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Definition (Elliptic Curve)

An elliptic curve is a nonsingular curve of genus one with a
distinguished point, denoted O.

E = {(x, y) : y2 = x3 + Ax + B} ∪ {O}



Definition (Elliptic Curve)

An elliptic curve is a nonsingular curve of genus one with a
distinguished point, denoted O.

E = {(x, y) : y2 = x3 + Ax + B} ∪ {O}





Theorem (Mordell-Weil)

For any abelian variety A over a number field K, A(K) is a finitely
generated abelian group, i.e.

A(K) ∼= Zr ⊕ Tor(A(K))



E(K)tors ∼= Z/mZ⊕ Z/mnZ

E[m] ∼= Z/mZ⊕ Z/mZ



Theorem (Merel, 1994)

For all d ∈ Z+, there exists a constant B(d) ≥ 0 such that for all
elliptic curves E over a number field K with [K : Q] = d, then

|E(K)tors| ≤ B(d).



Theorem (Merel, 1994)

Let E/K be an elliptic curve with [K : Q] = d > 1 and p be prime. If
E(K) has a p-torsion point, then p < d3d2 .

This was later improved by Oesterlé to (3d/2 + 1)2. In the case
over Q, Lozano-Robledo improves this to 2d + 1, p ≥ 11 and
p 6= 13, 37.
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S(d) := {p prime : ∃E/K, p divides |E(K)|tors, [K : Q] ≤ d}

SQ(d) ⊂ S(d)
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Theorem (Mazur, Parent, Derickx, Kammienny, Stein,
Stoll, Lozano-Robledo, et al.)

SQ(9) = {2, 3, 5, 7, 11, 13, 17, 19}
SQ(21) = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43}



Φ(d) := {Set of Isomorphism Classes of E(K)tors : [K : Q] = d}

ΦQ(d) ⊆ Φ(d)
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Theorem (Mazur)

Φ(1) = {Cn : n = 1, . . . , 10, 12} ∪ {C2 × C2n : n = 1, . . . , 4}



Theorem (Najman, González-Jiménez, et al.)

ΦQ(2) = {Cn : n = 1, . . . , 10, 12, 15, 16} ∪
{C2 × C2n : n = 1, . . . , 6}

ΦQ(3) = {Cn : 1, . . . , 10, 12, 13, 14, 18, 21} ∪
{C2 × C2n : n, 1, 2, 3, 4, 7}

ΦQ(4) = {Cn : n = 1, . . . , 10, 12, 13, 15, 16, 20, 24} ∪
{C2 × 22n : n = 1, . . . , 6, 8} ∪ {C3 × C3n : n = 1, 2} ∪
{C4 × C4n : n = 1, 2} ∪ {C5 × C5} ∪ {C6 × C6}

ΦQ(5) = {Cn : n = 1, . . . , 12, 25} ∪ {C2 × C2n : n = 1, . . . , 4}



Definition (Isogeny)

Let E1,E2 be elliptic curves. An isogeny from E1 to E2 is a
morphism φ : E1 → E2 with φ(O) = O.



Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur,
Ogg, et al.)

If E/Q has an n-isogeny over Q, then n ≤ 19 or
n ∈ {21, 25, 27, 37, 43, 67, 163}. If E does not have CM, then n ≤ 18
or n ∈ {21, 25, 37}.



GALOIS REPRESENTATIONS

• E[m] ∼= Z /mZ⊕ Z /mZ

• If σ ∈ Gal(Q/Q), then

[m](Pσ) = ([m]P)σ = Oσ = O

• ρE,n : Gal(Q/Q) −→ Aut(E[n]) ∼= GL2 (Z /nZ)
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Possible images and indices of Galois representations are
limited by the work of Zureick-Brown, Clark, Zywina, Rouse,
Corn, Rice, Stankewicz, et al.



Definition (Weil Pairing)

If E/K be an elliptic curve and m ≥ 2, then there exists a
bilinear, nondegenerate, alternating, Galois invariant pairing
on E[m].



IDEA

Bound the torsion subgroup (by some large sum of Sylow
subgroups), then eliminate cases by isogeny, Galois
representations, and the Weil pairing.



Lemma
Let K/Q be a number field of odd degree. Then E(K)tors cannot
contain full n-torsion for n > 2.

Proof. If K contains E[n] ∼= Z /nZ⊕ Z /nZ, then Q(ζn) ⊆ K. But
then

[K : Q(ζn)] [Q(ζn) : Q] = [K : Q]

[K : Q(ζn)]φ(n) = [K : Q]

but φ(n) is even for n > 2, a contradiction.
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Now K cannot contain full 7-torsion so that E(K)[7∞] = Z / 7mZ.
In particular, E/Q has a 7k-isogeny. But 7k ≥ 49 for k > 1, which
is not a possible isogeny. Therefore,

E(K)[7∞] ⊆ Z/7Z



Theorem
If K/Q is a Galois extension of degree 9 and E/Q is an elliptic curve,
then

E(K)tors ⊆ Z/2Z⊕ Z/6983776800Z

Furthermore, there are at most 34 possibilities for E(K)tors.


