{Q}\left(\zeta_{7}\right)^{+}$.

Proposition

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 9 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain a subgroup isomorphic to $\mathbb{Z} / 14 \mathbb{Z}$.

Proof (Sketch).

- Assume $K / F / \mathbb{Q}$ exists. Then $E(K)$ has a 14 -isogeny.
- Then E has j-invariant $j=-3^{3} \cdot 5^{3}$ or $3^{3} \cdot 5^{3} \cdot 17^{3}$, so E must be the latter.
- Using division polynomials, it must be that $F=\mathbb{Q}\left(\zeta_{7}\right)^{+}$.
- $F \subseteq K \subseteq \mathbb{Q}\left(\zeta_{N}\right)$ for some $N=7^{s} m$.

Proposition

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 9 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain a subgroup isomorphic to $\mathbb{Z} / 14 \mathbb{Z}$.

Proof (Sketch).

- Assume $K / F / \mathbb{Q}$ exists. Then $E(K)$ has a 14 -isogeny.
- Then E has j-invariant $j=-3^{3} \cdot 5^{3}$ or $3^{3} \cdot 5^{3} \cdot 17^{3}$, so E must be the latter.
- Using division polynomials, it must be that $F=\mathbb{Q}\left(\zeta_{7}\right)^{+}$.
- $F \subseteq K \subseteq \mathbb{Q}\left(\zeta_{N}\right)$ for some $N=7^{s} m$.
- $\left|\left(\mathbb{Z} / 7^{s} \mathbb{Z}\right)^{\times}\right|=7^{s-1}(7-1)=6 \cdot 7^{s-1}=2 \cdot 3 \cdot 7^{s-1}$

Proposition

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 9 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain a subgroup isomorphic to $\mathbb{Z} / 14 \mathbb{Z}$.

Proof (Sketch).

- Assume $K / F / \mathbb{Q}$ exists. Then $E(K)$ has a 14 -isogeny.
- Then E has j-invariant $j=-3^{3} \cdot 5^{3}$ or $3^{3} \cdot 5^{3} \cdot 17^{3}$, so E must be the latter.
- Using division polynomials, it must be that $F=\mathbb{Q}\left(\zeta_{7}\right)^{+}$.
- $F \subseteq K \subseteq \mathbb{Q}\left(\zeta_{N}\right)$ for some $N=7^{s} m$.
- $\left|\left(\mathbb{Z} / 7^{s} \mathbb{Z}\right)^{\times}\right|=7^{s-1}(7-1)=6 \cdot 7^{s-1}=2 \cdot 3 \cdot 7^{s-1}$
- CRT produces $u \in \mathbb{N}$ with $\zeta_{N} \mapsto \zeta_{N}^{u}$ automorphism of K of order 3

Proposition

Let K / \mathbb{Q} be a nonic Galois field with $\operatorname{Gal}(K / \mathbb{Q}) \cong \mathbb{Z} / 9 \mathbb{Z}$, and let E / \mathbb{Q} be a rational elliptic curve. Then $E(K)_{\text {tors }}$ does not contain a subgroup isomorphic to $\mathbb{Z} / 14 \mathbb{Z}$.

Proof (Sketch).

- Assume $K / F / \mathbb{Q}$ exists. Then $E(K)$ has a 14 -isogeny.
- Then E has j-invariant $j=-3^{3} \cdot 5^{3}$ or $3^{3} \cdot 5^{3} \cdot 17^{3}$, so E must be the latter.
- Using division polynomials, it must be that $F=\mathbb{Q}\left(\zeta_{7}\right)^{+}$.
- $F \subseteq K \subseteq \mathbb{Q}\left(\zeta_{N}\right)$ for some $N=7^{s} m$.
- $\left|\left(\mathbb{Z} / 7^{s} \mathbb{Z}\right)^{\times}\right|=7^{s-1}(7-1)=6 \cdot 7^{s-1}=2 \cdot 3 \cdot 7^{s-1}$
- CRT produces $u \in \mathbb{N}$ with $\zeta_{N} \mapsto \zeta_{N}^{u}$ automorphism of K of order 3
- $\zeta_{N} \mapsto \zeta_{N}^{u}$ non-trivial in F, K, contradiction

Questions?

