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1888–1972

“Mathematicians have been familiar with very few
questions for so long a period with so little

accomplished in the way of general results, as that of
finding the rational [points on elliptic curves].”

– L.J. Mordell, 1922



Theorem (Mordell, 1922)

Let E/Q be an elliptic curve. Then the group of rational points on E,
denoted E(Q) is a finitely generated abelian group. In particular,

E(Q) ∼= Zr ⊕ E(Q)tors,

where r ≥ 0 is the rank and E(Q)tors is the set of points with finite
order.

Louis J. Mordell
1888–1972



Theorem (Mordell-Weil-Néron, 1952)

Let K be a field that is finitely generated over its prime field and A/K
be an abelian variety. Then the group of K-rational points on A,
denoted A(K), is a finitely generated abelian group. In particular,

A(K) ∼= ZrA/K ⊕ A(K)tors

Louis J. Mordell
1888–1972

André Weil
1906–1998

André Néron
1922–1985



STRUCTURE OF THE TORSION SUBGROUP

E(K)tors ∼= Z/mZ⊕ Z/mnZ

E[n] ∼= Z/nZ⊕ Z/nZ



Theorem (Levi-Ogg Conjecture; Mazur, 1977)

If E/Q is a rational elliptic curve, then E(Q)tors is isomorphic to
precisely one of the following:{

Z/nZ, n = 1, 2, . . . , 10, 12
Z/2Z⊕ Z/2nZ, n = 1, . . . , 4

Moreover, each possibility occurs infinitely often.

Beppo Levi
1875–1961

Andrew Ogg
1934 – Barry Mazur

1937 –



Question
What finitely generated abelian groups arise from abelian
varieties over global fields?



Question
What torsion subgroups arise for elliptic curves E/K, where K
is a number field of degree d?



With massive loss of generality, let d = 2.



Theorem (Kenku, Momose, 1988; Kamienny, 1992)

Let K/Q be a quadratic number field and E/K be an elliptic curve.
Then E(K)tors is isomorphic to precisely one of the following:

Z/nZ, n = 1, 2, . . . , 16, 18
Z/2Z⊕ Z/2nZ, n = 1, . . . , 6
Z/3Z⊕ Z/3nZ, n = 1, 2
Z/4Z⊕ Z/4Z

Moreover, each possibility occurs infinitely often.

Monsur Kenku Fumiyuki Momose Sheldon Kamienny



Theorem (Jeon,Kim,Schweizer, 2004;
Etropolski-Morrow-Zureick Brown; Derickx, 2016)

Let K/Q be a cubic number field and E/K be an elliptic curve. Then
E(K)tors is isomorphic to precisely one of the following:{

Z/nZ n = 1, 2, . . . , 16, 18, 20, 21
Z/2nZ n = 1, . . . , 7

Each of these possibilities occurs infinitely many times except Z/21Z.

Jeon Kim Schweizer

Etropolski Morrow Z-B. Derickx



Theorem (Jeon, Kim, Park, 2006)

Let K/Q be a quartic number field and E/K be an elliptic curve. Then
the possible torsion subgroups E(K)tors appearing infinitely often are
precisely: 

Z/nZ, n = 1, 2, . . . , 18, 20, 21, 22
Z/2Z⊕ Z/2nZ, n = 1, . . . , 9
Z/3Z⊕ Z/3nZ, n = 1, 2, 3
Z/4Z⊕ Z/4nZ, n = 1, 2
Z/5Z⊕ Z/5Z
Z/6Z⊕ Z/6Z

Daeyeol Jeon Chang Kim Eui-Sung Park



Theorem (Derickx, Sutherland, 2016)

Let K/Q be a quintic number field and E/K be an elliptic curve. Then
the possible torsion subgroups E(K)tors appearing infinitely often are
precisely: {

Z/nZ, n = 1, . . . , 22, 24, 25
Z/2Z⊕ Z/2nZ, n = 1, . . . , 8

Maarten Derickx Drew Sutherland



Theorem (Derickx, Sutherland, 2016)

Let K/Q be a sextic number field and E/K be an elliptic curve. Then
the possible torsion subgroups E(K)tors appearing infinitely often are
precisely:

Z/nZ, n = 1, . . . , 30; n 6= 23, 25, 29
Z/2Z⊕ Z/2nZ, n = 1, . . . , 10
Z/3Z⊕ Z/3nZ, n = 1, . . . , 4
Z/4Z⊕ Z/4nZ, n = 1, 2
Z/6Z⊕ Z/6Z

Maarten Derickx Drew Sutherland



Theorem (Clark, Corn, Rice, Stankewicz; 2013)

Let K be a number field of degree d = 1, 2, . . . , 13 and E/K be an
elliptic curve with CM. Then all possible torsion subgroups are given,
and an algorithm to compute the list.

Pete Clark Patrick Corn Alex Rice James Stankewicz



What if you restrict to rational elliptic curves?



Definition (Isogeny)

Let E1,E2 be elliptic curves. An isogeny from E1 to E2 is a
morphism φ : E1 → E2 with φ(O) = O. If | kerφ| = n, we say φ
is an n-isogeny.

Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et
al.)

If E/Q has an n-isogeny over Q, then

n ∈ {1, 2, . . . , 19, 21, 25, 27, 37, 43, 67, 163}.

If E does not have CM, then n ≤ 18 or n ∈ {21, 25, 37}.



Definition (Isogeny)

Let E1,E2 be elliptic curves. An isogeny from E1 to E2 is a
morphism φ : E1 → E2 with φ(O) = O. If | kerφ| = n, we say φ
is an n-isogeny.

Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et
al.)

If E/Q has an n-isogeny over Q, then

n ∈ {1, 2, . . . , 19, 21, 25, 27, 37, 43, 67, 163}.

If E does not have CM, then n ≤ 18 or n ∈ {21, 25, 37}.



Theorem (Rouse,Zureick-Brown, 2015)

Let E/Q be a rational elliptic curve without CM. Then the index of
ρE,2∞(Gal(Q/Q)) divides 64 or 96, and all such indices occur.
Furthermore, the image of ρE,2∞(Gal(Q/Q)) is the inverse image in
GL2(Z2) of the image of ρE,32(Gal(Q/Q)).

Jeremy Rouse David Zureick-Brown

Remark
They also enumerate all 1,208 possibilities and find their
rational points.



Theorem (Sutherland, Zywina, 2016)

Up to conjugacy, there are 248 open subgroups of GL2(Ẑ) of prime
power level satisfying −I ∈ G and det G = Ẑ× for which XG has
infinitely many rational points. Of these 248 groups, there are 220 of
genus 0 and 28 of genus 1.

Drew Sutherland David Zywina



A bit of notation



ΦQ(d) := {Set of Iso. Classes of E(K)tors : EQ(K), [K : Q] = d}

SQ(d) := {p prime : ∃ EQ(K), p divides |EQ(K)|tors, [K : Q] ≤ d}



ΦQ(d) := {Set of Iso. Classes of E(K)tors : EQ(K), [K : Q] = d}

SQ(d) := {p prime : ∃ EQ(K), p divides |EQ(K)|tors, [K : Q] ≤ d}



What happens to torsion under base extension?



Theorem (Chou,Daniels,González-Jimenez,Lozano-
Robledo,Najman,Tornero,et al.)

Let Cn denote the cyclic subgroup of order n. Then

ΦQ(2) = {Cn : n = 1, 2, . . . , 10, 12, 15, 16}
∪ {C2 ⊕ C2n : 1, 2, . . . , 6} ∪ {C3 ⊕ C3, C3 ⊕ C6, C4 ⊕ C4}

ΦQ(3) = {Cn : n = 1, 2, . . . , 10, 12, 13, 14, 18, 21}
∪ {C2 ⊕ C2n : n = 1, 2, 3, 4, 7}

ΦQ(4) = {Cn : n = 12, . . . , 10, 12, 13, 15, 16, 20, 24}
∪ {C2 ⊕ C2n : n = 1, 2, . . . , 6, 8} ∪ {C3 ⊕ C3n : n = 1, 2}
∪ {C4 ⊕ C4n : n = 1, 2} ∪ {C5 ⊕ C5} ∪ {C6 ⊕ C6}

ΦQ(5) = {Cn : n = 1, 2, . . . , 12, 25} ∪ {C2 ⊕ C2n : n = 1, 2, 3, 4}
ΦQ(6) ⊇ {Cn : n = 1, 2, . . . , 21, 30 : n 6= 11, 17, 19, 20}

∪ {C2 ⊕ C2n : n = 1, 2, . . . , 7, 9}
∪ {C3 ⊕ C3n : n = 1, 2, 3, 4} ∪ {C4 ⊕ C4, C6 ⊕ C6}

ΦQ(d∗) = ΦQ(1)



Michael Chou Harris Daniels Enrique González-Jiménez

Álvaro Lozano-Robledo Filip Najman José Tornero



Theorem (Najman, 2012)

Let K/Q be a cubic number field and E/Q be a rational elliptic curve.
Then

E(F)tors ∼=

{
Z/nZ, n = 1, . . . , 10, 12, 13, 14, 18, 21
Z/2Z⊕ Z/2nZ, n = 1, . . . , 4, 7

Moreover, the elliptic curve 162B1 over Q(ζ9)+ is the unique rational
elliptic curve over a cubic number field with torsion subgroup Z/21Z.

Filip Najman



Theorem (Chou, 2015)

Let K/Q be a quartic Galois field and E/Q be an elliptic curve. Then
E(K)tors is isomorphic to one of the following:

Z/nZ, n = 1, . . . , 10, 12, 13, 15, 16
Z/2Z⊕ Z/2nZ, n = 1, . . . , 6, 8
Z/3Z⊕ Z/3nZ, n = 1, 2
Z/4Z⊕ Z/4nZ, n = 1, 2
Z/5Z⊕ Z/5Z
Z/6Z⊕ Z/6Z

Michael Chou



Theorem (M.)

Let K/Q be a nonic Galois field and E/Q be an elliptic curve. Then
E(K)tors is isomorphic to one of the following groups:{
Z/nZ, n = 1, 2, . . . , 10, 12, 13, . . . , 16, 18, 19, 21, 25, 27
Z/2Z⊕ Z/2nZ, n = 1, . . . , 7, 9

Caleb McWhorter



Theorem (Mazur, Parent, Derickx, Kammienny, Stein, Stoll,
Lozano-Robledo, et al.)

SQ({1, 2}) = {2, 3, 5, 7}
SQ({3, 4}) = {2, 3, 5, 7, 13}

SQ({5, 6, 7}) = {2, 3, 5, 7, 11, 13}
SQ(8) = {2, 3, 5, 7, 11, 13}

SQ({9, 10, 11}) = {2, 3, 5, 7, 11, 13, 17, 19}
SQ({12, . . . , 20}) = {2, 3, 5, 7, 11, 13, 17, 19, 37}

SQ(21) = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43}



Remark
Lozano-Robledo computes SQ(d) for 1 ≤ d ≤ 21, and gives a
conjecturally formula valid for all 1 ≤ d ≤ 42, following from a
positive answer to Serre’s uniformity question.

Álvaro Lozano-Robledo

Remark
Furthermore, Enrique González-Jiménez and Filip Najman
determine all possible prime orders of a point P ∈ E(K)tors,
where [K : Q] = d for all d ≤ 3 342 296.



Theorem (González-Jiménez, Lozano-Robledo, 2015)

Let E/Q be an elliptic curve without CM. Let 1 ≤ s ≤ N be fixed
integers, and let T ⊆ E[2N] be a subgroup isomorphic to
Z/2s/Z⊕ Z/2NZ. Then [Q(T) : Q] is divisible by 2 if s = N = 2,
and otherwise by 22N+2s−8 if N ≥ 3, unless s ≥ 4 and j(E) is one of
the two values:

−3 · 182499203

1716 or − 7 · 17231878060803

7916

in which case [Q(T) : Q] is divisible by 3 · 22N+2s−9. Moreover, this is
best possible in that there are one-parameter families Es,N(t) of elliptic
curves over Q such that for each s,N ≥ 0 and each t ∈ Q, and
subgroups Ts,N ∈ Es,N(t)(Q) isomorphic to Z/2sZ⊕ Z/2NZ such
that [Q(Ts,N) : Q] is equal to the bound given above.



What about infinite extensions?



Theorem (Laska, Lorenz, 1985; Fujita, 2005)

Let E/Q be an elliptic curve. The torsion subgroup E(Q(2∞))tors is
finite and is isomorphic to precisely one of the following:

Z/nZ, n = 1, 3, 5, 7, 9, 15
Z/2Z⊕ Z/2nZ, n = 1, . . . , 6, 8
Z/3Z⊕ Z/3Z
Z/4Z⊕ Z/4nZ, n = 1, . . . , 4
Z/2nZ⊕ Z/2nZ, n = 3, 4

Michael Laska Martin Lorenz Yasutsugu Fujita



Theorem (Daniels, Lozano-Robledo, Najman, Sutherland, 2017)

Let E/Q be an elliptic curve. Then E(Q(3∞))tors is finite and is
isomorphic to precisely one of the following:

Z/2Z⊕ Z/2nZ, n = 1, 2, 4, 5, 7, 8, 13
Z/4Z⊕ Z/4nZ, n = 1, 2, 4, 7
Z/6Z⊕ Z/6nZ, n = 1, 2, 3, 5, 7
Z/2nZ⊕ Z/2nZ, n = 4, 6, 7, 9

All but four of the possibilities occur infinitely often: (4, 28), (6, 30),
(6, 42), (14, 14), which occur for only 2, 2, 4, and 1 elliptic curves,
respectively.

Harris Daniels Álvaro Lozano-Robledo Filip Najman Drew Sutherland



What about other types of fields?



Theorem (McDonald, 2017)

Let K = Fq(T), where q = pn. Let E/K be non-isotrivial. If
p - E(K)tors, then E(K)tors is one of the following:
0,Z/2Z, . . . ,Z/10Z,Z/12Z,Z/2Z⊕ Z/2Z,Z/2Z⊕ Z/4Z,Z/2Z⊕
Z/6Z,Z/2Z⊕ Z/8Z,Z/3Z⊕ Z/3Z,Z/3Z⊕ Z/6Z,Z/4Z⊕
Z/4Z,Z/5Z⊕ Z/5Z.
If p | #E(K)tors, then p ≤ 11, and E(K)tors is one of

Z/pZ, p = 2, 3, 5, 7, 11
Z/2pZ, p = 2, 3, 5, 7
Z/3pZ, p = 2, 3, 5
Z/4pZ, p = 2, 3
Z/5pZ, p = 2, 3
Z/5Z⊕ Z/10Z, p = 2
Z/2Z⊕ Z/12Z, p = 3
Z/2Z⊕ Z/10Z, p = 5



Robert McDonald



What are other questions one might ask?



How large can the torsion be?



Theorem (Merel,1996)

Let K be a number field of degree [K : Q] = d > 1. There is a number
B(d) > 0 such that |E(K)tors| ≤ B(d) for all elliptic curves E/K.

Loı̈c Merel



Conjecture (Clark, Cook, Stakewicz)

There is a constant C such that B(d) ≤ C d log log d for all d ≥ 3.

Pete Clark Brian Cook James Stankewicz



Theorem (Hindry, Silverman, 1999)

Let K be a field of degree d ≥ 2 and E/K be an elliptic curve such that
j(E) is an algebraic integer. Then we have

|E(K)tors| ≤ 1 977 404 · d log d

Marc Hindry Joseph Silverman



Theorem (Clark, Pollack, 2015)

There is an absolute, effective constant C such that for all number
fields K of degree d ≥ 3 and all elliptic curves E/K with CM, we have
|E(K)tors| ≤ C d log log d.

Pete Clark Paul Pollack



Theorem (Merel, 1996)

Let F/Q be a number field of degree d. If P ∈ E(F) is a point of exact
prime power pn, then p ≤ 33d2 .

Loı̈c Merel Pierre Parent

Remark

In 1999, Parent improved this to pn ≤ 129(5d − 1)(3d)6.



Theorem (Lozano-Robledo, 2013)

Let K/Q be a number field of degree d and suppose there is an elliptic
curve E/K with CM by a full order with a point of order pn, then

ϕ(pn) ≤ 24 emax(p,K/Q) ≤ 24 d

Álvaro Lozano-Robledo



What are even more questions one can consider?



Over what fields do torsion subgroups occur?

What happens over other intermediate extensions?

What about other fields?

How ‘common’ are given torsion subgroups?



What all this means is the number of interesting
questions about torsion subgroups of elliptic curves

is unbounded. . . unlike the rank. . . probably.



Questions?


