Torsion of Elliptic Curves over Number Fields of Small Degree

BUGCAT 2018

Caleb McWhorter
Syracuse University

October 14, 2018

Definition (Elliptic Curve)

An elliptic curve is a nonsingular projective curve of genus one.

Definition (Elliptic Curve)

An elliptic curve is an abelian variety of dimension one.

Definition (Elliptic Curve)

An elliptic curve is a nonempty smooth variety $V(F)$, where $\operatorname{deg} F=3$.

Definition (Elliptic Curve)

An elliptic curve is a compact Riemann surface of genus 1.

Definition (Elliptic Curve)

An elliptic curve is the set of points $\left\{(x, y): y^{2}=x^{3}+A x+B,-\left(4 A^{3}+27 B^{2}\right) \neq 0\right\}$.

Theorem (Mordell-Weil-Néron; 1922, 1928,1954)

Let K be a field that is finitely generated over its prime field, and let A / K be an abelian variety. Then the group of K-rational points on A, denoted $A(K)$, is a finitely generated

$$
A(K) \cong \mathbf{Z}^{r_{A / F}} \oplus A(K)_{\text {tors }}
$$

Question

What finitely generated abelian groups arise from abelian varieties over global fields?

Let L / K be an extension of fields.

$$
E_{K}(L):=\left\{y^{2}=x^{3}+A x+B: x, y \in L, A, B \in K,-\left(4 A^{3}+27 B^{2}\right) \neq 0\right\}
$$

$$
\begin{aligned}
E(K)_{\text {tors }} & \cong \mathbf{Z} / m \mathbf{Z} \oplus \mathbf{Z} / m n \mathbf{Z} \\
E[n] & \cong \mathbf{Z} / n \mathbf{Z} \oplus \mathbf{Z} / n \mathbf{Z}
\end{aligned}
$$

Theorem (Levi-Ogg Conjecture; Mazur, 1977)

Let E / \mathbf{Q} be an elliptic curve. Then $E(\mathbf{Q})_{\text {tors }}$ is one of the following:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1,2, \ldots, 10,12 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1,2,3,4\end{cases}
$$

Moreover, possibility occurs infinitely many times.

Theorem (Kenku \& Momose, 1988; Kamienny, 1992)

Let K be a quadratic number field, and E / K an elliptic curve. Then $E(K)_{\text {tors }}$ is one of the following:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1,2, \ldots, 16,18 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1,2, \ldots, 6 \\ \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 n \mathbf{Z}, & n=1,2 \\ \mathbf{Z} / 4 \mathbf{Z} \oplus \mathbf{Z} / 4 \mathbf{Z} & \end{cases}
$$

Moreover, each possibility occurs infinitely many times.

Theorem (Jeon, Kim, Schweizer, 2004; Etropolski-Morrow-Zureick Brown., Derickx, 2016)
Let K be a cubic number field, and let E / K be an elliptic curve. Then $E(K)_{\text {tors }}$ is one of the following:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1,2, \ldots, 20, n \neq 17,19 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1,2, \ldots, 7\end{cases}
$$

Each of these possibilities occur infinitely many times except $\mathbf{Z} / 21 \mathbf{Z}$.

If K / \mathbf{Q} is a number field of degree d, the torsion subgroups $E(K)_{\text {tors }}$ which occur infinitely often are known when...

- $d=4$, 2006: Jeon, Kim, Park

If K / \mathbf{Q} is a number field of degree d, the torsion subgroups $E(K)_{\text {tors }}$ which occur infinitely often are known when...

- $d=4$, 2006: Jeon, Kim, Park
- $d=5$, 2016: Derickx, Sutherland

If K / \mathbf{Q} is a number field of degree d, the torsion subgroups $E(K)_{\text {tors }}$ which occur infinitely often are known when...

- $d=4$, 2006: Jeon, Kim, Park
- $d=5$, 2016: Derickx, Sutherland
- $d=6$, 2016: Derickx, Sutherland

Theorem (Clark, Corn, Rice, Stankewicz; 2013)

Let K be a number field of degree $d=1,2, \ldots, 13$, and E / K an elliptic curve with CM. Then all possible torsion subgroups are given, and an algorithm to compute the list for $d \geq 1$.

Theorem (Clark, Corn, Rice, Stankewicz; 2013)

Let K be a number field of degree $d=1,2, \ldots, 13$, and E / K an elliptic curve with CM. Then all possible torsion subgroups are given, and an algorithm to compute the list for $d \geq 1$.

Theorem (Bourdon, Clark; 2017)

Give a best possible constant T such that if $E(L)_{\text {tors }}$ has a point of order $N \geq 2$, then $T \mid[L: K(j(E))]$, where K is a quadratic imaginary field, L / K, and E / L has $C M$ by an order $\mathcal{O} \subseteq K$.

$$
\Phi_{\mathbf{Q}}(d):=\left\{\text { Set of Iso. Classes of } E(K)_{\text {tors }}: E_{\mathbf{Q}}(K),[K: \mathbf{Q}]=d\right\}
$$

$$
\Phi_{\mathbf{Q}}(d):=\left\{\text { Set of Iso. Classes of } E(K)_{\text {tors }}: E_{\mathbf{Q}}(K),[K: \mathbf{Q}]=d\right\}
$$

$S_{\mathbf{Q}}(d):=\left\{p\right.$ prime $: \exists E_{\mathbf{Q}}(K), p$ divides $\left.\left|E_{\mathbf{Q}}(K)\right|_{\text {tors }},[K: \mathbf{Q}] \leq d\right\}$

Theorem (Najman, González-Jiménez, Lozano-Robledo, Chou, et al.)

$$
\begin{aligned}
& \Phi_{\mathbf{Q}}(2)= \begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1, \ldots, 10,12,15,16 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1, \ldots, 6\end{cases} \\
& \Phi_{\mathbf{Q}}(3)= \begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1, \ldots, 10,12,13,14,18,21 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1,2,3,4,7\end{cases} \\
& \Phi_{\mathbf{Q}}(4)= \begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1, \ldots, 10,12,13,15,16,20,24 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1, \ldots, 6,8 \\
\mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 n \mathbf{Z}, & n=1,2 \\
\mathbf{Z} / 4 \mathbf{Z} \oplus \mathbf{Z} / 4 n \mathbf{Z}, & n=1,2 \\
\mathbf{Z} / 5 \mathbf{Z} \oplus \mathbf{Z} / 5 \mathbf{Z}, \mathbf{Z} / 6 \mathbf{Z} \oplus \mathbf{Z} / 6 \mathbf{Z}\end{cases} \\
& \Phi_{\mathbf{Q}}(5)= \begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1, \ldots, 12,25 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1, \ldots, 4\end{cases}
\end{aligned}
$$

Theorem (Mazur, Parent, Derickx, Kammienny, Stein, Stoll, Lozano-Robledo, et al.)

$$
\begin{aligned}
S_{\mathbf{Q}}(\{1,2\}) & =\{2,3,5,7\} \\
S_{\mathbf{Q}}(\{3,4\}) & =\{2,3,5,7,13\} \\
S_{\mathbf{Q}}(\{5,6,7\}) & =\{2,3,5,7,11,13\} \\
S_{\mathbf{Q}}(8) & =\{2,3,5,7,11,13\} \\
S_{\mathbf{Q}}(\{9,10,11\}) & =\{2,3,5,7,11,13,17,19\} \\
S_{\mathbf{Q}}(\{12, \ldots, 20\}) & =\{2,3,5,7,11,13,17,19,37\} \\
S_{\mathbf{Q}}(21) & =\{2,3,5,7,11,13,17,19,37,43\}
\end{aligned}
$$

Theorem (C.M.)

Let K be a nonic Galois number field, and $E_{\mathbf{Q}}(K)$ an elliptic curve. Then $E(K)_{\text {tors }}$ is one of the following:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1,2, \ldots, 21,25,27 \\ \mathbf{Z} / n \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1,2, \ldots, 9\end{cases}
$$

Idea of the Proof

- Find the possible prime power orders,

Idea of the Proof

- Find the possible prime power orders, i.e. bound the Sylow subgroups.

Idea of the Proof

- Find the possible prime power orders, i.e. bound the Sylow subgroups.
- Eliminate cases by use of Weil pairing, isogenies, and Galois representations.

Galois Representations

- $E[m] \cong \mathbf{Z} / m \mathbf{Z} \oplus \mathbf{Z} / m \mathbf{Z}$

Galois Representations

- $E[m] \cong \mathbf{Z} / m \mathbf{Z} \oplus \mathbf{Z} / m \mathbf{Z}$
- If $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, then

$$
[m]\left(P^{\sigma}\right)=([m] P)^{\sigma}=\mathcal{O}^{\sigma}=\mathcal{O}
$$

Galois Representations

- $E[m] \cong \mathbf{Z} / m \mathbf{Z} \oplus \mathbf{Z} / m \mathbf{Z}$
- If $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, then

$$
[m]\left(P^{\sigma}\right)=([m] P)^{\sigma}=\mathcal{O}^{\sigma}=\mathcal{O}
$$

- $\bar{\rho}_{E, n}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \longrightarrow \operatorname{Aut}(E[n])$

Galois Representations

- $E[m] \cong \mathbf{Z} / m \mathbf{Z} \oplus \mathbf{Z} / m \mathbf{Z}$
- If $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, then

$$
[m]\left(P^{\sigma}\right)=([m] P)^{\sigma}=\mathcal{O}^{\sigma}=\mathcal{O}
$$

- $\bar{\rho}_{E, n}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \longrightarrow \operatorname{Aut}(E[n]) \cong \mathrm{GL}_{2}(\mathbf{Z} / n \mathbf{Z})$

Galois Representations

- $E[m] \cong \mathbf{Z} / m \mathbf{Z} \oplus \mathbf{Z} / m \mathbf{Z}$
- If $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, then

$$
[m]\left(P^{\sigma}\right)=([m] P)^{\sigma}=\mathcal{O}^{\sigma}=\mathcal{O}
$$

- $\bar{\rho}_{E, n}: \operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q}) \longrightarrow \operatorname{Aut}(E[n]) \cong \mathrm{GL}_{2}(\mathbf{Z} / n \mathbf{Z})$

Possible images and indices of Galois representations are limited by the work of Zureick-Brown, Zywina, Clark, Rouse, Corn, Rice, Stankewicz, et al.

Proposition

$$
E_{\mathbf{Q}}(K)\left[7^{\infty}\right] \subseteq \mathbf{Z} / 7 \mathbf{Z}
$$

Definition (Isogeny)

Let E_{1}, E_{2} be elliptic curves. An isogeny from E_{1} to E_{2} is a morphism $\phi: E_{1} \rightarrow E_{2}$ with $\phi(\mathcal{O})=\mathcal{O}$. If $|\operatorname{ker} \phi|=n$, we say ϕ is an n-isogeny.

Definition (Isogeny)

Let E_{1}, E_{2} be elliptic curves. An isogeny from E_{1} to E_{2} is a morphism $\phi: E_{1} \rightarrow E_{2}$ with $\phi(\mathcal{O})=\mathcal{O}$. If $|\operatorname{ker} \phi|=n$, we say ϕ is an n-isogeny.

Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et al.)
If E / \mathbf{Q} has an n-isogeny over \mathbf{Q}, then $n \leq 19$ or
$n \in\{21,25,27,37,43,67,163\}$. If E does not have CM, then $n \leq 18$ or $n \in\{21,25,37\}$.

Lemma

Let K / \mathbf{Q} be a number field of odd degree. Then $E(K)_{\text {tors }}$ cannot contain full n-torsion for $n>2$.

Lemma

Let K / \mathbf{Q} be a number field of odd degree. Then $E(K)_{\text {tors }}$ cannot contain full n-torsion for $n>2$.

Proof. If K contains $E[n] \cong \mathbf{Z} / n \mathbf{Z} \oplus \mathbf{Z} / n \mathbf{Z}$, then $\mathbf{Q}\left(\zeta_{n}\right) \subseteq K$.

Lemma

Let K / \mathbf{Q} be a number field of odd degree. Then $E(K)_{\text {tors }}$ cannot contain full n-torsion for $n>2$.

Proof. If K contains $E[n] \cong \mathbf{Z} / n \mathbf{Z} \oplus \mathbf{Z} / n \mathbf{Z}$, then $\mathbf{Q}\left(\zeta_{n}\right) \subseteq K$. But then

$$
\begin{aligned}
{\left[K: \mathbf{Q}\left(\zeta_{n}\right)\right]\left[\mathbf{Q}\left(\zeta_{n}\right): \mathbf{Q}\right] } & =[K: \mathbf{Q}] \\
{\left[K: \mathbf{Q}\left(\zeta_{n}\right)\right] \phi(n) } & =[K: \mathbf{Q}]
\end{aligned}
$$

Lemma

Let K / \mathbf{Q} be a number field of odd degree. Then $E(K)_{\text {tors }}$ cannot contain full n-torsion for $n>2$.

Proof. If K contains $E[n] \cong \mathbf{Z} / n \mathbf{Z} \oplus \mathbf{Z} / n \mathbf{Z}$, then $\mathbf{Q}\left(\zeta_{n}\right) \subseteq K$. But then

$$
\begin{aligned}
{\left[K: \mathbf{Q}\left(\zeta_{n}\right)\right]\left[\mathbf{Q}\left(\zeta_{n}\right): \mathbf{Q}\right] } & =[K: \mathbf{Q}] \\
{\left[K: \mathbf{Q}\left(\zeta_{n}\right)\right] \phi(n) } & =[K: \mathbf{Q}]
\end{aligned}
$$

but $\phi(n)$ is even for $n>2$, a contradiction.

Proposition

$$
E_{\mathbf{Q}}(K)\left[7^{\infty}\right] \subseteq \mathbf{Z} / 7 \mathbf{Z}
$$

Proof.

Proposition

$E_{\mathbf{Q}}(K)\left[7^{\infty}\right] \subseteq \mathbf{Z} / 7 \mathbf{Z}$

Proof.

- By the Lemma, $E_{\mathbf{Q}}(K)$ cannot contain full 7-torsion. Therefore, $\operatorname{Syl}_{7}\left(E_{\mathbf{Q}}(K)\right) \subseteq \mathbf{Z} / 7^{k} \mathbf{Z}$ for some k.

Proposition

$E_{\mathbf{Q}}(K)\left[7^{\infty}\right] \subseteq \mathbf{Z} / 7 \mathbf{Z}$

Proof.

- By the Lemma, $E_{\mathbf{Q}}(K)$ cannot contain full 7-torsion. Therefore, $\operatorname{Syl}_{7}\left(E_{\mathbf{Q}}(K)\right) \subseteq \mathbf{Z} / 7^{k} \mathbf{Z}$ for some k.
- If $k>1$, then $E_{\mathbf{Q}}(K)$ contains a rational 7^{k}-isogeny, which is not possible for $k>1$. Therefore, $k=1$.

Questions?

