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Definition (Elliptic Curve)

An elliptic curve is a nonsingular projective curve of genus one.



Definition (Elliptic Curve)

An elliptic curve is an abelian variety of dimension one.



Definition (Elliptic Curve)

An elliptic curve is a nonempty smooth variety V(F), where
deg F = 3.



Definition (Elliptic Curve)

An elliptic curve is a compact Riemann surface of genus 1.



Definition (Elliptic Curve)

An elliptic curve is the set of points
{(x, y) : y2 = x3 + Ax + B,−(4A3 + 27B2) 6= 0}.





Theorem (Mordell-Weil-Néron; 1922, 1928,1954)

Let K be a field that is finitely generated over its prime field, and let
A/K be an abelian variety. Then the group of K-rational points on A,
denoted A(K), is a finitely generated

A(K) ∼= ZrA/F ⊕ A(K)tors



Question

What finitely generated abelian groups arise from abelian
varieties over global fields?



Let L/K be an extension of fields.

EK(L) := {y2 = x3+Ax+B : x, y ∈ L,A,B ∈ K,−(4A3+27B2) 6= 0}



E(K)tors ∼= Z/mZ⊕ Z/mnZ

E[n] ∼= Z/nZ⊕ Z/nZ



Theorem (Levi-Ogg Conjecture; Mazur, 1977)

Let E/Q be an elliptic curve. Then E(Q)tors is one of the following:{
Z/nZ, n = 1, 2, . . . , 10, 12
Z/2Z⊕ Z/2nZ, n = 1, 2, 3, 4

Moreover, possibility occurs infinitely many times.



Theorem (Kenku & Momose, 1988; Kamienny, 1992)

Let K be a quadratic number field, and E/K an elliptic curve. Then
E(K)tors is one of the following:

Z/nZ, n = 1, 2, . . . , 16, 18
Z/2Z⊕ Z/2nZ, n = 1, 2, . . . , 6
Z/3Z⊕ Z/3nZ, n = 1, 2
Z/4Z⊕ Z/4Z

Moreover, each possibility occurs infinitely many times.



Theorem (Jeon, Kim, Schweizer, 2004;
Etropolski-Morrow-Zureick Brown., Derickx, 2016)

Let K be a cubic number field, and let E/K be an elliptic curve. Then
E(K)tors is one of the following:{

Z/nZ, n = 1, 2, . . . , 20,n 6= 17, 19
Z/2Z⊕ Z/2nZ, n = 1, 2, . . . , 7

Each of these possibilities occur infinitely many times except Z/21Z.



If K/Q is a number field of degree d, the torsion subgroups
E(K)tors which occur infinitely often are known when. . .

• d = 4, 2006: Jeon, Kim, Park

• d = 5, 2016: Derickx, Sutherland

• d = 6, 2016: Derickx, Sutherland
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If K/Q is a number field of degree d, the torsion subgroups
E(K)tors which occur infinitely often are known when. . .

• d = 4, 2006: Jeon, Kim, Park
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Theorem (Clark, Corn, Rice, Stankewicz; 2013)

Let K be a number field of degree d = 1, 2, . . . , 13, and E/K an elliptic
curve with CM. Then all possible torsion subgroups are given, and an
algorithm to compute the list for d ≥ 1.

Theorem (Bourdon, Clark; 2017)

Give a best possible constant T such that if E(L)tors has a point of
order N ≥ 2, then T | [L : K(j(E))], where K is a quadratic imaginary
field, L/K, and E/L has CM by an order O ⊆ K.
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ΦQ(d) := {Set of Iso. Classes of E(K)tors : EQ(K), [K : Q] = d}

SQ(d) := {p prime : ∃ EQ(K), p divides |EQ(K)|tors, [K : Q] ≤ d}
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Theorem (Najman, González-Jiménez, Lozano-Robledo,
Chou, et al.)

ΦQ(2) =

{
Z/nZ, n = 1, . . . , 10, 12, 15, 16
Z/2Z⊕ Z/2nZ, n = 1, . . . , 6

ΦQ(3) =

{
Z/nZ, n = 1, . . . , 10, 12, 13, 14, 18, 21
Z/2Z⊕ Z/2nZ, n = 1, 2, 3, 4, 7

ΦQ(4) =



Z/nZ, n = 1, . . . , 10, 12, 13, 15, 16, 20, 24
Z/2Z⊕ Z/2nZ, n = 1, . . . , 6, 8
Z/3Z⊕ Z/3nZ, n = 1, 2
Z/4Z⊕ Z/4nZ, n = 1, 2
Z/5Z⊕ Z/5Z,Z/6Z⊕ Z/6Z

ΦQ(5) =

{
Z/nZ, n = 1, . . . , 12, 25
Z/2Z⊕ Z/2nZ, n = 1, . . . , 4



Theorem (Mazur, Parent, Derickx, Kammienny, Stein,
Stoll, Lozano-Robledo, et al.)

SQ({1, 2}) = {2, 3, 5, 7}
SQ({3, 4}) = {2, 3, 5, 7, 13}

SQ({5, 6, 7}) = {2, 3, 5, 7, 11, 13}
SQ(8) = {2, 3, 5, 7, 11, 13}

SQ({9, 10, 11}) = {2, 3, 5, 7, 11, 13, 17, 19}
SQ({12, . . . , 20}) = {2, 3, 5, 7, 11, 13, 17, 19, 37}

SQ(21) = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43}



Theorem (C.M.)

Let K be a nonic Galois number field, and EQ(K) an elliptic curve.
Then E(K)tors is one of the following:{

Z/nZ, n = 1, 2, . . . , 21, 25, 27
Z/nZ⊕ Z/2nZ, n = 1, 2, . . . , 9



IDEA OF THE PROOF

• Find the possible prime power orders,

i.e. bound the
Sylow subgroups.

• Eliminate cases by use of Weil pairing, isogenies, and
Galois representations.
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GALOIS REPRESENTATIONS

• E[m] ∼= Z /mZ⊕ Z /mZ

• If σ ∈ Gal(Q/Q), then

[m](Pσ) = ([m]P)σ = Oσ = O

• ρE,n : Gal(Q/Q) −→ Aut(E[n]) ∼= GL2 (Z /nZ)

Possible images and indices of Galois representations are
limited by the work of Zureick-Brown, Zywina, Clark, Rouse,
Corn, Rice, Stankewicz, et al.
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Proposition

EQ(K)[7∞] ⊆ Z/7Z



Definition (Isogeny)

Let E1,E2 be elliptic curves. An isogeny from E1 to E2 is a
morphism φ : E1 → E2 with φ(O) = O. If | kerφ| = n, we say φ
is an n-isogeny.

Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur,
Ogg, et al.)

If E/Q has an n-isogeny over Q, then n ≤ 19 or
n ∈ {21, 25, 27, 37, 43, 67, 163}. If E does not have CM, then n ≤ 18
or n ∈ {21, 25, 37}.
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Lemma
Let K/Q be a number field of odd degree. Then E(K)tors cannot
contain full n-torsion for n > 2.

Proof. If K contains E[n] ∼= Z /nZ⊕ Z /nZ, then Q(ζn) ⊆ K. But
then

[K : Q(ζn)] [Q(ζn) : Q] = [K : Q]

[K : Q(ζn)]φ(n) = [K : Q]

but φ(n) is even for n > 2, a contradiction.
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EQ(K)[7∞] ⊆ Z/7Z

Proof.

• By the Lemma, EQ(K) cannot contain full 7-torsion.
Therefore, Syl7(EQ(K)) ⊆ Z/7kZ for some k.
• If k > 1, then EQ(K) contains a rational 7k-isogeny, which is

not possible for k > 1. Therefore, k = 1.
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Proof.
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not possible for k > 1. Therefore, k = 1.



Questions?


