Torsion Subgroups of Elliptic Curves over (Nonic Galois) Number Fields

9th Annual Upstate Number Theory Conference
Caleb McWhorter
Syracuse University

Theorem (Mordell, 1922)

Let E / \mathbf{Q} be an elliptic curve. Then the group of rational points on E, denoted $E(Q)$ is a finitely generated abelian group. In particular,

$$
E(\mathbf{Q}) \cong \mathbf{Z}^{r} \oplus E(\mathbf{Q})_{\text {tors }},
$$

where $r \geq 0$ is the rank and $E(\mathbf{Q})_{\text {tors }}$ is the set of points with finite order.

Louis J. Mordell 1888-1972

Theorem (Mordell-Weil-Néron, 1952)

Let F be a field that is finitely generated over its prime field and A / F be an abelian variety. Then the group of F-rational points on A, denoted $A(F)$, is a finitely generated abelian group. In particular,

$$
A(F) \cong \mathbf{Z}^{r_{A / F}} \oplus A(F)_{\text {tors }}
$$

Louis J. Mordell 1888-1972

André Weil 1906-1998

André Néron 1922-1985

Structure of the Torsion Subgroup

$$
E(K)_{\text {tors }} \cong \mathbf{Z} / m \mathbf{Z} \oplus \mathbf{Z} / m n \mathbf{Z}
$$

$$
E[n] \cong \mathbf{Z} / n \mathbf{Z} \oplus \mathbf{Z} / n \mathbf{Z}
$$

Theorem (Levi-Ogg Conjecture; Mazur, 1977)

If E / \mathbf{Q} is a rational elliptic curve, then $E(Q)_{\text {tors }}$ is isomorphic to one of the following:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1,2, \ldots, 10,12 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1, \ldots, 4\end{cases}
$$

Moreover, each possibility occurs infinitely often.

Beppo Levi 1875-1961

Andrew Ogg

Barry Mazur

Question

What torsion subgroups arise for elliptic curves E / K, where K is a number field of degree d ?

With massive loss of generality, let $d=2$.

Theorem (Kenku, Momose, 1988; Kamienny, 1992)

Let K / \mathbf{Q} be a quadratic number field and E / K be an elliptic curve. Then $E(K)_{\text {tors }}$ is isomorphic to one of the following:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1,2, \ldots, 16,18 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1, \ldots, 6 \\ \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 n \mathbf{Z} & n=1,2 \\ \mathbf{Z} / 4 \mathbf{Z} \oplus \mathbf{Z} / 4 \mathbf{Z} & \end{cases}
$$

Moreover, each possibility occurs infinitely often.

Theorem (Jeon,Kim,Schweizer, 2004; Etropolski-Morrow-Zureick Brown; Derickx, 2016)
Let K / \mathbf{Q} be a cubic number field and E / K be an elliptic curve. Then $E(K)_{\text {tors }}$ is isomorphic to one of the following:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1,2, \ldots, 16,18,20,21 \\ \mathbf{Z} / 2 n \mathbf{Z} & n=1, \ldots, 7\end{cases}
$$

Each of these possibilities occurs infinitely many times except $\mathbf{Z} / 21 \mathbf{Z}$.

Theorem (Jeon, Kim, Park, 2006)

Let K / \mathbf{Q} be a quartic number field and E / F an elliptic curve. If
$E(K)_{\text {tors }}$ appears infinitely often, then $E(K)_{\text {tors }}$ is isomorphic to one of the following

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1,2, \ldots, 18,20,21,22 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1, \ldots, 9 \\ \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 n \mathbf{Z} & n=1,2,3 \\ \mathbf{Z} / 4 \mathbf{Z} \oplus \mathbf{Z} / 4 n \mathbf{Z} & n=1,2 \\ \mathbf{Z} / 5 \mathbf{Z} \oplus \mathbf{Z} / 5 \mathbf{Z} & \\ \mathbf{Z} / 6 \mathbf{Z} \oplus \mathbf{Z} / 6 \mathbf{Z} & \end{cases}
$$

Daeyeol Jeon

Chang Kim

Eui-Sung Park

Theorem (Derickx, Sutherland, 2016)

Let K / \mathbf{Q} be a quintic number field and E / K an elliptic curve. Then if $E(K)_{\text {tors }}$ appears infinitely often it must be isomorphic to one of the following:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1, \ldots, 22,24,25 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1, \ldots, 8\end{cases}
$$

Maarten Derickx

Drew Sutherland

Theorem (Derickx, Sutherland, 2016)

Let K / \mathbf{Q} be a sextic number field and E / K an elliptic curve. If $E(K)_{\text {tors }}$ occurs infinitely often, then it must be isomorphic to one of the following:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1, \ldots, 30 ; n \neq 23,25,29 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1, \ldots, 10 \\ \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 n \mathbf{Z} & n=1, \ldots, 4 \\ \mathbf{Z} / 4 \mathbf{Z} \oplus \mathbf{Z} / 4 n \mathbf{Z} & n=1,2 \\ \mathbf{Z} / 6 \mathbf{Z} \oplus \mathbf{Z} / 6 \mathbf{Z} & \end{cases}
$$

Theorem (Clark, Corn, Rice, Stankewicz; 2013)

Let K be a number field of degree $d=1,2, \ldots, 13$, and E / K an elliptic curve with CM. Then all possible torsion subgroups are given, and an algorithm to compute the list for $d \geq 1$.

What about you restrict to rational elliptic curves?

Definition (Isogeny)

Let E_{1}, E_{2} be elliptic curves. An isogeny from E_{1} to E_{2} is a morphism $\phi: E_{1} \rightarrow E_{2}$ with $\phi(\mathcal{O})=\mathcal{O}$. If $|\operatorname{ker} \phi|=n$, we say ϕ is an n-isogeny.

Definition (Isogeny)

Let E_{1}, E_{2} be elliptic curves. An isogeny from E_{1} to E_{2} is a morphism $\phi: E_{1} \rightarrow E_{2}$ with $\phi(\mathcal{O})=\mathcal{O}$. If $|\operatorname{ker} \phi|=n$, we say ϕ is an n-isogeny.

Theorem (Fricke, Kenku, Klein, Kubert, Ligozat, Mazur, Ogg, et al.)

If E / \mathbf{Q} has an n-isogeny over \mathbf{Q}, then

$$
n \in\{1,2, \ldots, 19,21,25,27,37,43,67,163\} .
$$

If E does not have $C M$, then $n \leq 18$ or $n \in\{21,25,37\}$.

In 2015, Jeremy Rouse and David-Zureick-Brown classified all possible 2-adic images of Galois representations attached to elliptic curves E / \mathbf{Q}. In particular, the index of $\rho_{E, 2 \infty}\left(G_{\mathbf{Q}}\right)$ divides 64 or 96 . They also enumerate all 1,208 possibilities and find their rational points.

A bit of notation

$$
\Phi_{\mathbf{Q}}(d):=\left\{\text { Set of Iso. Classes of } E(K)_{\text {tors }}: E_{\mathbf{Q}}(K),[K: \mathbf{Q}]=d\right\}
$$

$$
\Phi_{\mathbf{Q}}(d):=\left\{\text { Set of Iso. Classes of } E(K)_{\text {tors }}: E_{\mathbf{Q}}(K),[K: \mathbf{Q}]=d\right\}
$$

$S_{\mathbf{Q}}(d):=\left\{p\right.$ prime $: \exists E_{\mathbf{Q}}(K), p$ divides $\left.\left|E_{\mathbf{Q}}(K)\right|_{\text {tors }},[K: \mathbf{Q}] \leq d\right\}$

Theorem (Najman, González-Jiménez, Lozano-Robledo, Daniels, Chou, et al.)

$$
\begin{aligned}
& \Phi_{\mathbf{Q}}(2)= \begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1, \ldots, 10,12,15,16 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1, \ldots, 6\end{cases} \\
& \Phi_{\mathbf{Q}}(3)= \begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1, \ldots, 10,12,13,14,18,21 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1,2,3,4,7\end{cases} \\
& \Phi_{\mathbf{Q}}(4)= \begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1, \ldots, 10,12,13,15,16,20,24 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1, \ldots, 6,8 \\
\mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 n \mathbf{Z}, & n=1,2 \\
\mathbf{Z} / 4 \mathbf{Z} \oplus \mathbf{Z} / 4 n \mathbf{Z}, & n=1,2 \\
\mathbf{Z} / 5 \mathbf{Z} \oplus \mathbf{Z} / 5 \mathbf{Z}, \mathbf{Z} / 6 \mathbf{Z} \oplus \mathbf{Z} / 6 \mathbf{Z}\end{cases} \\
& \Phi_{\mathbf{Q}}(5)= \begin{cases}\mathbf{Z} / n \mathbf{Z}, & n=1, \ldots, 12,25 \\
\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z}, & n=1, \ldots, 4\end{cases}
\end{aligned}
$$

Theorem (Najman)

Let E / \mathbf{Q} be an elliptic curve and K / \mathbf{Q} a cubic number field. Then

$$
E(F)_{\text {tors }} \cong \begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1, \ldots, 10,12,13,14,18,21 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1, \ldots, 4,7\end{cases}
$$

Moreover, the elliptic curve 162B1 over $\mathbf{Q}\left(\zeta_{9}\right)^{+}$is the unique rational elliptic curve over a cubic number field with torsion subgroup $\mathbf{Z} / 21 \mathbf{Z}$.

Filip Najman

Theorem (Mazur, Parent, Derickx, Kammienny, Stein, Stoll, Lozano-Robledo, et al.)

$$
\begin{aligned}
S_{\mathbf{Q}}(\{1,2\}) & =\{2,3,5,7\} \\
S_{\mathbf{Q}}(\{3,4\}) & =\{2,3,5,7,13\} \\
S_{\mathbf{Q}}(\{5,6,7\}) & =\{2,3,5,7,11,13\} \\
S_{\mathbf{Q}}(8) & =\{2,3,5,7,11,13,17\} \\
S_{\mathbf{Q}}(\{9,10,11\}) & =\{2,3,5,7,11,13,17,19\} \\
S_{\mathbf{Q}}(\{12, \ldots, 20\}) & =\{2,3,5,7,11,13,17,19,37\} \\
S_{\mathbf{Q}}(21) & =\{2,3,5,7,11,13,17,19,37,43\}
\end{aligned}
$$

There is a conjectural formula for $S_{\mathbf{Q}}(d)$ for all $d \geq 1$ which is valid for all $1 \leq d \leq 42$, and follows from a positive answer to Serre's uniformity conjecture.

What about other cases?
(Nonic) Galois Case

Theorem

Let K / \mathbf{Q} be a nonic Galois field and E / \mathbf{Q} be an elliptic curve. Then $E_{\mathbf{Q}}(K)_{\text {tors }}$ is isomorphic to one of the following groups:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1,2, \ldots, 10,12,13,14, \ldots, 18^{*}, 19, \underline{21}, 27 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1,2,3,4,7,9^{*}\end{cases}
$$

Theorem

Let K / \mathbf{Q} be a nonic Galois field with $\operatorname{Gal}(K / Q) \cong \mathbf{Z} / 9 \mathbf{Z}$ and E / \mathbf{Q} be an elliptic curve. Then $E_{\mathbf{Q}}(K)_{\text {tors }}$ is isomorphic to one of the following groups:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1,2, \ldots, 10,12,13^{*}, 14^{*}, 18^{*}, 19,21,27 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1,2,3,4,7^{*}, 9^{*}\end{cases}
$$

Theorem
Let K / \mathbf{Q} be a nonic Galois field with $\operatorname{Gal}(K / Q) \cong \mathbf{Z} / 3 \mathbf{Z} \oplus \mathbf{Z} / 3 \mathbf{Z}$ and E / \mathbf{Q} be an elliptic curve. Then $E_{\mathbf{Q}}(K)_{\text {tors }}$ is isomorphic to one of the following groups:

$$
\begin{cases}\mathbf{Z} / n \mathbf{Z} & n=1,2, \ldots, 10,12,13,14,18,21 \\ \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1,2,3,4,7,9^{*}\end{cases}
$$

$$
\begin{array}{ccc}
E(K)_{\text {tors }} & {\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right]} & K \\
\hline \mathbf{Z} / 19 \mathbf{Z} & {[0,0,1,-38,90]} & \mathbf{Q}\left(\zeta_{19}\right)^{+} \\
\mathbf{Z} / 27 \mathbf{Z} & {[0,0,1,-30,63]} & \mathbf{Q}\left(\zeta_{27}\right)^{+}
\end{array}
$$

Proposition (Lozano-Robledo)

Let K / \mathbf{Q} be a nonic field and E / \mathbf{Q} an elliptic curve. Then the only possible prime order points are $2,3,5,7,11,13,17,19$.

Proposition (González-Jiménez, Najman)

Let K / \mathbf{Q} be a number field of degree d and E / \mathbf{Q} be an elliptic curve. Then $E(K)$ contains a point of order 11 if and only if $5 \mid d$ and contains a point of order 17 if and only if $8 \mid d$.

Lemma

Let K / \mathbf{Q} be an odd degree number field and E / \mathbf{Q} an elliptic curve. Then $E(K)[n] \cong \mathbf{Z} / n \mathbf{Z}$ for $n>2$.

Proof. If $E(K)[n] \cong \mathbf{Z} / n \mathbf{Z} \oplus \mathbf{Z} / n \mathbf{Z}$, then the Weil pairing forces $\mathbf{Q}\left(\zeta_{n}\right) \subseteq K$. But then

$$
[K: \mathbf{Q}]=\left[K: \mathbf{Q}\left(\zeta_{n}\right)\right]\left[\mathbf{Q}\left(\zeta_{n}\right): \mathbf{Q}\right]=\phi(n)\left[K: \mathbf{Q}\left(\zeta_{n}\right)\right] .
$$

But $\phi(n)$ is even for $n>2$.

Lemma

Let K / \mathbf{Q} be a Galois extension and E / \mathbf{Q} an elliptic curve. If $E(K)[n] \cong \mathbf{Z} / n \mathbf{Z}$, then E has an n-isogeny over \mathbf{Q}.

Proof. Choose a $\mathbf{Z} / n \mathbf{Z}$ basis for $E[n]$, say $\{P, Q\}$. Without loss of generality, assume $P \in E(K)$ and $Q \notin E(K)$. If $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}} / Q)$, then $P^{\sigma} \in\langle P\rangle$. But then $\langle P\rangle$ is Galois-stable so that E has an n-isogeny over \mathbf{Q}.

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland)

Let E / \mathbf{Q} be an elliptic curve. Then $E\left(\mathbf{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$ is finite and isomorphic to precisely one of the following:

$$
\begin{cases}\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=1,2,4,5,7,8,13 \\ \mathbf{Z} / 4 \mathbf{Z} \oplus \mathbf{Z} / 4 n \mathbf{Z} & n=1,2,4,7 \\ \mathbf{Z} / 6 \mathbf{Z} \oplus \mathbf{Z} / 6 n \mathbf{Z} & n=1,2,3,5,7 \\ \mathbf{Z} / 2 n \mathbf{Z} \oplus \mathbf{Z} / 2 n \mathbf{Z} & n=4,6,7,9\end{cases}
$$

Lemma

If K / \mathbf{Q} is an odd degree number field and E / \mathbf{Q} an elliptic curve. If $E(\mathbf{Q})$ contains a point of order 2 , then the 2 -Sylow subgroups of $E(K)$ and $E(\mathbf{Q})$ are equal.

Proof. The field K cannot contain any points of order 2 which are not defined over \mathbf{Q} because any such points are contained in a quadratic field and K has odd degree. If the Sylow 2-subgroups of $E(K)$ and $E(\mathbf{Q})$ were not equal, there would be a K-rational point, say P, which was not Q-rational but $2 P=Q$, where Q is a Q-rational point with order a power of 2 . The equation $2 P=Q$ has 4 solutions. However, the orbit from the action of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$ must have length 2 or 4 . But as K / \mathbf{Q} has odd degree, this is impossible.

Lemma

Let K / \mathbf{Q} be a nonic field and E / \mathbf{Q} be an elliptic curve. If P is a point of order 3,7 , or 13 , then $P \in E(\mathbf{Q})$ or $P \in E(K)$, where K is a cubic field. Furthermore, if P has order 5 , then $P \in E(\mathbf{Q})$. In particular, the Sylow 5-subgroups of $E(K)_{\text {tors }}$ and $E(\mathbf{Q})_{\text {tors }}$ are equal.

Questions?

